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Abstract: Tufa is a fresh-water surface calcium carbonate deposit precipitated at or near ambient
temperature, and commonly contains the remains of macro- and microphytes. Many Holocene tufas
are found along the Zrmanja River, Dalmatian karst, Croatia. In this work we present radiocarbon
dating results of older tufa that was found for the first time at the Zrmanja River near the Village
of Sanaderi. Tufa outcrops were observed at different levels, between the river bed and up to 26 m
above its present level. Radiocarbon dating of the carbonate fraction revealed ages from modern, at
the river bed, up to 40 kBP ~20 m above its present level. These ages fit well with the hypothesis
that the Zrmanja River had a previous surface connection with the Krka River, and changed its flow
direction toward the Novigrad Sea approximately 40 kBP (Marine Isotope Stage 3). Radiocarbon AMS
dating of tufa organic residue yielded a maximum conventional age of 17 kBP for the highest outcrop
position indicating probable penetration of younger organic material to hollow tufa structures, as
confirmed by radiocarbon analyses of humin extracted from the samples. Stable carbon isotope
composition (δ13C) of the carbonate fraction of (−10.4 ± 0.6)‰ and (−9.7 ± 0.8)‰ for the Holocene
and the older samples, respectively, indicate the autochthonous origin of the carbonate. The δ13C
values of (−30.5± 0.3)‰ and (−29.6± 0.6)‰ for organic residue, having ages <500 BP and >5000 BP,
respectively, suggest a unique carbon source for photosynthesis, mainly atmospheric CO2, with an
indication of the Suess effect in δ13C during last centuries. The oxygen isotopic composition (δ18O)
agrees well with deposition of tufa samples in two stages, the Holocene (−8.02 ± 0.72‰) and “old”
(mainly MIS 3 and the beginning of MIS 2) (−6.89 ± 0.34‰), suggesting a ~4 ◦C lower temperature
in MIS 3 compared to the current one.

Keywords: radiocarbon dating; carbonate and organic fraction; humin; C and O stable isotope
composition; tufa; hard-water effect; Dinaric karst; Zrmanja river; Croatia; paleoenvironmental
research

1. Introduction

Tufa is a secondary carbonate wide spread within the karst areas worldwide. It is often
the only available secondary carbonate within an area of important interest for paleoenvi-
ronmental investigation. Tufa precipitates from fresh waters (super)saturated in CaCO3
at ambient temperature and usually includes the remains of micro- and macrophytes,
invertebrates, and bacteria [1–3]. Dating of tufa and its use as paleoenvironmental tool
has always been connected with difficulties. Researchers have attempted to obtain reliable
dates from tufa samples using various approaches, such as establishment of the direction
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of tufa growth [4–8], radiocarbon dating after correction for the effects of “dead” carbon,
or using U-Th dating. Additionally, tufa may erode, incorporate some allochthonous
terrestrial material and “dead” carbonate, and experience recrystallization [9–11]. Reliable
dating of tufa enables interpretation of the physico-chemical proxies and can provide many
answers on Holocene and Pleistocene palaeoclimate [1,4,6,7,12–25]. It is essential that the
results obtained by different analyses can be put into a correct time frame.

During tufa formation, a certain amount of “dead” carbon is incorporated (quantified
as the “dead-carbon proportion”, or DCP). This dead carbon originates from carbonate
in the source bedrock (limestones and dolomites) which does not contain 14C. Bedrock
dissolution from H2CO3 occurs due to the reaction of meteoric water with CO2 produced
from plant degradation in soils. The HCO3

- ions formed by this dissolution contains
both 14C-dead bedrock carbon and modern or recent 14C from plants, lowering the initial
radiocarbon activity (a0) of secondary carbonates precipitated from this water. Such waters
emerging at springs are rich in HCO3

- ions, and are characteristic of karst [26,27]. Measured
radiocarbon dates appear older and must be corrected for DCP to obtain an accurate 14C
age. The DCP can be determined since a0 can be obtained from radiocarbon activity of
freshly sampled: (1) dissolved inorganic carbon (DIC); (2) carbonate precipitated on an
inert material; or (3) actively precipitating tufa. The first method is the most reliable for
reasons stated below. It is important to emphasize, however, that it is not known if the DCP
established in this manner is constant through time, as is the case with the marine reservoir
effect (MRE [28,29], and references therein, [30]), although the MRE and DCP have different
origins. The DCP is often used in discussion of speleothem 14C ages [31–33]. However,
in secondary carbonates, such are tufa and lake sediments of the Croatian karst, DCP in
precipitated carbonate may be higher due to the incorporation of weathered limestone
fragments into the precipitate [34]. For these reasons, herein we will use terms “hard-water
effect” or “fresh-water effect” rather than the DCP.

U-Th dating is an alternative to radiocarbon dating although it is not free of inherent
limitations. It can be applied if a tufa sample is compact, hard, and/or crystalline [11,32].
If tufa is not compact, dating can be obtained by tufa leachate isochron method [12,35–37],
but this technique does not necessarily solve the dating problem [38]. Recent work suggests
many U-Th tufa dates are rejected and dating of both the carbonate fraction and organic
residue from tufa by the radiocarbon method is the most reliable method [6–8], in spite of
the difficulties with this latter approach [39]. It has been suggested that the only possibility
of accurately dating secondary so-called “dirty” carbonates, such as tufas, is radiocarbon
dating of the organic residue of the sample, since this part should not be influenced by
erosion and recrystallization as is the case with the carbonate fraction [8]. Humin is
generally regarded as the most resistant organic component and the best representative of
true age, and is often used in geochronology [40–44].

Consequently, in this study radiocarbon dating of both carbonate and organic fractions
has been implemented, as well as the stable isotopic composition of carbon (carbonate and
organic fractions, extracted humin) and oxygen (carbonate fraction), in order to investigate
the chronology of Zrmanja River Canyon development (Croatia, Dalmatian karst). Chronol-
ogy will be discussed on the basis of 12 tufa samples found over a range of elevations from
the river bed to 26 m above the stream level.

2. Materials and Methods
2.1. Site Description

The Zrmanja River is a relatively small river in Dinaric karst, Dalmatia, Croatia
(Figure 1) with a total length of 72.5 km [45]. It receives water from many smaller springs
and creeks on its route. The biggest contribution comes from the Krupa River, whose
confluence with the Zrmanja River occurs 47 km from the spring of Zrmanja, downstream
of Sanaderi. Similar to many rivers in the Croatian karst (e.g., Cetina [46]) according to its
geomorphological properties the Zrmanja has a composite river valley characterized by an
interchange of carbonate canyons and zones of lateral valley widening. The canyons are of
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~20 m depth with variable widths. Generally, canyon slopes are rocky with poor vegetation
(typically Mediterranean type), and at the Sanaderi location the tufa is partially concealed
by grasses and trees.

The Zrmanja River changes its flow direction between the Palanka and the Sanaderi
villages (Kravlja Draga) and turns from N-S to an almost E-W direction (Figure 1c). This
is where the Zrmanja River may have had a surface connection with the Krka River
(approximately 40 kyears ago [47]). The fossil river bed can be discerned in places while the
groundwater connection with the Krka River has been shown from dye-tracing experiments
performed during 1980s [48,49].

Table 1. Geographical coordinates, approximate elevations, and height above the water level of samples at the Sanaderi
location (Figure 1). Comments regarding microlocations and sample description are also given.

Sample
No.

Geographical
Coordinates

Elevation
(m asl)

Height above
Water Level (m) Comment Description

1

N 44◦08′57′′

E 15◦53′13′′

52 0
Approximately at 1 m
horizontal distance from river
bed

Porous, moss ramains and soil
incorporated, very hard,
white—light yellow, not
laminated, not clear if
autochthonous or not

2 54 2 4 m horizontal distance from
river bed

Porous, soil incorporated with
lots of moss, very soft, reddish,
not laminated

3 52 0 1 m horizontal distance from
river bed

Porous, soil incorporated with
moss, very soft, reddish, not
laminated

4 53 1 Exactly below sample 2
Porous, hard, slightly laminated
with moss overgrowth,
grey—yellowish

5 N 44◦09′02′′

E 15◦53′12′′ 72 20
Approximately 50 m
horizontal distance from
Zrmanja R.

Nicely laminated, non-porous,
brown and yellow laminae,
moderately hard, compact

6

N 44◦09′06′′

E 15◦53′08′′

73 21

Outcrop along the road,
approximately 50 m
horizontal distance from
Zrmanja R.

Laminated, medium porosity,
white and yellowish laminae,
soft

7 72 20 1 m below sample #6, The
same outcrop as #6

8 73 21
1 m horizontal distance from
sample #6, from the same
outcrop

Nicely laminated, non-porous,
brown and yellow laminae,
moderately hard, compact

9 72 20

1 m horizontal distance from
sample #7 at the same height
(approx. 20 m above water
level) and 1 m below the
sample #8 of the same outcrop
along the road as #6

Laminated, medium porosity,
white and yellowish laminae,
soft

10 N 44◦09′06′′

E 15◦53′10′′ 69 17

Approximately 25 m
horizontal distance from
Zrmanja R. lBelow outcrop
with samples #6–9

Non-porous, no visible remains
of plants and soil,
white-yellowish, laminated

11
N 44◦09′06′′

E 15◦53′07′′

77 25
Outcrop approximately 100 m
horizontal distance from
Zrmanja R., bottom of outcrop

Porous, no visible remains of
plants and soil, white-yellowish,
soft

12 78 26 Top of the same outcrop as
#11

Non-porous, no visible remains
of plants and soil,
white-yellowish, laminated, soft
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Figure 1. (a) Geographical position of Croatia within Europe; (b) position of the investigated area within Croatia; (c) geolog-
ical map of investigated area [50]; for full understanding of this study, Kravlja Draga, where the Zrmanja River changes its
course, is also presented as well as the Krka River and Miljacka Spring; (d) enlarged area of the Sanaderi location, black dots
•mark sampling locations, and the numbers represent tufa sample numbers, see Table 1 for details.

2.2. Sampling

Four tufa samples were collected at the Zrmanja river bed and eight fossil tufa samples
were collected at the higher levels of Zrmanja River Canyon near Sanaderi (Figure 1) during
sampling in 2015. Fluvial tufa samples were collected along the course of the river (samples
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#1–4), up to 2 m above water level (Table 1, Figure 1). Fossil tufa samples (#5–12) were
collected at different levels above the river-bed (17–26 m) (Table 1, Figure 1) found on
Cretaceous limestones and dolomites. Approximately 1 kg per sample was taken at each
site, placed into a labelled plastic bag and transported to the laboratory.

Tufa samples from the investigated locations differ in color and morphology (Table 1,
Figure S1). The majority can be classified as encrusted mossy deposits, except for samples
#5–8, which can be classified as algal laminated crusts [51].

2.3. Measurement Methods

Specific radiocarbon activity a14C in carbonate samples/fractions was determined by
the liquid scintillation technique (LSC). Between 50 and 70 g of sample was dissolved in
HCl (18%) in an inert N2 atmosphere and the obtained CO2 was converted to C6H6 in a
vacuum synthesis line. Benzene samples were measured on an LSC Quantulus 1220 [52,53].

The bulk residue after the carbonate dissolution was neutralized, dried, and prepared
as graphite for a14C AMS measurements; herein it is referred to as the organic fraction.
About 10–15 mg of each residue sample was combusted in pre-evacuated sealed quartz
tube (850 ◦C). The humin samples were obtained from the bulk residue of the organic
fraction by acid-alkali-acid method [54–56] and combusted in sealed quartz tubes. The
obtained CO2 was converted to graphite by Zn reduction [54]. Graphite samples were
pressed into aluminum holders and sent to the accelerator mass spectrometry (AMS) facility
at the Centre for Applied Isotope Studies (CAIS), University of Georgia, USA. An aliquot
of CO2 obtained from organic tufa residue combustion was vacuum sealed in a glass tube
and sent to the same laboratory for δ13C determination. Graphite samples were measured
by 0.5 MeV accelerator mass spectrometer (AMS) and δ13C was measured by isotope ratio
mass spectrometer (IRMS) [57].

For both LSC and AMS techniques, Oxalic Acid II (SRM NIST4990C) was used as the
primary reference material, and anthracite and Carrara marble as the background materials.
As a control sample (a sample of well-defined a14C prepared as an unknown sample),
humic acid T (a14C = 65.82 pMC) from the VIRI intercomparison [54] exercise and ANU
sucrose (a14C = 150.6 pMC) were used for the AMS and LSC techniques, respectively.

Results of the radiocarbon measurements, normalized by δ13C to−25‰, are expressed
as relative specific activity a14C (in units pMC, percent Modern Carbon) and as a conven-
tional radiocarbon age (expressed in year Before Present, BP, where 0 BP = 1950 AD).
Calibrated ages (cal BP) were obtained using OxCal software [58,59] and the IntCal20
calibration curve with included respective initial activities (hard-water corrections) for
carbonate and organic fractions [60]. Correction for the hard-water effect is reported here
either as initial activity a0 or/and reservoir age defined as:

R = −8033 × lna0. (1)

Stable oxygen and carbon isotope values (δ18O and δ13C) of carbonates were measured
at the University of Melbourne, Australia using an AP2003 continuous flow mass spec-
trometer. Approximately 0.8 mg of carbonate sample was analyzed [61], with analytical
uncertainties better than 0.10‰ for δ18O and 0.05‰ for δ13C.

3. Results

Results of radiocarbon dating and stable isotope compositions of tufa carbonate
fraction of 12 samples from the Sanaderi location are shown in Table 2. Samples adjacent to
modern river level (0–2 m) gave Holocene ages, while samples from tufa outcrops from the
upper parts (elevations 17–26 m above the water level) gave radiocarbon conventional ages
above 22,000 BP. δ13C values of the carbonate component range from −10.4‰ to −8.5‰,
while δ18O values range from −7.4‰ to −6.4‰.
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Table 2. Results of isotopic analyses of tufa samples, a14C, δ13C and δ18O in carbonate fraction. Sample numbers defined in
Table 1 and Figure 1.

Sample No. Height above
Water Level (m)

Lab. No.
Z-xxxx a14C (pMC)

Conventional
Age (BP) δ13C (‰) δ18O (‰)

1 0 5951 40.35 ± 0.23 7290 ± 45 −8.96 −7.40
2 2 5952 89.5 ± 1.0 890 ± 95 - -
3 0 5953 83.11 ± 0.55 1485 ± 55 −9.13 −7.42
4 1 5954 77.61 ± 0.60 2035 ± 60 - -
5 20 5955 2.69 ± 0.12 29,040 ± 360 −9.85 −7.01
6 21 5956 0.78 ± 0.12 39,000 ± 1250 −10.33 −7.19
7 20 5957 5.29 ± 0.15 23,600 ± 230 −9.94 −7.25
8 21 5958 1.05 ± 0.13 36,600 ± 1000 −10.5 -
9 20 5959 2.03 ± 0.12 31,300 ± 480 - -
10 17 5960 4.06 ± 0.14 25,740 ± 280 −8.47 −7.04
11 25 6295 0.81 ± 0.13 38,700 ± 1300 −10.39 −6.35
12 26 6296 6.46 ± 0.16 22,000 ± 200 −8.64 −6.49

Results of radiocarbon dating of tufa organic fraction of samples from the Sanaderi
location (except sample #9), shown in Table 3, yielded the Holocene dates for seven out of
eleven samples. The organic residue of the sample #6 (12,060 ± 30 BP) was significantly
older than sample #8 (7365 ± 30 BP) and corresponds to the end of the last glaciation,
although it was sampled from approximately the same layer of the same tufa outcrop. Two
samples from higher elevations, samples #11 and #12, were dated to 17,000 ± 40 BP and
15,980 ± 35 BP, respectively, i.e., within the glacial period. Four samples were selected for
humin dating. The humin was extracted from samples #3 (Holocene), #6, #7, and #11 (older
than the Holocene period, later referred as “old”). Two results from the humin component,
compared to organic residue, gave slightly lower a14C values: the sample #3 and #7 for
approximately 1.2 pMC and 2.2 pMC, respectively (Table 3). The humin extracted from
samples #6 and #11, compared to organic residue, yielded higher a14C values for 19.6 pMC
and 11.2 pMC, respectively (Table 3).

Table 3. a14C, radiocarbon dates and δ13C values of the organic residues and the humin of tufa
samples from the Sanaderi location.

Sample No. Lab. No. Z-xxxx a14C (pMC)
Conventional

Age (BP) δ13C (‰)

1 6458 51.8 ± 0.2 5285 ± 25 −29.96
2 6630 99.7 ± 0.3 25 ± 20 −30.85
3 6454 95.5 ± 0.3 370 ± 20 −30.27
3 7608, humin 94.3 ± 0.3 470 ± 20 −30.26
4 6631 95.7 ± 0.3 355 ± 20 −30.39
5 6455 26.7 ± 0.1 10,600 ± 30 −28.92
6 6459 22.3 ± 0.1 12,060 ± 30 −29.52
6 7610, humin 41.9 ± 0.2 6995 ± 45 −28.60
7 6460 29.3 ± 0.1 9870 ± 25 −28.80
7 7611, humin 27.1 ± 0.1 10,500 ± 30 −28.80
8 6461 40.0 ± 0.1 7365 ± 30 −29.38
10 6462 34.2 ± 0.1 8630 ± 30 −29.59
11 6456 12.1 ± 0.1 17,000 ± 40 −29.84
11 7609, humin 23.3 ± 0.1 11,700 ± 35 −29.93
12 6457 13.7 ± 0.1 15,980 ± 35 −30.70

4. Discussion
4.1. Isotope Analyses of Carbonate and Tufa Ages

The obtained conventional ages of secondary carbonates in karst areas usually appear
older than true due to the hard-water effect, i.e., reservoir 14C age. In such cases, the initial
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radiocarbon activity, a0, should be determined [26]. In this work a0 was determined from
the a14C of dissolved inorganic carbon (DIC) in water from which tufa precipitates, giving
the most reliable information among the possibilities described earlier. For the Sanaderi
location, a14C of DIC was 84.5 ± 0.3 pMC resulting in reservoir age of 1350 ± 20 years [62].

The mean values of δ13C of tufa carbonates (−9.6 ± 0.8‰, Table 2) and δ13C of DIC
(−11.4‰ [62]) indicate authigenic precipitation of carbonates from DIC. Both values are
similar to the mean values of DIC and authigenic carbonate from another Dinaric karst
system, Plitvice Lakes (−10.9 ± 1.3‰ and −8.9 ± 1.1‰, respectively) [34,63]. At the same
time there is practically no difference in δ13C values between the Holocene (mean value
−10.04 ± 0.57‰, n = 18) and older samples (“old”) (mean value −9.73 ± 0.78‰, n = 6)
(Figure 2a). Here, the Holocene δ13C value data for the Zrmanja River tufa samples were
taken from [64]. These values indicate that during the tufa deposition carbon source did
not change. There is also no indication of a change in the hard-water effect in the past and
we may assume that the a14C of DIC (84.5 ± 0.3 pMC) presents the initial activity for all
tufa samples (Table 4).

Geosciences 2021, 11, x FOR PEER REVIEW 8 of 17 
 

 

  

(a) δ13C, carbonate (b) δ18O, carbonate 

Figure 2. Box-plot of (a) δ13C and (b) δ18O values for Holocene and ”old” samples. Data for the Holocene tufa samples 

taken from Table 2 and [64]. 

4.2. Possibility of Tufa Isotopic Composition of Oxygen as Paleoclimate Proxy 

The oxygen isotopic composition of tufa samples analyzed within this work ranges 

from −7.4‰ to −6.4‰ (Table 2). Similar δ18O values of tufa from interglacial have been 

found in other regions of the Dinaric karst [2–4]. This indicates that all tufa samples from 

this work precipitated during warm periods. Considering the δ18O values, 14C dates of 

carbonate fractions are assumed correct, even for samples of ages close to the radiocarbon 

detection limit. Other indications of the relevant dates of the samples can be obtained from 

the difference of δ18O values between the Holocene samples (younger than 10,000 BP 

(11,700 cal BP)) and the “old” samples (older than 20,000 BP), Figure 2b. The Holocene 

samples, which have a mean value of δ18O = −8.02 ± 0.72‰ (n = 18, present data and data 

from [64]), precipitated from water of approximate temperature of 16.4 °C calculated from 

paleotemperature Equation (2) [65]: 

T(°C) = 15.7 − 4.36 × (δc − δw) + 0.12 × (δc − δw)2, (2) 

where δc is δ18O mean value vs. VPDB for either the Holocene or old carbonate samples, 

and δw is δ18O mean value vs. VSMOW of water from Miljacka Spring, −7.8‰ (Figure 1c). 

Water temperature and δ18O data were obtained from one of the Krka River Springs, 

Miljacka Spring [66,67], which is completely fed by Zrmanja water [68,69]. The tempera-

ture range of Miljacka water obtained by 2-year seasonal measurement [66] was 8.8–14.5 

°C so we may assume that Equation (2) [65] is applicable here. The difference between 

calculated and measured temperature values is expected since tufa precipitates more in-

tensively during spring and summer [4] and due to cooling of Zrmanja water through the 

underground flow. The mean value of δ18O = −6.89 ± 0.34‰ (n = 6) for the “old” samples 

indicates their precipitation at approximate water temperature of 12.5 °C. The tempera-

ture difference of ≈ 4 °C between the Holocene and “old” tufa calculated here is similar to 

the temperature difference between the Holocene and MIS 3 presented in [70–72]. This 

further means that “old” tufa could have precipitated during MIS 3 and beginning of MIS 

2. 

The Holocene δ18O values obtained from the Zrmanja area (present results and data 

from [64]) are higher (between −9.5‰ and −7.0‰) than the Holocene authigenic car-

bonates from a well investigated area of the Plitvice Lakes system, where δ18O ranges be-

tween −11.9‰ and −8.7‰ [2–4,34,64,73]. This can be explained by environmental settings, 

and continental and altitude effects [4,64,74–78]. The Plitvice Lakes are at higher eleva-

tions (between 400 and 700 m asl) and are characterized by the moderate mountain climate 

Figure 2. Box-plot of (a) δ13C and (b) δ18O values for Holocene and “old” samples. Data for the Holocene tufa samples
taken from Table 2 and [64].

Table 4. The a14C difference between organic/humin and carbonate fractions, 14C reservoir corrected calibrated ages of tufa
carbonate fractions from the Sanaderi location (a0 = 84.5 ± 0.3 pMC, R = 1350 ± 20 years), and calibrated ages of organic
residues (a0 = 97.0 ± 0.9 pMC, R = 240 ± 70 years).

Sample No.
a14C Difference

(pMC)

Carbonate Fraction Organic Residue and Humin

Calibrated Age Span
(cal BP) (68.3%)

Calibrated Age
Median (cal BP)

Calibrated Age Span
(cal BP) (68.3%)

Calibrated Age
Median (cal BP)

1 11.45 6988–6874 6931 5869–5765 5811

2 10.2

1956–1957 cal AD
(14.6%)

2006–now cal AD
(53.6%)

2007 cal AD 1956–1956 cal AD 1956 cal AD

3 12.39
275–160 218

196–104 148
3 humin 11.2 283–209 245

4 18.09 842–696 770 180–84 131

5 25.01 32,534–31,579 32,060 12,411–12,291 12,344

6 21.52
42,417–40,780 41,684

13,770–13,656 13,714
6 humin 41.1 7631–7526 7578
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Table 4. Cont.

Sample No.
a14C Difference

(pMC)

Carbonate Fraction Organic Residue and Humin

Calibrated Age Span
(cal BP) (68.3%)

Calibrated Age
Median (cal BP)

Calibrated Age Span
(cal BP) (68.3%)

Calibrated Age
Median (cal BP)

7 24.01
26,821–26,349 26,582

11,131–11,052 11,089
7 humin 22.3 12,277–12,102 12,188

8 38.95 40,791–39,291 40,042 7972–7884 7928

9 - 34,958–33,994 34,491 - -

10 30.14 28,976–28,400 28,689 9449–9358 9397

11 11.3
42,277–40,558 41,501

20,366–20,225 20,294
11 humin 22.5 13,373–13,270 13,320

12 7.24 25,220–24,786 25,003 19,100–18,958 19,031

The dating results of samples from higher positions at Sanaderi, samples #5–12
(Tables 1 and 2), imply that tufa grew during Marine Isotope Stage 3 (MIS 3) and the
beginning of MIS 2, a finding not previously found in Croatia. This would also mean that
the Zrmanja River bed was approximately 20 m higher some 40 kyears ago compared to its
current position. Furthermore, this is in accordance with the assumption that the Zrmanja
River changed its watercourse approximately 40 kyears ago [47].

4.2. Possibility of Tufa Isotopic Composition of Oxygen as Paleoclimate Proxy

The oxygen isotopic composition of tufa samples analyzed within this work ranges
from −7.4‰ to −6.4‰ (Table 2). Similar δ18O values of tufa from interglacial have been
found in other regions of the Dinaric karst [2–4]. This indicates that all tufa samples from
this work precipitated during warm periods. Considering the δ18O values, 14C dates of
carbonate fractions are assumed correct, even for samples of ages close to the radiocarbon
detection limit. Other indications of the relevant dates of the samples can be obtained
from the difference of δ18O values between the Holocene samples (younger than 10,000 BP
(11,700 cal BP)) and the “old” samples (older than 20,000 BP), Figure 2b. The Holocene
samples, which have a mean value of δ18O = −8.02 ± 0.72‰ (n = 18, present data and data
from [64]), precipitated from water of approximate temperature of 16.4 ◦C calculated from
paleotemperature Equation (2) [65]:

T (◦C) = 15.7 − 4.36 × (δc − δw) + 0.12 × (δc − δw)2, (2)

where δc is δ18O mean value vs. VPDB for either the Holocene or old carbonate samples,
and δw is δ18O mean value vs. VSMOW of water from Miljacka Spring, −7.8‰ (Figure 1c).

Water temperature and δ18O data were obtained from one of the Krka River Springs,
Miljacka Spring [66,67], which is completely fed by Zrmanja water [68,69]. The temperature
range of Miljacka water obtained by 2-year seasonal measurement [66] was 8.8–14.5 ◦C
so we may assume that Equation (2) [65] is applicable here. The difference between
calculated and measured temperature values is expected since tufa precipitates more
intensively during spring and summer [4] and due to cooling of Zrmanja water through the
underground flow. The mean value of δ18O = −6.89 ± 0.34‰ (n = 6) for the “old” samples
indicates their precipitation at approximate water temperature of 12.5 ◦C. The temperature
difference of ≈ 4 ◦C between the Holocene and “old” tufa calculated here is similar to the
temperature difference between the Holocene and MIS 3 presented in [70–72]. This further
means that “old” tufa could have precipitated during MIS 3 and beginning of MIS 2.

The Holocene δ18O values obtained from the Zrmanja area (present results and data
from [64]) are higher (between −9.5‰ and −7.0‰) than the Holocene authigenic carbon-
ates from a well investigated area of the Plitvice Lakes system, where δ18O ranges between
−11.9‰ and −8.7‰ [2–4,34,64,73]. This can be explained by environmental settings, and
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continental and altitude effects [4,64,74–78]. The Plitvice Lakes are at higher elevations
(between 400 and 700 m asl) and are characterized by the moderate mountain climate (Cfb)
compared to the Zrmanja locations with Csa climate type [79–81] and at lower elevations
(<100 m asl). The Holocene tufa from the Krka River have δ18O values in the same range as
tufa from Zrmanja (from −8.5‰ to −7.8‰) since both locations are situated within the
same geographic area [4,66,67].

4.3. Tufa Age Implications from Isotope Analyses of Organic Residues and Extracted Humin
14C analyses of tufa organic residues gave higher a14C values compared to that of the

carbonate fractions (Tables 2–4). The difference is expected due to a different intensity of
the hard-water effect in organic and carbonate fractions [6,39,62,63]. In order to accept the
obtained dates as reliable, the difference in a14C values between the organic residue and
the carbonate should not be larger than 15 pMC [39,82]. However, recent authigenic and
consolidated sediments from the Plitvice Lakes showed that the a14C differences between
carbonate and organic fractions could be up to 20 pMC [63,83] and we consider the value
of 20 pMC as a criterion for acceptable results. Six out of 11 samples have differences of
a14C between organic residue (humin is not regarded here) and carbonate fraction of less
than 20 pMC (Table 4).

The hard-water effect is also observed in organic matter since it is a mixture of different
organics that photosynthesize from DIC and atmospheric CO2 [26,62,84–86]. Age correction
due to a hard-water effect for organic matter is usually lower than that in the carbonate
fraction [26]. The δ13C values of organic residue in analyzed tufa samples are within the
narrow range between −30.85‰ and −28.6‰ (Table 3) which indicates mainly constant
origin of carbon in organic matter, namely that of atmospheric CO2.

The hard-water effect of the organic matter was determined from a14C of the fresh
moss sample, Eucladium verticillatum. The δ13C value of −34.2‰ and a14C value of
97.0 ± 0.9 pMC (Z-5948) of this moss indicate that atmospheric CO2 is the main source
of carbon with a possibility of incorporating DIC if flooded [62]. Additionally, the Suess
effect [87], i.e., lower δ13C values of atmospheric CO2 today than in the past, may also
contribute to lower δ13C of moss. The Suess effect is confirmed by the clear difference
between δ13C values for recent samples (<500 years: −30.5 ± 0.3‰, n = 3) and older
samples (−29.6 ± 0.6‰, n = 8), as shown in Figure 3. There is also no difference between
the Holocene (5–10 kyears: δ13C = −29.4 ± 0.4‰, n = 4) and the “old” samples (>10 kyears:
−29.8 ± 0.6‰, n = 4). These results imply that the carbon source of organic residue has
been constant in the past. Since the a14C of atmospheric CO2 today is almost equal to
100 pMC [88–90] a0 for organic residue is set as 97 pMC (reservoir age of 240 ± 70 years)
for age calculation for all organic residue samples (Table 4). Because of the small value of
the reservoir age for organic residue, the ages of dated samples did not change significantly
(Table 4). As a consequence, the difference between corrected and calibrated carbonate and
organic fraction ages diminished for the Holocene tufa (Table 4) and a good correlation
between calibrated dates is obtained (Pearson’s r = 0.99, Figure 4a). On the contrary, there
is no correlation between the ages of the carbonate and organic fraction in older samples
(r = 0.05, Figure 4b). The absence of a correlation for the “old” samples (Figure 4b) and the
large difference in a14C values of organic and carbonate fractions (Table 4) indicate that
there should be an additional source of these effects. The ages of the organic fractions are
especially suspicious since they suggest that tufa was mainly deposited during the MIS 2
cold period, [91–94] which is generally regarded as unfavorable for tufa precipitation [4,95].



Geosciences 2021, 11, 376 10 of 16

Geosciences 2021, 11, x FOR PEER REVIEW 10 of 17 
 

 

values of 0.9‰ (Table 3). Such a difference in δ13C can be expected if the Suess effect is 

considered (Figure 3) and this would indicate that very recent plants penetrated an old 

tufa deposit, shifting the organic a14C in the direction of a younger age for the tufa. 

 

Figure 3. δ13C values of tufa organic residues for different groups of ages. 

  

(a) (b) 

Figure 4. Calibrated ages of the organic residue vs. calibrated ages of the carbonate component of the tufa samples from 

Sanaderi. (a) the Holocene samples; (b) the “old” samples. 

4.4. The Zrmanja River Canyon Development 

Radiocarbon ages obtained on the different fractions (carbonate, organic) give two 

possible scenarios of tufa deposition and, consequently, Zrmanja River Canyon develop-

ment. All radiocarbon data of tufa found just above the water level (samples #1–4) confirm 

tufa deposited during the Holocene (Figure 5). Data obtained from samples #5–12, found 

at elevations between 17 and 26 m above the present water level, differ significantly. Car-

bonate fraction dates suggest deposition of higher tufa samples during MIS 3 and the be-

ginning of MIS 2 and formation of the canyon principally after MIS 3 (Figure 5). Organic 

residue results offer an alternative of canyon development in MIS 2 and the Holocene 

(Figure 5). In both cases, two groups are clearly distinguished: recent samples positioned 

Figure 3. δ13C values of tufa organic residues for different groups of ages.

Geosciences 2021, 11, x FOR PEER REVIEW 10 of 17 
 

 

values of 0.9‰ (Table 3). Such a difference in δ13C can be expected if the Suess effect is 

considered (Figure 3) and this would indicate that very recent plants penetrated an old 

tufa deposit, shifting the organic a14C in the direction of a younger age for the tufa. 

 

Figure 3. δ13C values of tufa organic residues for different groups of ages. 

  

(a) (b) 

Figure 4. Calibrated ages of the organic residue vs. calibrated ages of the carbonate component of the tufa samples from 

Sanaderi. (a) the Holocene samples; (b) the “old” samples. 

4.4. The Zrmanja River Canyon Development 

Radiocarbon ages obtained on the different fractions (carbonate, organic) give two 

possible scenarios of tufa deposition and, consequently, Zrmanja River Canyon develop-

ment. All radiocarbon data of tufa found just above the water level (samples #1–4) confirm 

tufa deposited during the Holocene (Figure 5). Data obtained from samples #5–12, found 

at elevations between 17 and 26 m above the present water level, differ significantly. Car-

bonate fraction dates suggest deposition of higher tufa samples during MIS 3 and the be-

ginning of MIS 2 and formation of the canyon principally after MIS 3 (Figure 5). Organic 

residue results offer an alternative of canyon development in MIS 2 and the Holocene 

(Figure 5). In both cases, two groups are clearly distinguished: recent samples positioned 

Figure 4. Calibrated ages of the organic residue vs. calibrated ages of the carbonate component of the tufa samples from
Sanaderi. (a) the Holocene samples; (b) the “old” samples.

A plausible explanation can be proposed after considering the humin analyses. The
humin fractions extracted from samples #3 and #7 have almost the same values of a14C
as the bulk organic residue (1.2 and 2.2 pMC difference, respectively) and their δ13C
values were equal to those of the bulk organic measurements (Table 3). Humin extracted
from samples #6 and #11 yielded higher a14C values for 19.6 and 11.2 pMC, respectively
(Table 3). The differences in radiocarbon ages between the bulk organic residue and the
humin component are probably due to the penetration of roots and plants through porous
tufa after its deposition [38,39]. The sample #6 has the biggest difference between its humin
and organic fraction (19.6 pMC), and it is the only sample with a significant difference in
δ13C values of 0.9‰ (Table 3). Such a difference in δ13C can be expected if the Suess effect
is considered (Figure 3) and this would indicate that very recent plants penetrated an old
tufa deposit, shifting the organic a14C in the direction of a younger age for the tufa.

4.4. The Zrmanja River Canyon Development

Radiocarbon ages obtained on the different fractions (carbonate, organic) give two
possible scenarios of tufa deposition and, consequently, Zrmanja River Canyon devel-
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opment. All radiocarbon data of tufa found just above the water level (samples #1–4)
confirm tufa deposited during the Holocene (Figure 5). Data obtained from samples #5–12,
found at elevations between 17 and 26 m above the present water level, differ significantly.
Carbonate fraction dates suggest deposition of higher tufa samples during MIS 3 and the
beginning of MIS 2 and formation of the canyon principally after MIS 3 (Figure 5). Organic
residue results offer an alternative of canyon development in MIS 2 and the Holocene
(Figure 5). In both cases, two groups are clearly distinguished: recent samples positioned
just above the river bed, and older samples positioned at levels approximately 20 m above
the river bed.
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In the External Dinarides, the Last Glacial Maximum (LGM) was characterized by a
cold climate, as indicated by numerous glacial morphological features, e.g., at the nearby
Velebit Mt. found above 800–900 m asl [96–99] where average annual temperature was
estimated to be 10 ◦C lower than today. Local conditions enable the formation of large
snow packs and regional glaciations with estimated ice thickness of around 200 m [97].
Tufa formation is not expected in such cold-climate conditions. However, along the eastern
Adriatic coast, growth of speleothems is recorded during the LGM [100–102]. During the
LGM, conventionally 21 kBP, sea level was at its lowest at −121 ± 5 m below present [103].
Thus, a significant part of the Adriatic Sea area was dry land [100,104]. However, since that
period the relative sea level (RSL) started to rise, so a change in fluvial system is expected,
from incision toward deposition. Consequently, the incision of ~20 m between 8 kyears and
6 kyears as suggested using 14C dating of organic residue and humin (Figure 5) is unlikely.

During MIS 3, the RSL generally dropped [100,105,106]. Due to the erosional base
level lowering, river valleys were generally getting longer, inducing the dominant trend of
vertical erosion in the valleys. However, periods of RSL stability in the second part of MIS
3 [107,108] could have favored tufa formation. The further, rapid sea level lowering during
early MIS 2 would have supported active fluvial incision processes.

Furthermore, the accumulation of tufa deposits in Mediterranean regions seems to
start generally at the end of MIS 2 or at the MIS 2—MIS 1 transition, i.e., after 14 kyears in
Spain ([109] and reference therein) and after 13 kyears on different locations in France ([110]
and reference therein). Tufa deposition episodes during 32 ± 10 kyears were also defined
on several locations in Spain [110]. Accordingly, we strongly support the period of tufa
deposition at Sanaderi location principally during MIS 3.

Consequently, the two episodes of tufa formation during MIS 3 to beginning of MIS
2 and during MIS 1 (Middle and Late Holocene) reflect fluvial system response driven
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predominantly by climate change and RSL change. So, we assumed, as generally accepted,
that tufa deposits formed during temperate/warm interglacial periods and interstadials
(e.g., [109]), while downcutting occurred under rather colder conditions, i.e., at Sanaderi
location, roughly between 25,000 and 6000 cal BP with the mean incision rate of around
1.1 mm/yr. However, incision could have also started earlier. All obtained results are close
to the conclusions of earlier work of Fritz [47], who defined the main downcutting period
in a single phase that lasted from 40,000 to 8500 BP.

5. Conclusions

Isotope analyses of tufa from the Zrmanja River near Sanaderi, Dalmatia, Croatia, are
presented. For the first time, tufa from a period pre-dating the Holocene, was found in the
Zrmanja River area and this is the first time that tufa from MIS 3 and the beginning of MIS 2
has been found in Croatia. The carbon stable isotope composition of the carbonate fraction
indicates that tufa formation in all periods was authigenic, without incorporation of old
detrital limestone and therefore suitable for paleoenvironmental research. Radiocarbon
dating of tufa samples found at the river-bed level revealed similar ages of both organic
and carbonate fractions (the Holocene). Radiocarbon ages of tufa samples found at higher
positions (~20 m above the river bed) show significant discrepancies between carbonate
and organic fractions. The organic residue dates (20–8 cal kBP) implies tufa deposition
mainly during the MIS 2 period and partially in the early Holocene. Radiocarbon dates
obtained from the carbonate fraction (42–25 cal kBP) indicate mostly MIS 3 deposition. The
carbonate ages are argued to be more reliable since tufa deposition principally during MIS 3
is supported by the oxygen isotopic composition of the carbonate fraction. Organic-fraction
dates are rejected since tufa deposition during the deep glacial of MIS 2 is highly unlikely.
Additionally, humin dates indicate contamination of the organic fraction of tufa with
younger plant-sourced 14C, as dates obtained from humin residues were younger than bulk
organic residues, especially in the case of older tufa deposits. Finally, radiocarbon dates of
the carbonate fraction of 20–40 kyr confirm previous estimates that the palaeo-Zrmanja
River course differed from its current position (led probably into the Krka River) and that
the new part of the Zrmanja river bed developed after 40 kBP, with a major incision period
between 25,000 and 6000 cal BP, and an estimated incision rate of 1.1 mm/yr.

This research opens numerous possibilities for further investigation along the Zrmanja
River and contributes to the understanding of regional paleoenvironmental changes.
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.3390/geosciences11090376/s1, Figure S1: Characteristic tufa samples from the Zrmanja River Canyon.

Author Contributions: Conceptualization, J.B., S.F. and I.K.B.; methodology, J.B., A.S., R.N.D. and
D.B.; formal analysis, J.B.; investigation, J.B. and S.F.; resources, I.K.B.; data curation, J.B., A.S., I.L.M.
and D.B.; writing—original draft preparation, J.B.; writing—review and editing, J.B., I.K.B., S.F.,
R.N.D. and A.S.; visualization, J.B., I.K.B. and I.L.M.; project administration, I.K.B. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by Croatian Science Foundation grant number HRZZ-IP-
2013-11-1623 (Reconstruction of the Quaternary environment in Croatia using isotope methods—
REQUENCRIM).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All relevant data are presented in this paper.

Acknowledgments: The authors thank Janislav Kapelj, Maša Surić, Robert Lončarić, and Dražen
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