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Abstract: This paper presents a new numerical algorithm for 
time optimal control of nonlinear multivariable systems with 
control and state vectors constraints. The algorithm is based on 
the backpropagation-through-time algorithm (BPTT), which is 
used as a learning algorithm for recurrent neural networks. 
The proposed algorithm provides better convergence properties 
then numerical algorithms based on conversion of optimal 
control problem into a nonlinear programming one. The 
algorithm is applied on the problem of time optimal robot 
control with obstacle avoidance constraints. 
Key words: time optimal control, nonlinear systems, robot 
control, gradient algorithm. 
 
1. INTRODUCTION 
 
There are many cases where the time optimal control has been 
applied in industry, for example in the control of industrial 
robots, where increasing of the speed of motion is of primary 
importance, and minimum-time control is an attractive control 
strategy for this purpose. 

As it is already known from the classical optimal control 
theory (Bryson & Ho, 1969), the solution of the optimal control 
problem requires the solution of the first-order stationary 
conditions (two-point boundary-value problem), which can be 
solved analytically only for very simple problems. A review of 
the different approaches to the numerical solution of optimal 
control problems is given in survey paper (Sargent, 2000). 
Sargent recognize essentially three approaches to solve 
numerically optimal control problems: a) numerical solution of 
the two-point boundary value problem given by the necessary 
conditions, b) complete discretization of the problem, 
converting it into a nonlinear programming one, and c) finite 
parameterization of the control trajectory, again converting the 
problem into nonlinear programming. 

The problem of state vectors constraints considerably 
complicates the solution of the problem both from the 
theoretical and numerical aspects. The penalty functions for 
state vectors constraints can be very complicated and 
impractical, particularly in robot control (avoidance of 
obstacles, cooperative robots work, etc). 

In this paper a new gradient-based numerical algorithm for 
time optimal control of nonlinear multivariable systems with 
control and state vectors constraints is proposed. The basic 
characteristic of this algorithm is derivation without using the 
calculus of variations and Lagrange multiplier techniques. This 
approach provides an obvious geometric interpretation of 
convergence properties of optimal solution. The approximation 
of the penalty function gradient means a certain deviation from 
the exact direction of the overall cost function gradient. 
However, the approximation of the gradient does not mean the 
approximation of the optimal solution but only slower 
convergence toward the optimal solution. This fact provides 
much easier deal with complicate state vectors constraints what 
is demonstrated in (Kasac & Novakovic, 2001a) on the example 
of cooperative work of two robots.  

Further, mentioned approach provides numerical solution 
of a wide class of non-standard optimal control problems like 
minimum time control where initial and final conditions are 

parameterized by a coordinate transformation (Kasac & 
Novakovic, 2001b). 

 
2. PROBLEM FORMULATION 
 
A discrete nonlinear time optimal control problem is 
considered. The problem is to find control vector u(i) and 
sampling interval τ = tf /  N, where tf is terminal time, that 
minimizes the cost function 
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subject to the constraints defined by the plant equations 
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then the initial and final conditions of the state vector 
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and subject to the control and state vector inequality and 
equality constraints 
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for i=0, 1,…, N-1, where N is number of sampling intervals, 
x(i) is n-dimensional state vector, u(i) is m-dimensional control 
vector, g is p-dimensional vector function of inequality 
constraints, and h is q-dimensional vector function of equality 
constraints.  
 
3. NUMERICAL SOLUTION 
 
A standard method for reducing the optimal control problem to 
a nonlinear programming one is adding the penalty functions 
for state and control vector constraints and plant equation 
constraints to the cost function, and optimizing the total cost 
function according to the control and state vectors. In such a 
way formulated problem has very slow convergence due to 
additional equality constraints for plant equation. 

A new gradient-based algorithm is proposed in this paper, 
which avoids inclusion of plant equation constraints into cost 
function and so provides better convergence properties. 

First step in reduction of problem (1)-(4) is elimination of 
constraints (4) and final boundary condition in (3) by 
introducing theirs penalty functions. On this way, problem is 
reduced on extended cost function (1) and only one type of 
constraints – plant equation (2) with initial condition (3). 

The gradient descent algorithm is used for minimizing the 
cost function 
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for i=0, 1,…, N-1, where η(l)(i) is the convergence coefficient, 
and index l represents the l-th iteration of the gradient 
algorithm. The main difficulty in exact gradient calculation of 
cost function (1) is implicit dependence of state vector on 
control vector in previous time intervals via plant equations (2). 

A solution of this problem lies in the chain rule for ordered 
derivatives (which follows from (2)),  
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(r=1, 2, …, n, k=1, 2, …, m, j=0, 1, …, N-1, i=j+2, …, N-1), 
resulting in a backward in time iterative algorithm, similar like 
backpropagation through time (BPTT) algorithm (Werbos, 
1990), which is mostly used as a learning algorithm for 
recurrent neural networks. 

The above-mentioned algorithm has been derived for the 
fixed terminal time tf. A heuristic approach is applied for time 
optimal control, which uses the properties of penalty functions, 
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where JC is sum of penalty functions, J0 is minimal value of JC 
and a measure of accuracy of the solution, ∆τ is a decreasing 
constant factor of τ(l), and H− is Heaviside step function. This 
structure of the algorithm guarantees numerical stability and 
convergence toward τmin, because it does not change the value 
of τ(l), until the value of function JC falls below the given, 
sufficiently low value of J0. 
 
4. TIME OPTIMAL CONTROL OF 2-DOF ROBOT 
    WITH CONSTRAINTS 
 
The mentioned algorithm is applied to minimum-time control 
of a robot with two degrees of freedom (translation and rotation 
in horizontal plane). The problem is the transformation of the 
initial robot state into the final state for minimum time, with the 
control constraints, and including the condition of avoiding the 
obstacle in the form of a circle. 

Minimum time, tmin=1.71 s, and optimal control and state 
vectors (Fig. 1 and  Fig. 2) are obtained using the mentioned 
algorithm. 
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Fig. 1. Time dependence of control variables. 
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Fig. 2. Time dependence of state variables. 
 

The trajectory of the robot hand in the plane x-y is shown in 
Fig. 3. The obstacle is a circle with the radius R=0.21 m 
including the given minimum distance ∆R=0.01 m. It can be 
seen that the optimal trajectory (trajectory 1) touches the circle 
with the radius R, i.e. avoids the obstacle by reaching minimum 

distance in one point. The figure also shows the trajectory for 
the same minimum time in the case when conditions for 
obstacle avoidance do not exist (trajectory 2). 
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Fig. 3. The trajectory and obstacle in x-y coordinate plane. 
 
5. CONCLUSION 
 
The paper presents a new gradient-based approach to solution 
of the time optimal control problem, which is especially 
suitable for treating complicate state vector constraints. This is 
demonstrated on the problem of the time optimal robot control 
with state vector constraints in the form of obstacle avoidance, 
where only geometrical determination of the cross-section of 
trajectory with obstacle is needful. The future research will be 
focused on the problem of worst-case analysis for the problem 
of robot parameter uncertainty. 
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