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ABSTRACT 

There are few important reasons for introduction of 
intelligent mobile agents model in telecommunications. 
These are, but not limited to: transport platform 
development  which provides us with a high level of 
flexibility during communication process and 
»softwaresation« of telecommunications. Introduction of 
mobile agents generates search for appropriate formal 
system to develop their efficient formal specification. 
Here, we present formal model for specification of 
mobile agents in telecommunication network 
management. Network management can be perceived as 
process of decomposite problem solving where each 
network problem is decomposed to smaller ones called 
primary problems. Primary problems are then objects of 
problem solvers. Two aspects of formal specification of 
network mangement system based on mobile agents are 
considered here: static and dynamic. 

Keywords: Multiagent systems, Formal specification, 
Problem space, Solver space, Object-oriented techniques. 

1. INTRODUCTION 
Since intelligent mobile agents inherently solve 
problems, they are introduced here to solve netwok 
management tasks. Here we have tried to make their 
formal infrastructure based on their numerous features 
such as: schedule within the network environment, their 
dedicated priorities, thier probabilities of appearance at 
particular network locations and  their interagent 
relations. 

Static and dynamic aspects of formal specification of 
network mangement system based on mobile agents are 
considered here. 

Analysis of statics has brought us to notion of agent 
relational metalevel based on cognitive maps to visualize 
and analyze benefits of such approach. 

Discussing dynamic aspect of a system, we 
introduced here extended definitions of problem and 
solver space. We extend the analysis started in [4]. 
Problem and solver spaces are visualized here as vector 
spaces. Problem vector space is constituted of finite 
numeral of linear combinations of primary problem 
vectors. Specified linear oparators transform these 

vectors  onto their codomain in solver vector space. So, 
solver vector space consists of primary vector solvers 
together with all of their combinations. Linear operator 
may transform origin vector space either to null or none-
null vectors. Those transformed to null vectors constitutes 
kernel of origin vector space and the others create its 
image. We also reason on isomorphic linear operators 
and their effects on problem and solver vector spaces. 
Since primary problems and solvers are vectors 
themselves, they are presented here as finite n-tuples with 
their n-features. Their features are explored in great detail 
here. They are also introduced here as group and ring 
elements 

In this manner mobile agents as problem solvers are 
introduced. They are presented as specified linear 
combinations of primary solvers. These provides us with 
flexible mechanism for changing agent problem domain 
or increase of agent’s knowledge. We analyzed here 
agents behaviour with emphasis on their optimal 
cooperation with minimal communication in decision 
processes and level of generalization of model’s 
application in different network management domains. 

2. DYNAMICS IN MULTIAGENT SYSTEMS 
Dynamic aspect of a system is perceived here as 
extension to definitions of problem and solver space in 
[4]. Problem and solver spaces are visualized here as 
vector spaces. 

2.1. Agents in vector space 
Let us first define vector space, one of the main issues in 
this paper. 
Definition 2.1. A set X is a vector space over a field F 
(e. g. field of real or complex numbers), if given an 
operation vector addition defined in X, denoted x + y for 
all x, y in X, and an operation scalar multiplication in X, 
denoted a * x for all x in X and a in F, the following 
properties hold for all a, b in F and x, y, and z in X: 
� x + y belongs to X; X is closed under vector 

addition; 
� x + (y + z)= (x + y) + z; associativity of vector 

addition in X; 
� x + 0 = x + 0 = 0; ∀ x ∈  X ∃  0 ∈  X, an additive 

identity element; 
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� x + (-x) = (-x) + x = 0; for all elements x in X 
exists additive inverse  -x in X; 

� x + y = x + y;  commutativity of vector addition 
in X; 

� a * x belongs to X; X is closed under scalar 
multiplication; 

� a * (b * x)=(a * b) * x; associativity of scalar 
multiplication in X; 

� 1 * x = x * 1 = x; multiplicative identity 1 of the 
field F; neutrality of one; 

� a * (x + y)=a * x + a * y; distributivity with 
respect to vector addition; 

� (a + b) * x = a * x + b * x; distributivity with 
respect to field addition. 

According to definition above we introduce here vector 
problem space and vector solver space. 

Definition 2.2. Problem vector space VP is space of 
primary vector problems and all of their linear 
combinations. 

VP := ℘ 1p1 + ℘ 2p2 + …℘ ipi +  … + ℘ n-1pn-1  + ℘ npn 

where ℘ i, is scalar determining some feature of vector it 
is assigned to; pi, primary vectors of space basis which 
generate the space. Vectors pi are ordered n-tuples where 
each component determines one feature of particular 
vector. Therefore, it is possible to define n features with 
values under some field, e.g. field of real numbers, (ℵ 1, 
…, ℵ i, ℵ n). Primary vectors are considered 
nondecomposite to smaller ones. Their related n-tuple 
features are not considered vectors. 

Problem vector problem space is generated by 
environment of specific domain. For simplicity here are 
considered merely finite vector spaces. Each vector space 
has an arbitrary number of basis (minimum number of 
linearnly independent vectors) which are all equally 
numbered and determine dimension n of particular space. 

Vector problem space needs solutions to its 
problems. Therefore, it implies existance of another space 
connected to it solving problems of solver space, 
therefore it is called solver vector space. 
Definition 2.3. Solver vector space VS is a space of 
primary vector solvers with all of their linear 
combinations; 

VS := ℑ 1s1 + ℑ 2s2 + …ℑ isi +  … + ℑ n-1sn-1  + ℑ nsn 

where ℑ i, denotes scalar that determine a particular vector 
feature; si, primary vector of space basis. Here are 
examined merely finite vector spaces with different space 
basis. Ordered n-tuples (η1, ηi, …, ηn) determine n 
features of primary problem solvers assigned to problem 
si. This defined space is generated by telecommunication 
network, infrastrucutre of nodes and available resources. 
Each element of solver space is considered agent. 
Therefore agent system is defined as set of solvers with 
exactly defined relations between them. Or in other 

words, agent system is ordered relational state within 
collection or subset members of solver space 
 

2.2. An agent in Group theory 
Monoids characterise data types with an associative 
binary operation and a neutral element under the 
operation. Inverse elements as required for groups are not 
so common, so we introduce here analysis of possible 
approach to inverse group elements with respect to 
technology of mobile telecommunications agents. 
Definition 2.4. A group G is defined as a finite or infinite 
set of operands (called ”elements”) that may be combined 
or ”multiplied” via a binary operator to form well-defined 
products and which furthermore satisfy the following 
conditions: 
� Closure; ∀ a, b ∈  G in G, the product ab ∈  G; 
� Associativity; ∀ a, b, c ∈  G multiplication is 

associative:  a(bc) = (ab)c; 
� Identity; ∃ e an identity element such that ea = 

ae = a , ∀ a ∈  G; 
� Inverse: ∃  a-1, an inverse of each element such 

that aa-1 = a-1a = e, ∀ a ∈  G. 
Agents have already been defined as vectors, e.g. a set of 
primary vector problems as their linear combination. 
Since primary problems are not only formal variables to 
represent agents, i.e. they have associated components 
themselves, primary problems can be perceived as group 
G. (G, ·) satisfies then all the definitional conditions for 
groups (2.4.) with the + operation inherited from set of 
real numbers R. Operation · in a particular situation can 
be addition, composition of functions, etc. If Abel's 
(comutative) group is represented in additive manner as 
in (G, +), than the group is additive. Identity element of 
additive group is called null–element (represented ”0”) 
and inverse element is denoted –a. 

Let us consider additive group (G, +) with respect to 
addition operator + in problem solving domain. Operator 
+ is introduced here as ”solver operator”. The main issue 
here is the meaning of inverse element. Therefore, we 
merge problem space with the solver space into one space 
by group theory. If there is a problem  a (e.g.primary) 
defined as an entity in problem space, let –a be its solver. 
This than implies also the meaning of identity element. 
Equation a + (-a) = (-a) + a = e; denotes solving of 
problem a by its solver –a as comutative action no matter 
the order of problem and solver in equation. When 
problem a interacts with its solution –a (e.g. solves the 
problem), it leaves no side effects at the place of 
interaction. Problem is removed and identity element e is 
left at particular position which has no meaning from 
network domain perspective. [2] proves that each group 
element has its own unique inverse element so the 
assumption is accepted here. 

Applied on any group element by solver operator 
identity element e does not change either problem or 
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solver added to it. Notion of null-agent is introduced as 
agent with no side effects. 

Closure means creation or merging primary problems 
and solvers into bigger ones. This feature denotes also an 
increase of network problem  complexity, network size or 
other network demands. Increasing complexity might 
introduce  new primary problem. Exceptional closure 
feature denotes that group already contains new problems 
and solvers although they did not phisically appear in 
network yet. It can be perceived as built in mechanism of 
growth. It is also important to preserve meaning in 
actions with solver operator, e.g. if problem a has its own 
unique solver –a, there is no point in reasoning on 
interaction between problem a and solver of problem b 
although the very structure exists in group. 

Associativity is not of a special importance for model 
of agents, but is denoted here for complete compatibility 
with group definition. It is therefore correct : a + (b + c) 
= (a + b) + c because agents do not change their features 
or their internal structure moving primary solvers.  

2.3. Extension to ring structure 
Let us further extend group structure (G, +) to ring 
structure by applying · composition operator on the very 
G structure. Than, (G, ·) became semigroup. According to 
semigroup definition features of group closure and group 
associativity are valid the only valid ones here. We put 
emphasis on mechanism of composition and its 
interactions with solver operator on group elements. 
Composition creates composite problems and agents, e.g. 
collection of primary solvers solving particular problem 
appearing at particular network place. For instance, a·b·c 
(or abc, for short) denotes network problem which can be 
decomposed to primary problems a, b and c. On the other 
hand, (-a)(-b)(-c) denotes solver to solve specified 
problems a, b and c , respectively. Another example abc 
+ (-b)(-c) denotes also possible situation where solver (-
b)(-c) can partially solve abc problem. This expression 
abc + (-b)(-c) = a leaves abc problem not completely 
solved, i.e. a is left unsolved. Another solver can be 
applied here, e.g. (-a)(-d) which can solve either a or d 
primary problem.  

If composition is percieved as association of agents 
into bigger entities, new dimension of system reasoning 
is introduced here. New structure formed by more than 
two agents can solve more problems than each agent 
respectively. But composition implies that overall 
problem solving ability remains constant. No matter the 
external manner of binding structures, their internal 
structure remains unchanged. 

Merging (G, +) with (G, ·) ring structure (R, +, ·) is 
achieved where R is equivalent to G and operators + and 
are defined according to the above definitions as problem 
and solver manipulators. Complete ring structure also 
allows + and · to be distributed over group elements, i.e. 
for all a, b, c ∈  R there is: 

a (b + c) = ab + ac, (a+b) c = ac + bc. 

Problems and solvers are further divided into 
composition of equivalence classes. Each class contains 
elements with the same specified feature, e.g. i-class 
contains pi as its representative so each i-class element 
contains pi. Therefore we have new group with 
equipotent classes as its elements. If classes would have 
not been disjunctive, we would have partition based on 
Lagrange's group theorem;  |G|=|G/N||N|, where |G| 
denotes the order of a group, |G/N| number of elements in 
each class (i.e. group element order) and |N| is a number 
of classes within the group (e.g. here a number of primary 
problems). Also, elements of our group are normal and 
are denoted G/N (read "G modulo N") as elements of 
quotient group since they share some common feature on 
which group is constituted. In this manner agents are 
implicitely constructed as elements of these classes, e.g. 
p1 and p1p2p4 are in the same <p1> class as they both 
contain p1. Since classes are not disjunctive there could 
occur existence of the same element in two or more 
classes, e.g. p1p4 could appear either in class <p1> or in 
class <p4>. Normally, they already exist there by 
definition. In a particular case it might not be common 
but is feasible.  

2.4. Operations on problem space 
Since we reasoned on problems' and solvers' main 
features and operators under them at lower level of 
abstraction (e.g. group and ring perspective), we return 
out attention to vector spaces, i.e. to higher level of 
abstraction. In vector spaces operator + is not defined as 
solving operator but inherited from its definition in set of 
real numbers R. 

Vector spaces reasoning enrich problems and solvers 
with additional features. Each primary member has its 
own weight which is denoted (ℵ 1, …, ℵ i, ℵ n) and (η1, ηi, 
…, ηn) in II.A section. These attributes are useful guides 
in choosing particular agent from group of agents to solve 
particular problem. 

Problem vectors which cannot be assigned to solver 
vector form a kernel of problem vector space. Others 
form its image. Out special interest here are isomorphic 
translations of problem vectors onto solver vectors. 
Isomorphic operator is bijective homomorphism between 
the two spaces. Homomorphism is f : VP→ VS operator 
where there is: 

f(ab)=f(a)f (b) 
 
for each a, b ∈  VP under composition operation. 
Interpretation of equation is such that composition of 
primary problems needs composition of respective 
solvers. Bijection implies that f is also injection and 
surjection. 

3. STATICS IN MULTIAGENT SYSTEMS 
Statics in multiagent systems are inspired here with 
reasoning based on cognitive maps as in [5]. Causal maps 
model interrelationships among a variety of concepts. 
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Concepts' domains are not necessarily defined precisely 
because there are no obvious scales for measuring.  

Static aspect is perceived here through interagent 
relations which do not change no matter how often 
overall numeral of system elements change. Relation only 
disappears if all instances of some system element 
involved in this particular relation disappear. In other 
case, meaning non-disappearance of system elements, 
relation change is equivalent to introduction of new 
resources in telecommunication system, but it is not 
supposed to happen often. But is feasible. So, statics is 
not absolute here. We  therefore may more precisely say 
we are dealing with metastatics here. To support this 
metastatics feature we introduced notion of agent 
relational metalevel based on cognitive maps to visualize 
and analyze benefits of such approach.  
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Agent_i
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Agent relational metalevel

 
Figure 1. Agent system with associated relational agent  metalevel 

Although causal maps with given semantics make 
language with dynamics as its inherent feature, they are 
useful tool to represent metastatic formal specification of 
entities involved in system. Causal maps are focused on 
relations among entities (agents, in our case) which are 
strongly defined, no matter if they are mobile or not. 
Precisely, if two agents change their position within the 
network, their relation remains the same. Positions have 
no impact on relations (Figure 1 and Figure 2). 
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Figure 2. Changed agent system state with associated relational agent  

metalevel which remains the same 

Analysis of relational agent metalevel bring conclusions 
on prediction of system behaviour and future events, 
explanation of past events and decision making. 

4. PROBLEM SOLVING 
Encapsulation in object-oriented programming languages 
can be used as translation mechanism on collection of 
agents as mathematical group structure to objects. Since 
group is consisted of elements under some specified 
operator, encapsulation translates these data and 
operations onto variables and methods in classes. 

Inheritance in object-oriented programming  can be 
thought of as a process of modeling agents, e.g. 
specialization of inherited classes. If primary vectors are 
modeled as classes, then all of their n-features are 
translated onto classes attributes. Since agents are formed 
as primary vectors collection, they are modeled as 
composition of primary vector classes. Each primary 
problem can enrich its features with the mechanism of 
inheritance. By this mechanism also growth of problems 
in particular problem domain is visualized. According to 
reasoning in 2.3. section problem solvers are divided into 
equivalence classes where each class preserves some 
common features, i.e. each element of a equivalence class 
has at least one feature in common with every other 
element of the same class. Therefore, for implementation 
purposes, we define here interface template to be used by 
all agents needing it. Since there is no general problem 
solver, but instanciated different solver types, it is 
realistic to use generic inteface to be applied on all solver 
classes according to their needs (Figure 3). Each problem 
solver can implement its own way of manipulation on 
specified problem (public abstract double PrimaryProblem1()).   

Figure 3. Agent system generic interface in Java 

In the same manner composite problems can be 
implemented. 

Election of particular agents is indirectly done by 
problem environment within domain of problem space. It 
is reasonable that agents will be “united” on the task of 
goal reaching; they will make agent system. Even if 
agents will have goals that are in conflict with each other, 
it is necessary to define minimal amount of 
communication between them. Protocol defines agent 
schedule and conversation rules between agents. Hence, 
it is necessary to be focused on: common goals and tasks  
recognition, avoiding of undesired conflicts, putting 
knowledge and resources “together” in order to solve the 
problem optimally, minimization of “undesired” 
communication (moving of agents between network 
nodes which can be avoided by optimal solvers’ 
schedule), tracing and updating data, which means re-
grouping of agents within the network. 

Definitions that are recommended here can be 
efficiently verificated by programming simulation. To 
reach that goal it is necessary to develop application with 
following features; 

Parameters are given in advance, or can be changed 
during runtime, but results are presented according to 
parameters. Results are: 

- Problem vector space and problems’ sets created 
from it; 

- Solver vector space and solvers’ sets with 
features and specifications which solver has 

public interface ProblemSolver {
public abstract double PrimaryProblem1();
public abstract double PrimaryProblem2();

. . .
public abstract double PrimaryProblemN();

}
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resources to solve every problem or set of 
problems that arises; 

- Location list within the network with predefined 
relations (connectivity, distance, etc.) 

- Probabilities of problems arising at locations, for 
every problem and every location; 

- Algorithms to apply in conflict cases where 
more than one agent can solve particular 
problem. 

Every management resource contains knowledge that 
controls management decision-making process. Every 
decision controls only one small segment of distributed 
system; hence it is necessary to communicate. 

There are several performances that can be measured 
by simulation depending on solving problem way and 
interagents communication, as well as agents’ schedule 
within the network: average solving time, 
maximum/minimum solving time, number of maximum 
time violations, amount of communication. 
 

5. CONCLUSION 
In this paper we have offered formal model for 
specification of mobile agents in telecommunications 
systems. It offers mathematical approach and is founded 
on group and vector definitions where their features are 
interpreted in agents terms. 

We’ve presented the “infrastructure” for formal 
presentation of agent model as problem solving agent. 
Hence we’ve defined problem environment, problem 
space and problem set as well as solver vector space and 
set of problem solvers. 

We have also research on mechanism of translation 
from specification to implementation of agent system and 
object-oriented techniques were found suitable to easily 
transform vectors to objects.  

Every segment of network management process 
contains only segment of knowledge required for 
management decision-making, so it is necessary to ensure 

mechanisms of communication and knowledge 
(information) transfer. It is also necessary to define 
optimal way of communication and knowledge transfer 
depending on predefined parameters. One way of solution 
is programming simulation that will be presented in 
future works in more details. 
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