

Implementation of the ebXML Registry Client
 for the ebXML Registry Services

Marko Topolnik, Damir Pintar, and Ivan Matasic
Department of Telecommunications

University of Zagreb, FER
Unska 3, 10000 Zagreb, Croatia

{marko.topolnik, damir.pintar, ivan.matasic}@fer.hr

Abstract-- The implementation of the ebXML Registry Services is
a part of a research project at the University of Zagreb, aimed at
defining a strategy for the adoption of e-business in Croatia.
Implementing the ebXML Registry/Repository is a vital step as it
implements a standard mechanism for registering, storing and
retrieving data about business partners relevant for conducting
e-business. This paper describes an implementation of the
ebXML Registry Client as a diagnostic tool to test and debug the
ebXML Registry/Repository implementation under development.
The Client can generate arbitrary submitObjects requests to the
Registry Services. It guarantees the conformance of the requests
with the OASIS/ebXML Registry Services Specification.

Index terms-- ebXML, Registry Services, Registry Client,
SOAP, JAXR

I. INTRODUCTION
The ebXML initiative has been recognized worldwide as

this decade's best chance for a globally accepted e-business
platform. The effort to achieve this goal is going on in parallel
at the specification and implementation levels. Early
implementations serve as a source of feedback for future
specification improvements.

An implementation of the OASIS ebXML Registry v2.0 is
hosted at the Center for E-Commerce Infrastructure
Development (CECID) in Hong Kong. Its development was
started by Sun Microsystems Inc. and continued as an open-
source project hosted at SourceForge. There are also many
other open-source and commercial implementations.

At the University of Zagreb, Faculty of Electrical
Engineering and Computing, Department of
Telecommunications, there is an ongoing research and
development effort, financed by Agrokor Group (the leading
Croatian food production and retail company), dealing with the
adoption of e-Business in Croatia. It is also a part of a larger
project of the Croatian Ministry of Science and Technology,
named "Networked Economy." As the initial step, the e-
Business Technology Laboratory was established [1] to
conduct a series of experimental projects.

Based on the results, the ebXML framework was adopted
as the most promising.

The first strategic step is to host an implementation of the
Registry at Agrokor, which would initially serve as the central
point of integration among the many Agrokor's affiliates and
partners. In the next step, it would attract other Croatian
businesses to join. For this project, the SourceForge's open-
source code base was used as the starting point.

As the Registry implementation effort advances, a need has
emerged for development an implementation of an ebXML
Registry Client. In this paper, the implementation details of the
Registry Client are presented.

Section II describes components of the ebXML
specifications vital for the understanding of the diagnostic
Registry Client. Section III describes Registry Client
implementation through its concepts and verification scenarios.
A brief review of a JAXR API, a relatively new standardized
API for accessing XML Registries is presented. The paper
closes with Conclusion and References.

II. COMPONENTS OF THE EBXML SPECIFICATION
The ebXML specification describes the following aspects

of the e-business environment:

• the information model and service interface of the
ebXML Registry and Repository [2], [3];

• structure, type and level of detail of business data
contained in the Collaboration Protocol Profile (CPP), a
document that describes a company's capabilities [4]. The
company submits this document to the ebXML Repository,
where it is publicly accessible;

• the procedure for partner discovery and subsequent
negotiation of the collaboration protocol (resulting in the
Collaboration Protocol Agreement – CPA) [4];

• the required information infrastructure that each
company has to implement at its site in order to join the
ebXML marketplace (Business Service Interface, ebXML
Message Service [5]).

As mentioned above, the ebXML specification defines two
types of data storage (see Fig. 1):

• Repository stores assorted business-related documents
and other content available for public retrieval;

M.M. FER/ZZT
7th International Conference on Telecommunications - ConTEL 2003
ISBN: 953-184-052-0, June 11-13, 2003, Zagreb, Croatia

M.M. FER/ZZT

M.M. FER/ZZT
551

• Registry stores a network of descriptive, structured,
searchable pieces of information about companies and contains
links to the items in the Repository. Its organization is specified
by the Registry Information Model (RIM).

Each item in the Repository is associated with a Registry
object that represents it. This object is of the ExtrinsicObject
class. The Repository item is always retrieved via its
ExtrinsicObject. Typical items in the Repository include the
above mentioned CPP documents, standardized CPA templates,
business process descriptions, service interface descriptions,
program code for accessing companies' business interfaces, etc.

A. Components of the Registry Services
The ebXML Registry Services provide a public interface

for maintenance, search, and retrieval of Registry objects and
Repository items. They are functionally divided into two
component interfaces:

• Query Manager (QM) offers several methods of
searching the Registry, such as filter search, browse-and-drill-
down, and SQL query. It also provides methods for retrieving
Registry objects and their associated content from the
Repository;

• Lifecycle Manager (LCM) provides the interface for
the maintenance of Registry objects and Repository items, such
as submitting, versioning, updating, superseding, deprecating,
and removing.

Query Manager and Lifecycle Manager are defined as two
distributed objects. The ebXML Registry Services
Specification [2] specifies their public methods and properties.

B. Lifecycle of Repository Items
Each Repository item has a lifecycle status assigned to it.

The information about the status is contained in the Registry's
ExtrinsicObject that represents it.

The ebXML specification defines the following lifecycle
statuses:

• Submitted. The item is stored in the Repository, but is
not yet available for use by business parties.

• Approved. The item is stored and available for use.
This is the regular status of an active item. New Registry
objects can be submitted that reference this item.

• Deprecated. The item is still in the Repository, but is
outdated and due to be deleted. No new references can be made
to it, but the existing ones are left intact.

• Withdrawn. The item has been removed from the
Repository, but its associated ExtrinsicObject is still present,
indicating this status. All references to the ExtrinsicObject are
left intact. This object cannot be removed from the Registry
until all references to it have been deleted first.

Our first step was to create an implementation of the
Registry Client that would be able to carry out the first step,
which is to submit items to the Repository and the
accompanying metadata objects to the Registry. This means
that the Client has to invoke the submitObjects method of the
Registry's Lifecycle Manager (LCM).

III. REGISTRY CLIENT IMPLEMENTATION DETAILS

A. Conformance Requirements
In this subsection, the requirements that every ebXML-

conformant Registry Client has to satisfy are discussed.

1) Communication Bootstrapping: Before the actual
communication between a client and the Registry can
commence, they have to go through a communication
bootstrapping procedure. Through this procedure the client is
made aware of the requirements it has to satisfy to
communicate with the Registry. The critical aspect is the
addressing information that the client has to discover. In our

Registry Services

Registry Client

Extrinsic
object

Registry Repository

Figure 1. ebXML Registry/Repository high-level component overview

M.M. FER/ZZT
ConTEL 2003, ISBN: 953-184-052-0

M.M. FER/ZZT
Marko Topolnik, Damir Pintar, Ivan Matasic:

M.M. FER/ZZT
ConTEL 2003, ISBN: 953-184-052-0

M.M. FER/ZZT
552

M.M. FER/ZZT
Marko Topolnik, Damir Pintar, Ivan Matasic:

case, the client needs to find out the URI of the Registry's
SOAP-over-HTTP interface. The supporting of this procedure
is a requirement for a conforming Registry Client. In the case
of the Client being used as a diagnostic tool for a local
Registry, there is no need for an automatic discovery
procedure. The addressing information is provided to the
Client manually.

2) RegistryClient Interface: A Registry Client provides
this object interface to the Registry Service so it can send back
an asynchronous response. Asynchronous communication is
needed when the Registry Service cannot immediately satisfy
a request. The interface exposes only one method,
onResponse. When the request is satisfied, the Registry
Service invokes this method on the Client in order to deliver
the response.

If there is a need for asynchronous communication, the
Client is required to implement the RegistryClient interface.
Currently, our implementation of the Registry does not call for
asynchronous communication and thus the diagnostic Client
does not implement this interface.

3) Registry Services Schema: Every request to the
Registry Services is packaged into an XML document
conforming to the Registry Services Interface Schema
document, rs.xsd, which is a part of the Registry Services
Specification. This document uses two other Schema
documents, namely the RIM Schema, rim.xsd, and the
Query Schema, query.xsd. These two documents are also a
part of the Specification.

The main work on the diagnostic Client is concerned with
preparing a conformant XML document for the submitObjects
request.

B. Security Issues
Security issues have not yet come into the focus of the

ebXML Specification development. That does not imply that
security has been omitted from the current version of the
Specification. Rather, the framework for addressing all of the
security issues has been laid out, but the working out of details
has been left for a future version. Also, a minimum set of
security provisions has already been specified.

The current status of these issues will be discussed briefly
in this section.

1) Content Integrity—this has several aspects:
a) Veracity. The content should correlate precisely with

the real-world facts. This aspect is very difficult to ascertain
and this is not expected of a business Registry. Veracity is
trusted upon the content's Submitting Organization.

b) Source Integrity. This aspect is crucial in forcing the
Submitting Organization to commit to the veracity of its
content. The ebXML Specification supports unambiguous
identification of the Submitting Organization and the
Responsible Organization. Under the currently supported
scenarios, these two roles are always played by the same real-
world entity.

c) Data integrity. The Registry can guarantee that the
content it stores has not been tampered with and is the same
content as submitted by the Submitting Organization. There
are also mechanisms that enable the Client that received the
content to verify that it is still tamper-free.

The Registry Services Specification extensively uses the
XML Digital Signature technology for security. This
technology provides a way to embed a digital signature within
the XML document being signed. It also enables the sending of
signer's certificate within the document.

2) Authentication: The Registry can authenticate the
identity of the Principal associated with client requests. A
Principal is any entity (a person, an organization, a software
module) that can make requests to the Registry.

The identity of the Principal is authenticated by verifying
the signature of the message header using the certificate of the
Principal. The Registry must perform the authentication on a
per-message basis. There is currently no concept of a session
encompassing multiple messages. The support for sessions may
be added in future versions of the Specification for
optimization reasons.

In order to be able to get authenticated, a Principal must
first register itself with the Registry as a Registry User. The
Registry Services Specification does not currently specify the
registration process itself, but it does specify the information
model for storing data about Principal's identity, roles, groups,
and the privileges associated with them.

In the implementation we use, a Principal is registered
through a signed submitObjects request containing exactly one
User object (and an unlimited number of other object types). If
the signature is unknown to the Registry, it assumes that the
User object contains information about a new Registry user.
The user will be assigned the role of ContentOwner (see
below) for the objects submitted in the request as well as any
further objects submitted in future requests signed by the user.

3) Authorization: The identity of a Principal is associated
with its access privileges. The privileges specify what type of
operations a Principal is authorized to perform.

The Registry supports role-based privileges. In the current
version, the Specification only supports several predefined
roles. Future versions will support customized roles defined by
Submitting Organizations. The roles are:

• ContentOwner. The Submitting Organization plays
this role. It has full privileges on the content it owns and read-
only privileges on all other content.

• RegistryAdministrator. This role has full privileges on
all content.

• RegistryGuest. This role is played by a third-party
Principal accessing the Registry. It has read-only privileges on
all content.

Any role except the RegistryGuest requires that the
Principal be a registered User of the Registry.

This scenario assures authentication of the Principal,
integrity of content source, and the integrity of content's data.

M.M. FER/ZZT
Implementation of the ebXML Registry Client for the ebXML Registry Services

M.M. FER/ZZT
ConTEL 2003, ISBN: 953-184-052-0

M.M. FER/ZZT
553

M.M. FER/ZZT
Implementation of the ebXML Registry Client for the ebXML Registry Services

Once the Principal's identity is known, this enables the Registry
to check its privileges and decide whether it is allowed to
perform the requested operation.

If the Client only needs read access to the Registry, it does
not have to use any signatures. It will be assigned the
RegistryGuest role.

D. Content Classification
One of the most important features of the data model of the

Registry is content classification. It organizes the content into
hierarchical categories which enable powerful searching
techniques. Each object can be described by its place inside
several taxonomy trees, like geography, industry branch, etc.

The Registry Information Model distinguishes between two
technically different, but logically equivalent types of
classification: external and internal. External classification
relies on classification schemes not known to the Registry. The
Registry contains only an identifier that locates the object
inside such a scheme.

Internal classification locates the object inside a
classification scheme tree that is stored in the Registry. This
tree is composed of ClassificationNode objects. Each node can
have only one parent node, but can have an unlimited number
of child nodes. The Registry Information Model supports an
unlimited number of internal classification schemes. A client
can submit new schemes or add nodes to existing schemes.

To enhance the semantic content of classification, the
classification of an object can be characterized by another
classification. For example, a geographical classification of a
company can designate the location of its headquarters, but also
the location to which it ships its products. The context of the

geographic classification is resolved by classifying its
Classification object (see below) using a scheme that contains
such nodes as "isLocatedIn," "shipsTo".

E. Building the Request Document
A submitObjects request is contained in an XML document

with the root element named SubmitObjectsRequest. Its only
subelement is the LeafRegistryObjectList, containing all the
Registry objects being submitted. The content model of the
latter element is specified by the Registry Information Model
Schema. Each element in this list corresponds to a Registry
object of the same-named class.

These are some of the Registry objects that can be
submitted (class names are in UpperCamelCase):

• Organization object holds information about an
organization on the ebXML marketplace. It is usually the
central object type to which other objects are associated.

• User object holds information about a Registry user.
An Organization usually has a User linked to it as its primary
contact.

• ExtrinsicObject represents a content item being
submitted to the Repository. There is one ExtrinsicObject for
each Repository item in the payload, and they have to be in the
same order.

• Association objects primarily link an Organization
with other objects and specify the semantic context of their
relation (association type);

User

User Data
Collector

Query
Module

SubmitObject
Request
Creator

Packaging
ModuleXML

SubmitObject
Request

Repository
Item

include as attachment

Collected
data

TO RSS

SOAP
message

(with
attachments)

Submitting Module

Figure 2. Workflow diagram of the submitObjects request preparation

M.M. FER/ZZT
ConTEL 2003, ISBN: 953-184-052-0

M.M. FER/ZZT
554

M.M. FER/ZZT
Marko Topolnik, Damir Pintar, Ivan Matasic:

• Classification objects classify another object by
linking it to the internal ClassificationNodes or assigning it
external classification ID's

• ClassificationNode objects extend the current
classification schemes already in the Registry, or build new
schemes;

Registry objects can be described by linking them to other
objects via Association objects. An Association object contains
two references, one for the source object, and one for the
target. It also specifies the type of the association. For an
ExtrinsicObject, typical association types are "RelatedTo,"
"Supersedes," "Contains," etc. The association is directed, with
a clear distinction of source and target.

The most important description mechanism is classification.
It is accomplished using the Classification object.
Conceptually, it is a special form of association, but technically
it is separate from it. The Classification object also contains
source and target references, but the source is always a
ClassificationNode. The target is the object being classified by
this node. In the case of external classification, the source is not
a reference to a ClassificationNode object, but an identifier
valid in the external classification scheme.

All Registry objects are referenced by their Registry-
specific ID's. An issue arises with the ID's of objects just being
submitted. The Registry uses Universally Unique ID's (UUID)
and these can be generated at the Client's side. But this is not a
requirement. The Client can also use provisional ID's that are
only unique within the single request document. The Registry
will generate UUID's before committing the objects to its store.
It is worth noting that although a UUID is unique in the sense
that there cannot be two identical UUID's for different objects,
a single object may still have multiple UUID's used in different
contexts. This makes the notion of Registry-specific UUID's
meaningful and important.

The newly submitted associations and classifications can
reference objects already in the Registry. This is most typical of
Classification objects using internal ClassificationNodes. A
technical problem arises regarding how to discover the ID's of

these objects. The proper way is to get the ID's through the
Query Manager interface. This means that even if the
diagnostic Client is designed to enable only the submitting of
objects, it still requires a module that generates requests to the
Query Manager interface.

For each Registry object being referenced in the Submit
objects request, an ObjectRef element has to be provided in the
XML document of the request. ObjectRef is a special element
because it does not correspond to an object being submitted,
but to an object already in the Registry. It contains the
Registry-specific ID of that object.

F. Packaging the request
The final form of a request to the Registry Services is a

SOAP Message with Attachments. It is structured in
compliance with the SOAP Messages with Attachments
specification [5], [6]. It is transport protocol-independent and
can be exchanged using any transport protocol, such as HTTP,
FTP or SMTP. Our Registry Services use HTTP, which is the
preferred protocol with respect to security and efficiency
issues. The procedure of embedding the SOAP message inside
an HTTP request is referred to as transport binding.

SOAP follows the peer-to-peer communication paradigm,
so there is no inherent role distinction between the
communicating parties. On the other hand, HTTP follows the
client/server paradigm and always involves a request-response
pair of messages. This pair is used for the synchronous
message exchange pattern in SOAP. For each submitObjects
request message sent inside an HTTP request, the
RegistryResponse message is sent back inside the
corresponding HTTP response.

A SOAP Message with Attachments is a MIME/Multipart
Message Package containing the following MIME parts:

• the Header Container, containing a SOAP 1.1
compliant message, referred to as the SOAP Message. It is the
central element of an ebXML Message;

User

Query
Interface

QueryRequest
CreatorQuery

elements

Packaging
Module

TO RSS

XML
QueryRequest

SOAP
message

Query Module

Reply
Analyzer

Reply
elements

XML QueryReply

Figure 3. Workflow diagram of the Query request generation and result processing

M.M. FER/ZZT
ConTEL 2003, ISBN: 953-184-052-0

M.M. FER/ZZT
555

M.M. FER/ZZT
Implementation of the ebXML Registry Client for the ebXML Registry Services

• zero or more Payload Containers, containing, in this
case, the Repository Items being submitted. These are the
SOAP Message attachments.

The SOAP Message is an XML document that consists of
the SOAP Envelope root element. This element consists of the
following subelements:

• a Header element, specifying the nature of the
ebXML message (such as whether the message is a request or
an answer; the type of request/answer, etc.). This element also
contains the digital signature and optionally the certificate;

• a Body element, containing the main content of the
message, in our case the submitObjects request document.

In our implementation, we have used the Java API for
XML Registries (JAXR) technology discussed below to
generate requests to and interpret responses from the Registry.

G. A Use Case Scenario
The scenario of a typical use case can be followed in Fig. 2.

A user has prepared data about his organization and wishes to
submit it to the Registry. He has to provide information such as
name, description, postal and e-mail addresses, etc. He can also
provide external links relevant to the organization (e.g. URI's
of relevant Web resources) and/or external identifiers of the
organization that are meaningful outside the context of the
Registry (such as stock exchange tickers). The Client
application makes this easy by presenting forms where the
necessary information can be filled in.

The central aspect of information about the organization is
its classification. If the organization is not properly classified, it
will probably not get discovered by parties interested in it. In
order to find the classification nodes that best describe the
organization, the Registry's classification schemes can be
browsed. This is accomplished by interacting with the Query
module as shown in Fig. 3. The Client application downloads a
classification tree from the Registry and presents it in a
graphical form to the User. The tree is visualized similar to a
file system's folder structure. The preferred method of working
with classification trees is to request from the Registry only the
nodes that actually have to be displayed. This is because an
entire classification tree can be very large and usually only a
small part of it will actually be requested by the user.

When all data has been gathered, the request document is
created. This document is packaged along with any Repository
items into a SOAP Message with Attachments. The message is
then sent to the Registry using the transport binding layer. The
Registry returns a response, notifying the user whether the
request has been successfully fulfilled.

H. Java API for XML Registries (JAXR)
Java API for XML Registries [7] is a standardized API

designed to be used to access a variety of XML-based business
registries. It is still under development and has reached the
Final Proposed Draft phase. The API is specified in a white
paper accompanied by the definition of Java interfaces. To use
the API, a JAXR provider layer has to be developed. This layer

implements the functionaliry of the interfaces defined by the
API layer. A JAXR provider is specific to a particular type of
registry.

By using JAXR, the Registry Client's functionality is
systematically split into:

• a client layer that uses the JAXR API;
• a provider layer that implements JAXR for the

ebXML Registry.
This approach could prove especially valuable in the

context of still unstable ebXML specifications. A lot of
changes to the specifications will require intervention only to to
the provider layer. Also, this makes it easy to develop a registry
client that can access different types of registries by just
plugging in the appropriate JAXR providers.

IV. CONCLUSION
As a part of a project named "Networked Economy,"

backed up by Croatian Ministry of Science and Technology, at
the Department of Telecommunications, Faculty of Electrical
Engineering and Computing, University of Zagreb there is
research in progress on e-Business-related projects. One of the
projects is concentrated on implementing the ebXML Registry.
As the Registry implementation effort advances, a need has
emerged for the existence of the ebXML Client to maintain and
debug the system under development. In this paper, an
implementation of a lightweight Registry Client application
that can meet this requirement was presented.

Future work on this application will be done concerning the
development of new features of the Registry Service. This
pertains especially to the security features that will be specified
in future versions of the ebXML Registry Services
Specification.

REFERENCES
[1] M. Topolnik, D. Pintar, M. Sokic: Experimental Implementation of

Emerging e-Business Technologies: EbXML and PKI, Proceedings of
the Joint Tutorials and Conference MIPRO2002 – Electronic Commerce,
Opatija, 2002, pp. 1-6.

[2] OASIS/ebXML Registry Technical Committee, OASIS/ebXML Registry
Services Specification, http://www.ebxml.org/specs/ebrs2.pdf,
December 2001.

[3] OASIS/ebXML Registry Technical Committee, OASIS/ebXML Registry
Information Model v2.0, http://www.ebxml.org/specs/ebrim2.pdf,
December 2001.

[4] Trading Partners Team, Collaboration-Protocol Profile and Agreement
Specification v1.0, http://www.ebxml.org/specs/ebCCP.pdf, May 2001.

[5] Transport, Routing & Packaging Team, Message Service Specification
v1.0, http://www.ebxml.org/specs/ebMS.pdf, May 2001.

[6] J. J. Barton, S. Thate, Henrik F. Nielsen, SOAP Messages with
Attachments, http://www.w3.org/TR/SOAP-attachments, Microsoft,
October 2000.

[7] Sun Microsystems, Java API for XML Registries v0.9, Proposed Final
Draft, http://java.sun.com/xml/downloads/archive-jaxr.html, February
2002.

M.M. FER/ZZT
ConTEL 2003, ISBN: 953-184-052-0

M.M. FER/ZZT
556

