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Abstract: This paper considers the assessment of uncertainties of objectives and constraints 
in generally non-linear design analysis and in optimality problems. Some design variables and 
problem parameters, or even all of them, can be uncertain, either with given tolerance limits 
or with given statistical properties. The presented procedure can be applied to distinguish 
solutions with respect to uncertainties, or to indicate a range of solutions in a design or post 
optimal analysis in which no significant differences can be encountered due to model 
uncertainties. 
 
Introduction 
 
Due to a large amount of different uncertainties involved in many technical design and 
optimisation problems, there is often a scepticism about highly sophisticated and very 
accurate numerical procedures. In practice, there can be a wide range of solutions which 
cannot be  mutualy precisely distinguished due to objective, subjective, numerical, 
operational and other uncertainties or inaccuracies involved in the design model. 
Design analysis and optimisation problems are based on mathematical models defined by 
(possibly uncertain) free variables and model parameters generally denoted in the text by x. 
Free variables can be affected by the optimisation procedure, since the parameters are 
predefined in the global design procedure, and cannot be changed in a single optimisation. 
Free variables and parameters are in general represented by their nominal values, denoted in 
the paper as Nx. In many design and optimisation problems the values of free variables and 
parameters are considered deterministic. However, the nominal values of variables and 
parameters must not coincide with their mathematical value. Constants are considered certain 
and can not be sobject of optimisation. The mathematical model can be uncertain by itself. 
The values of variables and parameters x are often, especially in engineering problems, given 
within a certain tolerance, denoted in the text as tx. The tolerance represents the bounds of 
acceptable uncertainties which can be controlled and usually represents the deviations from 
nominal values or mathematical values in a positive and/or a negative sense, denoted by txupp 
and txlow. The amount of tolerance can also be expressed as fractions of the considered 
variable or parameter values. 
Some free variables and parameters, or all of them, can be considered as random variables. In 
some cases, complete statistical information about random variables is available, but there is 
often the case that only the first two statistical moments, µx and σx, are known. The 
correlations between the variables are sometimes also available. The nominal value Nx 
sometimes coincides with the statistical mean, but in general it can be biased with respect to 
the mean value. Tolerance can in some problems be expressed in terms of standard deviations. 
Stochastic programming can be applied for the solution of optimisation problems when 
random variables are involved, (e.g. Charnes, Cooper, 1959). The first two statistical 
moments of random variables can be used to assess the uncertainties of functions of random 
variables in a post optimal procedure (see e.g.  Kapur and Lamberson, 1977). 
The idea underlined in the paper is to investigate the effect of uncertainties in the non-linear 
design analysis and in the optimality problems on the objectives and constraints, with respect 
to tolerance or statistical properties of variables and parameters in a post-optimal procedure. 
Presented approach is illustrated by the numerical example. 
1. The tolerance limits  of non-linear functions 



 
Let us consider a function Y f . The first order Taylor's series expansion in a 
given linearisation point x*  yields to approximate function value in the adjacent point x, as: 

x x xn= ( , ,..., )1 2

( ****

*

),...,,(),...,,( ii
x

n

1i i
n21n21 xx

x
fxxxfxxxfY −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+== ∑

= ∂
∂ )                                                (1) 

The tolerance assessment of linear functions is considered earlier (e.g. Mavriæ, 1990). If there 
are some uncertainties in the function value, they can be taken into account by additional 
(possibly subjective) tolerances tflow and tfupp. Consider first a non-linear function Y where 
each of the variables can be separated into "n" single derivable terms, (e.g. Y=f(x1,x2)=x15-
x22). The tolerance limits of such a non-linear function of variables, given with their upper 
and lower tolerance, can be assessed in a given point X* as follows: 
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or approximately, under the same conditions, as follows: 
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The more general case is a non-linear function Y where "n" variables can be separated in 
more then "n" single derivable terms of a single variable, (e.g. Y=f(x1,x2)=(x1-x22)(x1-
2x22). The problem can be solved by introducing an additional notation for same variables  
contributing to different terms, (e.g. Y=f(1x1,2x1,1x2,2x2)=(1x1-1x22)(2x1-22x22). The 
prefix in the above notation denotes the sequence number of considered terms. Such a 
function can be considered as a function of more then "n"  variables, maximum 
m1+m2+...mn, as presented next: 
Y f x x x x x x x x x where x x for j mm m n n m n j i in
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2. The statistical moments of non-linear functions of random variables 
 
The statistical moments of the functions of random variables can be assessed by the First 
Order Taylor's series expansion using up to the Second Moments of the random variables. 
Such an approach is denoted earlier as FOSM (e.g.  Madsen, Krenk, Lind, 1986.). The mean 
value and the variance can be assessed in a given linearisation point X* (e.g. Žiha, 1987) as: 

(∑
=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

n

1i
ix

Xi
n21Y X

X
fXXXf

i

****

*

),,...,( µ
∂
∂µ )                                                               (4) 

jiji XXXX

XjX

n

1i

n

1j i

2
Y X

f
X
f σσρ

∂
∂

∂
∂σ

**
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=∑∑

= =

                                                                      (5) 



where ρ in the upper equation is the correlation coefficient between the variables Xi and Xj. 
For statistically uncorrelated variables, the variance can be expressed as: 
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If the linearisation takes place in the mean value of the random variables X=µ, it yields to the 
amount of the mean value as follows: µ µ µ µY nf X X X n= = = =( , ,...1 1 2 2 ). 
The variances in eqns. (5, 6) can be considered as objective (denoted σo2). If there are some 
subjective uncertainties (denoted σs2) they can be taken into consideration as follows: 
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3. Testing the tolerance limits and statistical dispersions of two solutions 
 
In a problem considered as deterministic, the mathematical value, the nominal value and the 
tolerance limits can be assigned to objective functions and to constraint functions in each 
point. Using tolerance limits of the variables and parameters, the bounds on the resulting 
objective function can be obtained in two arbitrary points denoted as x* and xo, as follows: 
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The function values f* and fo can be compared in points x* and xo,  with respect to their 
tolerance fields in different ways, appropriate to the problem, e.g. overlapping tolerance 
fields: 
s f s f and s f s fupp oupp low low upp upp low o low⋅ − ⋅ ≥ ⋅ − ⋅* *0 0                                  (8) 
Alternatively, the objective function value in the arbitrary  point x* can be compared to 
tolerance limits on the objective function calculated in the reference point xo, (e.g. in the 
optimal point or Paretto optimal point), according to eqns. (2 or 3), e.g. as follows: 
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In the same way, using eqns. (2 or 3), the bounds on constraints and bounds can be obtained. 
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The constraints in eqn. (10) can be defined as either of the inequality type 

 or of the equality type . g x x xn( , ,..., )* * *
1 2 0≤ g x x xn( , ,..., )* * *

1 2 0=
In eqns. (9, 10 and 11), slow, supp , plow and pupp represent possible correction factors 
according to specific problem considerations. 
Different selection criteria with respect to tolerances in constraint can be applied. For 
example, the objective function values within tolerance limits in the feasible domain or in the 
tolerable violated constraint domain can be accepted. 
Considering the points xo and x* as random variables, it is possible to associate each of the 
selected points with the nominal value, as well as  the mean value µx and the variance σ2x. 
If  the mean values and variances calculated according to eqns. (4 to 8), can be considered 
characteristic of the population, the following test can be applied: 
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where r in eqn. (11) represents a value selected  to define the user's acceptance criteria. 
 
4. Example 
 
An illustrative minimisation problem with two variables 0≤x1≤4, and 0≤x2≤2, is considered. 
An objective function is defined as follows: 
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The feasible domain is the interior of a circle given with the constraint function:  
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The derivatives of the objective function in eqn. (12) with respect to the parameters and 
variables are as follows: 
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The derivatives of the constraint function in eqn. (13) are as shown: 
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4.1. Optimisation based on the nominal values 
Following nominal values of the parameters in the example are given: 
NA=1.25, Nα=0.50, Na1=1.50, Na2=0.00, NR=1.0, Nb1=2.82, Nb2=2.20. 
Between the parameters and their nominal values the following relations are assumed: 
A=0.8NA, α=2Nα, a1=0.66Na1, a2=Na2, R=1.4142NR, b1=1.06Nb1, b2=0.91Nb2 
The corresponding parameter values are: 
A=1.00, α=1.00, a1=1.00, a2=0.00, R=1.4142, b1=3.00, b2=2.00. 
It is assumed that the variables and their nominal values are in following relations: 
x1=0.80Nx1, x2=1.25Nx2. 
The optimal solution of the problem is in the point with mathematical co-ordinates x1=2.00 
and x2=1.00. The nominal values are obtained by the inverse transformation as follows: 
Nox1=1.25x1=2.50 and Nox2=0.8x2=0.80. The corresponding objective function value is 
f(x1=2, x2=1)=1.00, see Fig. 1.  
 
4.2. Post optimal uncertainty analysis 
Following tolerance values in parameters and variables are taken: 
tAupp=0.10,   tAlow= -0.08                            tb1upp=0.08,  tb1low= -0.05 
tαupp=0.05,   tαlow= -0.04                            tb2upp=0.04,  tb2low= -0.02 
ta1upp=0.08,  ta1low= -0.03                 The appropriate tolerances in variables are: 
 ta pup=0.06,  ta low= -0.0                           tx2pup=0.05,  tx2low= -0.02 2 2
tRpup=0.06,   tRlow= -0.04                            tx1pup=0.08,  tx1low= -0.04 
The mean values taken are the same as the parameter values: 
µA=1.00, µα=1.00, µa1=1.00, µa2=0.00, µR=1.00, µb1=3.00, µb2=2.00. 
In addition, following standard deviations are applied: 
σA=0.06, σα

2

2

2

=0.04, σa1=0.10, σa2=0.20, σR=0.15, σb1=0.45, σb2=0.30.  
For design variables coefficient of variations are given as c.o.x1=0.12 and c.o.v.x2=0.08. 
Substituting  values x1=2.00 and x2=1.00 obtained in previous section as the optimal 
solution, to expressions for constraint function derivatives in eqns. (15), following numerical 
values are obtained: 2, 2, -2.8284, -2, -2, respectively. 
The upper  values of the constraint function in terms of the values and tolerances of the 
variables and parameters in optimal point according to eqn. (2) are as shown: 
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Substituting the tolerance values, the following constraint functions are obtained: 
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The rest of the constraint functions is obtained by appropriate substitution as shown: 
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Note: the constraint functions in eqns. (17a-d) are shifted circles with enlarged radii, Fig.1. 
The lower  values of the constraint function in the optimal point can be obtained as  
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and after substitution, it reads: 
g x x x x Rlow ( , ) ( . ) ( . ) ( . )1 2 1

2
2

23 12 2 06 0 04 0= − + − − − =                                         (19) 
The lower values of the constraint functions are in this example irrelevant since they are 
anyway in the feasible domain. 
Substituting values x1=2.00 and x2=1.00 to expressions of objective function derivatives in 
eqn. (14), obtains the following numerical values respectively: 1, -0, -1, -1, 1, 1. 
The upper and lower values of the objective function in terms of the tolerance of the 
variables, using the derivatives of the objective function are, see eqn. (2): 
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A. The upper and lower values of the objective function f(x1,x2)=1.0 calculated in the 
optimal  point x1=2.00 and x =1.00  according to eqns. (20a-b) are as follows: 

            (20b) 

2
fupp(x1,x2)=1.2151 and flow(x1,x2)=0.7963, see Fig. 1. 
The corresponding mean and the standard deviation of the objective function in the optimal 
point, according to eqns. (4, 6) as well as eqns. (14a-e) are µf=1.0 and σf=0.2793. 
B. Let consider a point x1=2.80 and x2=0.90. The objective function value is  
f(x1,x2)=1.6200 and the tolerance limits  according to eqns. (20a-b), are fupp(x1,x2)=1.9313, 
flow(x1,x2)=0.1.3473. Compared to the optimal value according to relations (9), there is no 
overlapping in the tolerance field, i.e. there is a gap of -0.1322, and the solution is considered 
as a different one. 
The corresponding mean and the standard deviation of the objective function in the optimal 
point, according to eqns. (4 and 6) as well as eqns. (14a-e) are µf=1.6200 and σf=0.3585. 
According to relation (11) 1.62-1<(.3585-.2793)/2 and the solutions are considered different. 
C. Let consider another point x1=1.80 and x2=1.50. The objective function value is  
f(x1,x2)=1.2000, and the tolerance limits  according to eqns. (15a-b) are fupp(x1,x2)=1.4971 
and flow(x1,x2)=0.9143. Compared to the optimal value according to relations (9), there is an 
overlapping in the tolerance field of 0.3008, and the solution is considered as 
indistinguishable. 
The corresponding mean and the standard deviation of the objective function in the optimal 
point, according to eqns. (4 and 6) as well as eqns. (14a-e) are µf=1.2000 and σf=0.3771. 
According to relation (11) 1.2-1<(.3771-.2793)/2 and the solutions are indistinguishable. 
D. If it is agreed that the acceptance of the solutions within the tolerance limits of the 
objective functions in the optimal point as the reference one according to relation (10), and if 
it is expected that the solutions are in the tolerated infeasible domain, the wide range of 
solutions in variables is available (shadowed in Fig. 1.). The tolerated constraint value 
violation in the nominal optimal solution x1=2.00, x2=1.00, see eqn. (12a), is g(x1=2.00, 
x2=1.00)=0.5628. 
E. Finally, the optimal solution in the feasible domain, now enlarged for tolerance limits on 
constraint function, is in the point x1o=1.4612 and x2o=1.4957 (see Fig. 1.).                        
The corresponding nominal values are Notx1=1.8265 and Notx2=1.19656. The corresponding  
minimal objective function value is f(x1=1.4612, x2=1.4957)=0.6898 (see Fig. 1.). 
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                          Fig. 1. Optimal solution and tolerance limits as detailed in example 
Conclusion 
 
Considering the upper and lower tolerance limits on design model or optimisation variables 
and parameters, basically defined as deterministic, the constraint and the objective functions 
can also be assessed by their tolerance limits. For non-linear functions, the tolerance limits 
can be determined using information from the first order Taylor's series expansion. Solutions 
to an optimisation problem with the tolerance limits around the optimal solution can be 
considered as a family of non-distinguishable, i.e. tolerable solutions. 
If the optimisation variables and parameters are random variables, with known at least the 
first two statistical moments, the constraints and the objectives can be considered as functions 
of random variables. For the non-linear functions, the first two statistical moments of 
functions of random variables can be assessed using the first order Taylor's series expansion 
and the first two moments of random variables. The statistical significance of optimality 
criteria can be defined by a range of values, as established by the user's estimate in his 
significance assessments. 
The analysis of the uncertainty in optimisation problems can indicate a wider range of 
solutions which can satisfy user requirement. Such an approach can give an adequate 
explanation to sceptics, that in uncertain conditions the strict, mathematically defined 
optimum cannot often be clearly distinguished from a number of other sub-optimal solutions. 
The approach presented in this paper allows for a relatively simple assessment of the 
dispersion of the solutions of an optimisation problem in a  design and post-optimal 
consideration. 
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