

1

Development of formal infrastructure for perception of
intelligent agents as problem solvers

Ph. D. Marijan KUNSTIC, B. Sc. Marina BAGIC
Department of telecommunications, Faculty of electrical engineering and computing

Zagreb, Croatia
E-mail: marijan.kunstic@fer.hr, marina.bagic@fer.hr

ABSTRACT

There are few important reasons for introduction of
intelligent mobile agents model in telecommunications.
These are, but not limited to: transport platform
development which provides us with a high level of
flexibility during communication process and
»softwaresation« of telecommunications. Introduction of
mobile agents generates search for appropriate formal
system to develop their efficient formal specification.
Here, we present formal model for specification of
mobile agents in telecommunication network
management. Network management can be perceived as
process of decomposite problem solving where each
network problem is decomposed to smaller ones called
primary problems. Primary problems are then objects of
problem solvers. Two aspects of formal specification of
network mangement system based on mobile agents are
considered here: static and dynamic.

Keywords: Multiagent systems, Formal specification,
Problem space, Solver space, Object-oriented techniques.

1. INTRODUCTION
Since intelligent mobile agents inherently solve
problems, they are introduced here to solve netwok
management tasks. Here we have tried to make their
formal infrastructure based on their numerous features
such as: schedule within the network environment, their
dedicated priorities, thier probabilities of appearance at
particular network locations and their interagent
relations.

Static and dynamic aspects of formal specification of
network mangement system based on mobile agents are
considered here.

Analysis of statics has brought us to notion of agent
relational metalevel based on cognitive maps to visualize
and analyze benefits of such approach.

Discussing dynamic aspect of a system, we
introduced here extended definitions of problem and
solver space. We extend the analysis started in [4].
Problem and solver spaces are visualized here as vector
spaces. Problem vector space is constituted of finite
numeral of linear combinations of primary problem
vectors. Specified linear oparators transform these

vectors onto their codomain in solver vector space. So,
solver vector space consists of primary vector solvers
together with all of their combinations. Linear operator
may transform origin vector space either to null or none-
null vectors. Those transformed to null vectors constitutes
kernel of origin vector space and the others create its
image. We also reason on isomorphic linear operators
and their effects on problem and solver vector spaces.
Since primary problems and solvers are vectors
themselves, they are presented here as finite n-tuples with
their n-features. Their features are explored in great detail
here. They are also introduced here as group and ring
elements

In this manner mobile agents as problem solvers are
introduced. They are presented as specified linear
combinations of primary solvers. These provides us with
flexible mechanism for changing agent problem domain
or increase of agent’s knowledge. We analyzed here
agents behaviour with emphasis on their optimal
cooperation with minimal communication in decision
processes and level of generalization of model’s
application in different network management domains.

2. DYNAMICS IN MULTIAGENT SYSTEMS
Dynamic aspect of a system is perceived here as
extension to definitions of problem and solver space in
[4]. Problem and solver spaces are visualized here as
vector spaces.

2.1. Agents in vector space
Let us first define vector space, one of the main issues in
this paper.
Definition 2.1. A set X is a vector space over a field F
(e. g. field of real or complex numbers), if given an
operation vector addition defined in X, denoted x + y for
all x, y in X, and an operation scalar multiplication in X,
denoted a * x for all x in X and a in F, the following
properties hold for all a, b in F and x, y, and z in X:
� x + y belongs to X; X is closed under vector

addition;
� x + (y + z)= (x + y) + z; associativity of vector

addition in X;
� x + 0 = x + 0 = 0; ∀ x ∈ X ∃ 0 ∈ X, an additive

identity element;

2

� x + (-x) = (-x) + x = 0; for all elements x in X
exists additive inverse -x in X;

� x + y = x + y; commutativity of vector addition
in X;

� a * x belongs to X; X is closed under scalar
multiplication;

� a * (b * x)=(a * b) * x; associativity of scalar
multiplication in X;

� 1 * x = x * 1 = x; multiplicative identity 1 of the
field F; neutrality of one;

� a * (x + y)=a * x + a * y; distributivity with
respect to vector addition;

� (a + b) * x = a * x + b * x; distributivity with
respect to field addition.

According to definition above we introduce here vector
problem space and vector solver space.

Definition 2.2. Problem vector space VP is space of
primary vector problems and all of their linear
combinations.

VP := ℘ 1p1 + ℘ 2p2 + …℘ ipi + … + ℘ n-1pn-1 + ℘ npn

where ℘ i, is scalar determining some feature of vector it
is assigned to; pi, primary vectors of space basis which
generate the space. Vectors pi are ordered n-tuples where
each component determines one feature of particular
vector. Therefore, it is possible to define n features with
values under some field, e.g. field of real numbers, (ℵ 1,
…, ℵ i, ℵ n). Primary vectors are considered
nondecomposite to smaller ones. Their related n-tuple
features are not considered vectors.

Problem vector problem space is generated by
environment of specific domain. For simplicity here are
considered merely finite vector spaces. Each vector space
has an arbitrary number of basis (minimum number of
linearnly independent vectors) which are all equally
numbered and determine dimension n of particular space.

Vector problem space needs solutions to its
problems. Therefore, it implies existance of another space
connected to it solving problems of solver space,
therefore it is called solver vector space.
Definition 2.3. Solver vector space VS is a space of
primary vector solvers with all of their linear
combinations;

VS := ℑ 1s1 + ℑ 2s2 + …ℑ isi + … + ℑ n-1sn-1 + ℑ nsn

where ℑ i, denotes scalar that determine a particular vector
feature; si, primary vector of space basis. Here are
examined merely finite vector spaces with different space
basis. Ordered n-tuples (η1, ηi, …, ηn) determine n
features of primary problem solvers assigned to problem
si. This defined space is generated by telecommunication
network, infrastrucutre of nodes and available resources.
Each element of solver space is considered agent.
Therefore agent system is defined as set of solvers with
exactly defined relations between them. Or in other

words, agent system is ordered relational state within
collection or subset members of solver space

2.2. An agent in Group theory
Monoids characterise data types with an associative
binary operation and a neutral element under the
operation. Inverse elements as required for groups are not
so common, so we introduce here analysis of possible
approach to inverse group elements with respect to
technology of mobile telecommunications agents.
Definition 2.4. A group G is defined as a finite or infinite
set of operands (called ”elements”) that may be combined
or ”multiplied” via a binary operator to form well-defined
products and which furthermore satisfy the following
conditions:
� Closure; ∀ a, b ∈ G in G, the product ab ∈ G;
� Associativity; ∀ a, b, c ∈ G multiplication is

associative: a(bc) = (ab)c;
� Identity; ∃ e an identity element such that ea =

ae = a , ∀ a ∈ G;
� Inverse: ∃ a-1, an inverse of each element such

that aa-1 = a-1a = e, ∀ a ∈ G.
Agents have already been defined as vectors, e.g. a set of
primary vector problems as their linear combination.
Since primary problems are not only formal variables to
represent agents, i.e. they have associated components
themselves, primary problems can be perceived as group
G. (G, ·) satisfies then all the definitional conditions for
groups (2.4.) with the + operation inherited from set of
real numbers R. Operation · in a particular situation can
be addition, composition of functions, etc. If Abel's
(comutative) group is represented in additive manner as
in (G, +), than the group is additive. Identity element of
additive group is called null–element (represented ”0”)
and inverse element is denoted –a.

Let us consider additive group (G, +) with respect to
addition operator + in problem solving domain. Operator
+ is introduced here as ”solver operator”. The main issue
here is the meaning of inverse element. Therefore, we
merge problem space with the solver space into one space
by group theory. If there is a problem a (e.g.primary)
defined as an entity in problem space, let –a be its solver.
This than implies also the meaning of identity element.
Equation a + (-a) = (-a) + a = e; denotes solving of
problem a by its solver –a as comutative action no matter
the order of problem and solver in equation. When
problem a interacts with its solution –a (e.g. solves the
problem), it leaves no side effects at the place of
interaction. Problem is removed and identity element e is
left at particular position which has no meaning from
network domain perspective. [2] proves that each group
element has its own unique inverse element so the
assumption is accepted here.

Applied on any group element by solver operator
identity element e does not change either problem or

3

solver added to it. Notion of null-agent is introduced as
agent with no side effects.

Closure means creation or merging primary problems
and solvers into bigger ones. This feature denotes also an
increase of network problem complexity, network size or
other network demands. Increasing complexity might
introduce new primary problem. Exceptional closure
feature denotes that group already contains new problems
and solvers although they did not phisically appear in
network yet. It can be perceived as built in mechanism of
growth. It is also important to preserve meaning in
actions with solver operator, e.g. if problem a has its own
unique solver –a, there is no point in reasoning on
interaction between problem a and solver of problem b
although the very structure exists in group.

Associativity is not of a special importance for model
of agents, but is denoted here for complete compatibility
with group definition. It is therefore correct : a + (b + c)
= (a + b) + c because agents do not change their features
or their internal structure moving primary solvers.

2.3. Extension to ring structure
Let us further extend group structure (G, +) to ring
structure by applying · composition operator on the very
G structure. Than, (G, ·) became semigroup. According to
semigroup definition features of group closure and group
associativity are valid the only valid ones here. We put
emphasis on mechanism of composition and its
interactions with solver operator on group elements.
Composition creates composite problems and agents, e.g.
collection of primary solvers solving particular problem
appearing at particular network place. For instance, a·b·c
(or abc, for short) denotes network problem which can be
decomposed to primary problems a, b and c. On the other
hand, (-a)(-b)(-c) denotes solver to solve specified
problems a, b and c , respectively. Another example abc
+ (-b)(-c) denotes also possible situation where solver (-
b)(-c) can partially solve abc problem. This expression
abc + (-b)(-c) = a leaves abc problem not completely
solved, i.e. a is left unsolved. Another solver can be
applied here, e.g. (-a)(-d) which can solve either a or d
primary problem.

If composition is percieved as association of agents
into bigger entities, new dimension of system reasoning
is introduced here. New structure formed by more than
two agents can solve more problems than each agent
respectively. But composition implies that overall
problem solving ability remains constant. No matter the
external manner of binding structures, their internal
structure remains unchanged.

Merging (G, +) with (G, ·) ring structure (R, +, ·) is
achieved where R is equivalent to G and operators + and
are defined according to the above definitions as problem
and solver manipulators. Complete ring structure also
allows + and · to be distributed over group elements, i.e.
for all a, b, c ∈ R there is:

a (b + c) = ab + ac, (a+b) c = ac + bc.

Problems and solvers are further divided into
composition of equivalence classes. Each class contains
elements with the same specified feature, e.g. i-class
contains pi as its representative so each i-class element
contains pi. Therefore we have new group with
equipotent classes as its elements. If classes would have
not been disjunctive, we would have partition based on
Lagrange's group theorem; |G|=|G/N||N|, where |G|
denotes the order of a group, |G/N| number of elements in
each class (i.e. group element order) and |N| is a number
of classes within the group (e.g. here a number of primary
problems). Also, elements of our group are normal and
are denoted G/N (read "G modulo N") as elements of
quotient group since they share some common feature on
which group is constituted. In this manner agents are
implicitely constructed as elements of these classes, e.g.
p1 and p1p2p4 are in the same <p1> class as they both
contain p1. Since classes are not disjunctive there could
occur existence of the same element in two or more
classes, e.g. p1p4 could appear either in class <p1> or in
class <p4>. Normally, they already exist there by
definition. In a particular case it might not be common
but is feasible.

2.4. Operations on problem space
Since we reasoned on problems' and solvers' main
features and operators under them at lower level of
abstraction (e.g. group and ring perspective), we return
out attention to vector spaces, i.e. to higher level of
abstraction. In vector spaces operator + is not defined as
solving operator but inherited from its definition in set of
real numbers R.

Vector spaces reasoning enrich problems and solvers
with additional features. Each primary member has its
own weight which is denoted (ℵ 1, …, ℵ i, ℵ n) and (η1, ηi,
…, ηn) in II.A section. These attributes are useful guides
in choosing particular agent from group of agents to solve
particular problem.

Problem vectors which cannot be assigned to solver
vector form a kernel of problem vector space. Others
form its image. Out special interest here are isomorphic
translations of problem vectors onto solver vectors.
Isomorphic operator is bijective homomorphism between
the two spaces. Homomorphism is f : VP→ VS operator
where there is:

f(ab)=f(a)f (b)

for each a, b ∈ VP under composition operation.
Interpretation of equation is such that composition of
primary problems needs composition of respective
solvers. Bijection implies that f is also injection and
surjection.

3. STATICS IN MULTIAGENT SYSTEMS
Statics in multiagent systems are inspired here with
reasoning based on cognitive maps as in [5]. Causal maps
model interrelationships among a variety of concepts.

4

Concepts' domains are not necessarily defined precisely
because there are no obvious scales for measuring.

Static aspect is perceived here through interagent
relations which do not change no matter how often
overall numeral of system elements change. Relation only
disappears if all instances of some system element
involved in this particular relation disappear. In other
case, meaning non-disappearance of system elements,
relation change is equivalent to introduction of new
resources in telecommunication system, but it is not
supposed to happen often. But is feasible. So, statics is
not absolute here. We therefore may more precisely say
we are dealing with metastatics here. To support this
metastatics feature we introduced notion of agent
relational metalevel based on cognitive maps to visualize
and analyze benefits of such approach.

Agent_3

Agent_2
Agent_1

Agent_i

Agent_k

Agent_3

Agent_2
Agent_1

Agent_i

Agent_k

Agent system, state i

Agent relational metalevel

Figure 1. Agent system with associated relational agent metalevel

Although causal maps with given semantics make
language with dynamics as its inherent feature, they are
useful tool to represent metastatic formal specification of
entities involved in system. Causal maps are focused on
relations among entities (agents, in our case) which are
strongly defined, no matter if they are mobile or not.
Precisely, if two agents change their position within the
network, their relation remains the same. Positions have
no impact on relations (Figure 1 and Figure 2).

Agent_3

Agent_2
Agent_1

Agent_i

Agent_k

Agent_3
Agent_2

Agent_1

Agent_i

Agent_k

Agent relational metalevel

Agent system,
state i+1

Figure 2. Changed agent system state with associated relational agent

metalevel which remains the same

Analysis of relational agent metalevel bring conclusions
on prediction of system behaviour and future events,
explanation of past events and decision making.

4. PROBLEM SOLVING
Encapsulation in object-oriented programming languages
can be used as translation mechanism on collection of
agents as mathematical group structure to objects. Since
group is consisted of elements under some specified
operator, encapsulation translates these data and
operations onto variables and methods in classes.

Inheritance in object-oriented programming can be
thought of as a process of modeling agents, e.g.
specialization of inherited classes. If primary vectors are
modeled as classes, then all of their n-features are
translated onto classes attributes. Since agents are formed
as primary vectors collection, they are modeled as
composition of primary vector classes. Each primary
problem can enrich its features with the mechanism of
inheritance. By this mechanism also growth of problems
in particular problem domain is visualized. According to
reasoning in 2.3. section problem solvers are divided into
equivalence classes where each class preserves some
common features, i.e. each element of a equivalence class
has at least one feature in common with every other
element of the same class. Therefore, for implementation
purposes, we define here interface template to be used by
all agents needing it. Since there is no general problem
solver, but instanciated different solver types, it is
realistic to use generic inteface to be applied on all solver
classes according to their needs (Figure 3). Each problem
solver can implement its own way of manipulation on
specified problem (public abstract double PrimaryProblem1()).

Figure 3. Agent system generic interface in Java

In the same manner composite problems can be
implemented.

Election of particular agents is indirectly done by
problem environment within domain of problem space. It
is reasonable that agents will be “united” on the task of
goal reaching; they will make agent system. Even if
agents will have goals that are in conflict with each other,
it is necessary to define minimal amount of
communication between them. Protocol defines agent
schedule and conversation rules between agents. Hence,
it is necessary to be focused on: common goals and tasks
recognition, avoiding of undesired conflicts, putting
knowledge and resources “together” in order to solve the
problem optimally, minimization of “undesired”
communication (moving of agents between network
nodes which can be avoided by optimal solvers’
schedule), tracing and updating data, which means re-
grouping of agents within the network.

Definitions that are recommended here can be
efficiently verificated by programming simulation. To
reach that goal it is necessary to develop application with
following features;

Parameters are given in advance, or can be changed
during runtime, but results are presented according to
parameters. Results are:

- Problem vector space and problems’ sets created
from it;

- Solver vector space and solvers’ sets with
features and specifications which solver has

public interface ProblemSolver {
public abstract double PrimaryProblem1();
public abstract double PrimaryProblem2();

. . .
public abstract double PrimaryProblemN();

}

5

resources to solve every problem or set of
problems that arises;

- Location list within the network with predefined
relations (connectivity, distance, etc.)

- Probabilities of problems arising at locations, for
every problem and every location;

- Algorithms to apply in conflict cases where
more than one agent can solve particular
problem.

Every management resource contains knowledge that
controls management decision-making process. Every
decision controls only one small segment of distributed
system; hence it is necessary to communicate.

There are several performances that can be measured
by simulation depending on solving problem way and
interagents communication, as well as agents’ schedule
within the network: average solving time,
maximum/minimum solving time, number of maximum
time violations, amount of communication.

5. CONCLUSION
In this paper we have offered formal model for
specification of mobile agents in telecommunications
systems. It offers mathematical approach and is founded
on group and vector definitions where their features are
interpreted in agents terms.

We’ve presented the “infrastructure” for formal
presentation of agent model as problem solving agent.
Hence we’ve defined problem environment, problem
space and problem set as well as solver vector space and
set of problem solvers.

We have also research on mechanism of translation
from specification to implementation of agent system and
object-oriented techniques were found suitable to easily
transform vectors to objects.

Every segment of network management process
contains only segment of knowledge required for
management decision-making, so it is necessary to ensure

mechanisms of communication and knowledge
(information) transfer. It is also necessary to define
optimal way of communication and knowledge transfer
depending on predefined parameters. One way of solution
is programming simulation that will be presented in
future works in more details.

6. REFERENCES

[1] Mardesic, S., “Matematicka analiza u n-dimenzionalnom realnom
prostoru”, 1. dio, Skolska knjiga, Zagreb, 1988.

[2] Zubrinic, D., “Diskretna matematika”, Element, Zagreb, 2001.
[3] Elezovic, N., “Linearna algebra”, Element, Zagreb, 1995.
[4] Kunstic, M.; Jukic, O.; Bagic, M.; “Defnition of formal

infrastructure for perception of intelligent agents as »problem
solvers«”, Softcom 2002, Split, Venecija, Ankona, Dubrovnik,
2002

[5] Chaib-draa, B., “Causal Maps: Theory, Implementation, and
practical Applications in Multiagent Environments”, IEEE
transactions on knowledge and data enigineering, Vol. 14, No. 6,
2002.

[6] P. Hughes, A.; Pahl, C., “A Generic Model for State-based Agent
Systems”, Proceedings of the 1st Irish Workshop on Formal
Methods, Dublin, 1997.

[7] Tkalcic, H.: “Modeli pokretljivosti agenata u procesima
upravljanja mrezom“, diplomski rad, april 2002, Fakultet
elektrotehnike i racunarstva Sveucilista u Zagrebu.

[8] Lindemann-von Trzebiatowski; Münch, I.; “The Role Concept for
Agents in MultiAgent Systems”, Humboldt University of Berlin
Department of Computer Science, Artificial Intelligence

[9] Satoh, I., “Network Processing of Mobile Agents, by Mobile
Agents, for Mobile Agents”, National Institute of Informatics /
Japan Science and Technology Corporation, Hitotsubashi,
Chiyoda-ku, Tokyo, Japan.

[10] Bohoris, C., Pavlou, G., Cruickshank H., “Using Mobile Agents
for Network Performance Management”, Center for
Communication Systems Research, School of Electronic
Engineering and Information Technology, University of Surrey,
Guildford, UK.

[11] Minar, N.; Hultman Kramer, K.; Maes, P.; “Cooperating Mobile
Agents for Dynamic Network Routing,”,MIT Media Lab, E15-
305 20 Ames St, Cambridge MA 02139, USA

	INTRODUCTION
	Dynamics in multiagent systems
	2.1. Agents in vector space
	An agent in Group theory
	Extension to ring structure
	Operations on problem space

	Statics in multiagent systems
	4. Problem solving
	Conclusion
	
	
	
	6. REFERENCES

