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1 Department of Agricultural Zoology, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25,
10 000 Zagreb, Croatia; imiklecic@agr.hr (I.M.); dlemic@agr.hr (D.L.); ipajac@agr.hr (I.P.Ž.)

2 Department of Ecology, Agriculture and Aquaculture, University of Zadar, Trg kneza Višeslava 9,
23 000 Zadar, Croatia; tkos@unizd.hr

* Correspondence: dcirjak@agr.hr; Tel.: +385-1239-3948

Abstract: Apple is one of the most important economic fruit crops in the world. Despite all the
strategies of integrated pest management (IPM), insecticides are still frequently used in its cultivation.
In addition, pest phenology is extremely influenced by changing climatic conditions. The frequent
spread of invasive species, unexpected pest outbreaks, and the development of additional generations
are some of the problems posed by climate change. The adopted strategies of IPM therefore need
to be changed as do the current monitoring techniques, which are increasingly unreliable and
outdated. The need for more sophisticated, accurate, and efficient monitoring techniques is leading
to increasing development of automated pest monitoring systems. In this paper, we summarize
the automatic methods (image analysis systems, smart traps, sensors, decision support systems,
etc.) used to monitor the major pest in apple production (Cydia pomonella L.) and other important
apple pests (Leucoptera maifoliella Costa, Grapholita molesta Busck, Halyomorpha halys Stål, and fruit
flies—Tephritidae and Drosophilidae) to improve sustainable pest management under frequently
changing climatic conditions.

Keywords: apple pests; automated pest monitoring; climate change; Malus domestica Borkh;
precision agriculture

1. Introduction

Although the scientific development of genetics, chemistry, and robotics has con-
tributed to the advancement of agricultural technology, various problems still arise. For
example, the production of agricultural goods must be increased due to rapid population
growth [1]. The availability of arable land and fresh water is becoming extremely limited [2].
Unsustainable agriculture threatens crop productivity and the environment in addition
to causing anomalies in the climate. These types of practices also create difficulties in the
relationship between production and consumption [3]. At the same time, climate change
problems are becoming more severe and affecting many aspects of agricultural production.
Changes in yields, harvest times, farming practices, pest incidence, and many other crucial
factors are directly influenced by changing climatic conditions [4–7].

A suitable solution to address the above situations and challenges can be found in
artificial intelligence (AI) technologies, which are helping to improve efficiency in many
sectors, including agricultural [8]. Crop yields, irrigation, soil content recording, crop moni-
toring, weeding, pest monitoring, and crop establishment have recently been accompanied
by AI in the context of precision agriculture (PA) [2,9–11]. Precision agriculture can be
defined as the use of technologies and principles to manage all aspects of agricultural
production to improve crop yield and preserve the environment [12].

This, along with other important approaches, represents a critical agricultural manage-
ment system that combines the use of robotics and sensors, drones, advanced GPS (Global
Positioning System) and GNSS (Global Navigation Satellite Systems), IoT (Internet of
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Things), weather modeling, and the tailored use of inputs [3,13]. It is a cyclic optimization
process in which data from the field are collected, analyzed, evaluated, and finally used to
make decisions for site-specific management of the field.

With such a working principle, these systems allow farmers to analyze the spatiotem-
poral variability of several key factors that affect crop health and productivity [14]. Data
collected via sensors are stored and combined in digital platforms to support the decision-
making process. Ideally, the farmer should be able to maximize yields while optimizing
inputs, saving nutrients, and replacing labor time with efficient decision support systems,
which can increase farm profitability and reduce the dependence on external inputs and
thus negative environmental impacts [3,14].

In cultivation, environmental factors are key to crop quality and productivity. Among
these factors, insect pests are those that directly damage crops, and pest control has always
been considered the most difficult challenge. Therefore, integrated pest management (IPM)
has been developed to improve pest control, reduce the uncontrolled use of pesticides, and
focus on more precise application [15]. The effectiveness of pest control programs depends
on the availability of reliable and up-to-date pest infestations information. Intervention
thresholds derived from catches in monitoring traps are a cornerstone of modern IPM
programs to trigger and optimize the timing and use of insecticide sprays.

IPM, however, requires intensive field observation, trained personnel, and data eval-
uation. Weekly trap inspections and close observations of plants in the field can lead to
delayed intervention and involve some labor. Without collecting information on population
dynamics and associated ecological factors, it is extremely difficult to apply the right pest
control at the right time in the right place.

Moreover, pest harmfulness is associated with plant physiology; thus, early pest
detection during critical phenophases of development is necessary in order to implement
control measures in a timely manner and prevent the increase of the pest population and
damage on fruits, which is the key aspect of IPM. Therefore, to improve the efficiency of
data collection and to perform more accurate and reliable pest control, it is necessary to use
automated monitoring systems [15–20]. To effectively control and prevent the occurrence of
pests, many advanced technological solutions have been developed and applied in today’s
agricultural and crop industries [21–23].

Apple (Malus domestica Borkh.) (Rosales: Rosaceae) is one of the most important fruit
crops worldwide. Since it can be used for fresh consumption all year round or processed
into a product, such as apple sauce, apple slices, ciders, and juice [24,25], global apple
production in 2020 amounted to 86.4 million tons, with an economic value of US$ 77 billion,
while the apple area harvested was 4.62 million ha [26]. Due to its aforementioned eco-
nomic importance, as well as the harmfulness of its pests, which significantly impair the
production profitability, automatic pest monitoring systems are presented in this work on
the example of apple crops.

The aforementioned problems have major implications for pest monitoring, their
control, and modern agriculture in general. An acceptable solution for pest monitoring
under changing climatic conditions is automatic pest monitoring systems. Therefore, this
paper aims to summarize the automatic devices and techniques that can currently be used
in apple production to monitor important economic pests and to assess the commercially
available devices and techniques and their impact on sustainable fruit production.

2. Impact of Changing Climatic Conditions on Pest Monitoring

Scientific studies in agricultural science have recently focused on climate change and
all the events that accompany it [7]. Climate change can be described as a phenomenon
that involves variations in environmental factors, such as temperature, humidity, and
precipitation, over a long period of time [27]. The most common problems caused by
climate change are the increase in global temperature and atmospheric carbon dioxide
concentration, floods, droughts, and all other extreme weather events [28].
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The aforementioned conditions have recently been causing major problems in all areas of
agriculture, as well as in the monitoring and control of insect pests [7]. Pest insects are strongly
affected by climate change (Figure 1). Temperature fluctuations directly affect their biology
and ecology, including reproduction, population dynamics, distribution, survival, and their
relationships with the environment and natural enemies (Figure 1) [29–32]. Long-term data
on insect phenology show that the occurrence of insect pests varies under changing climatic
conditions [33–35]. Climate change leads to increased reproductive rate, which results in
multivolatility of many insect pests (Figure 1) and consequently more crop damage [33].
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Altermatt [36] reported that the number of annual generations of many Central Eu-
ropean Lepidoptera species has increased since the 1980s. Changing climatic conditions
make the pests more unpredictable and their range larger (Figure 1) [37]. This also has
a direct impact on the spread and establishment of invasive insect pests in new areas
(Figure 1) [38]. Recent examples of rapid spread of invasive insects in Europe are Drosophila
suzukii (Matsumura, 1931) (Diptera: Drosophilidae) [39] and Halyomorpha halys Stål, 1855
(Hemiptera: Pentatomidae) [40].

Apart from invasive species, climate change has a direct impact on the spread of
non-invasive insect pests, for example from other continents to Europe and from warmer
European regions to the north [41]. The increasing ability of insects to quickly adapt to the
above conditions is becoming even more important [42], as the areas infested by plant pests
and the extent of damage have seriously increased [43]. Therefore, it is crucial to adjust pest
monitoring, considering that the conditions of their occurrence may change occasionally.

IPM strategies have been developed to reduce negative environmental impacts while
maximizing crop yields and economic savings [44]. Among other things, this approach
focuses on making decisions based on understanding how many insect pests can be toler-
ated in specific growing phase before economic yield losses occur (intervention thresholds).
However, this approach is not always practical or possible, and when decision support
systems are not available, the use of the intervention thresholds is neglected [42].

Therefore, it has recently been predicted that these thoroughly developed strategies
will need to be modified to respond to the important changing climatic conditions [7,42,45].
Recognizing that climate adaptation requires widespread and long-lasting changes [46], recent
attention has focused on developing new solutions for pest management [7] and monitoring.

One of the new monitoring solutions that has been increasingly used is automatic
pest monitoring. Faria et al. [47], for example, emphasized the worrying impact of climate
change on unexpected pest outbreaks. Pest monitoring in vineyards is currently done by
traditional traps with visual inspection by growers. Recognizing that this is tedious and
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low-impact work, the authors suggest capturing trap images via smartphone and remote
monitoring by taxonomists to better assess unexpected outbreaks caused by climate change.

Another way to respond in a timely manner to all the unpredictability caused by
climate change, including the emergence of insect pests and the establishment of invasive
alien species in new geographic regions, is real-time monitoring with electronic traps
(e-traps). The entomologist or farmer can check the situation in real time from the photos
taken, without having to go to the field, and determine the presence (and abundance) of
insects in the trap [42,48].

By monitoring climate and insect pest dynamics, farmers can adopt certain practices to
respond to climate change challenges [49,50]. Modeling pest risk along with the responses of
its plant hosts to climate change can also increase the ability to predict pest infestations [35].
Dong et al. [43] developed an automated system that integrates meteorology, ecology,
entomology, and many other fields, as well as cutting-edge research in pest modeling, to
support decision making in sustainable pest management.

Automated equipment and systems enable more profitable, sustainable, and efficient
fruit production, which increasingly helps to reduce pest infestations and increase product
quality and food safety [51]. Therefore, the introduction of automated technologies in
traditional cropping systems is an innovative and useful solution to counter negative
trends due to changing climatic conditions

3. Automatic Pest Monitoring Systems

Data-driven agriculture, with the help of robotic solutions incorporating AI techniques,
sets the grounds for the sustainable and modern agriculture [52]. The development of
innovative devices for automated monitoring has enabled end users to monitor target pest
species easily and accurately [48].

There are many benefits to using automated pest monitoring equipment (Figure 2).
Excessive use of pesticides and time spent on hard-to-reach work decreases, as do daily
trips to inaccessible orchards [53–55]. However, depending on the pest control method,
the pheromones and adhesive pads may need to be replaced occasionally to perform any
maintenance [54]. Nevertheless, manual counting of pests and setting traps in orchards are
operations that are not required in automatic pest monitoring systems [56,57]. Therefore,
the reduction in the number of field trips leads to a significant reduction in fuel consumption
and thus a reduction in carbon dioxide emissions (Figure 2) [18].

The introduction of automatic pest monitoring systems in horticultural production
will ensure site-specific and environmentally friendly crop protection and thus an end
product (apple fruit) with less pesticide residues.

Modern agriculture is facing tremendous technological change through the use of
drones, remote sensing, intelligent decision support systems, the IoT, automated traps, and
many other products of technological progress [58].

According to Potamitis et al. [59], there are several options for automatic pest control
in traps: Photo-interruption is one of them, which is characteristic for pitfall or funnel traps.
Detection occurs when the pest enters or falls into the trap. The way “photo-interruption”
works is that the entrance of the trap is covered by a light sheet made of photodiodes and
low-power infrared emitters. When the insect enters the trap, the light is interrupted, which
ultimately signals the count of that pest. There is also a method of identifying insects by
analyzing their wing beats in the trap.

This method of identifying pests is most commonly used in McPhail and mosquito
traps. The wing beat of the incoming insect alters the flow of light, which is recorded,
creating a biometric signature of a particular species [60]. Finally, the most widely used
method for detecting stored-product pests is based on the vibrations generated by their
movements and feeding (biting and chewing processes) [61]. However, Goldshtein et al. [62]
state that imaging the trapped insects and detecting insect entry through a passage are two
approaches that dominate in the development of automatic pest monitoring devices.
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Artificial neural networks (ANN-s), although significant since 1990, are now most
commonly used in the development of digital systems [63]. In the development and design
of a digital system, the main focus is on the image quality (brightness, resolution, focus,
and the contrast of the background and the object of observation) in order to identify the
observed pests as accurately as possible [64,65]. A common problem in the development of
the devices is the foreign objects (leaves, branches, etc.) in the traps; therefore, the detection
method should be adapted to the particular environment as much as possible [65].

Holguin et al. [56] stated that more attention should be paid to trap design. Color, size,
shape, and many other parameters have the purpose of attracting pests while reducing
the attractiveness to non-target pests. In particular, the development of sensors to detect
different pests that can clearly distinguish non-target pests from target pests, as well
as target species from each other, is encouraged. In addition, an important feature for
trap efficiency is minimal energy consumption, infrequent battery replacement during
monitoring, and the use of statistical and machine learning methods [66].

Monitoring systems can be classified as fully or semi-automatic. A fully automatic
system is equipped with software for species identification of the trapped insects, while
a semi-automatic system is based on remote identification and counting of the trapped
insects by a human expert who views the images captured by the trap equipped with a
camera [48]. The most effective method for pest detection is based on image analytical
systems in the framework of machine learning [67–70].

The use of artificial intelligence (AI) to analyze images is a practical solution to obtain
fast and accurate results [67]. The automatic pest identification system integrates multiple
image processing tools to capture the geometry, morphology, and texture of photos. The
processing of captured photos and videos is done by methods of analysis and manipulation
of graphical components [71]. Scientists stated that this method requires a large amount of
data (75,000 photos) for the proper classification of organisms [72].

However, according to Ding and Taylor [73], pest detection using a camera in a
pheromone trap often encounters several challenges, including low quality photos, power
consumption, and increased photo processing costs, as well as environmental factors
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and pest occurrence. Regardless the commercial availability and its great potential for
pest monitoring, these devices are still inaccessible to “small” farmers, due to the high
cost [64,74]. Such monitoring tools are more suitable for use on regional or national level
for plant protection services.

There is a potential perspective to interconnect traps among sites and create a network
at local, regional, continental, or global scales, obtaining re-al-time area-wide information
on insect pest infestations [59]. Therefore, in future studies, more affordable solutions
should be introduced so that individual growers can also use the benefits of automatic pest
monitoring. Despite all the advantages, the crucial limitation of devices used for automated
pest monitoring is the availability and level of automatic pest identification and count. Several
commercialized devices require a manual identification of the species or manual validation,
which leaves room for further improvements in fully automated pest detection systems [20].

Automated pest monitoring is the beginning of a new scientific era in integrated pest
management due to the rapid development of technologies in AI. This approach improves
insect pest monitoring and early warning by integrating IoT, AI, and other advanced
information technologies [75]. As the development steadily progresses, automated mon-
itoring could be used in numerous horticultural systems and other systems for various
pest species around the world. The ability to remotely detect the occurrence of insect pests
and create digital records of their population dynamics, both spatially and temporally, will
provide users with an immensely powerful tool to address the aforementioned insect pest
monitoring challenges [76].

4. Automatic Monitoring of Apple Pests
4.1. Codling Moth (Cydia pomonella Linnaeus, 1758) (Lepidoptera: Tortricidae)

The codling moth is the most important economic and common pest of apples world-
wide. Since it feeds on the fruit, targeted control measures must be implemented [77,78]. In
fruit production, the most important requirement for the market is the production of high-
quality fruits that do not show symptoms caused by this pest [79]. Although environmentally
friendly IPM strategies, such as mating disruption, attract–kill strategy, and sterile insect
technique, have been conducted, most growers rely on insecticides [80,81]. Although, 70% of
insecticide treatments in apple orchards are used to control C. pomonella. Consequently, this
pest has developed resistance to several chemical groups of insecticides [81–83].

Cydia pomonella develops one to four generations per year, depending on the grow-
ing area and climatic conditions [80,84]. Due to changing climatic conditions, shifts in
phenology, including an increase in the number of generations, viability, and unexpected
pest outbreaks of C. pomonella have been noted [84–86]. Pajač et al. [87] confirmed that C.
pomonella develops an additional, third generation in Croatia in years when the sum of
degree days is above average.

Considering the above, there are many important reasons for using more sophisticated,
precise, and rapid techniques for early monitoring of C. pomonella. The first significant work
on the development of sensors for automatic monitoring of C. pomonella was presented
by Holguin et al. [56]. They proposed two electronic traps, one based on light dependent
resistor (LDR) sensors and the other on infrared (IR) sensors, to detect pests when they
enter the pheromone-equipped trap. These prototypes were tested in apple orchards and
under laboratory conditions. By improving various aspects, these electronic traps could
follow the principle of integrated pest management in precision agriculture.

Due to the need for more frequent monitoring, Guarnieri et al. [88] developed a
prototype electronic trap made by modifying a commercial pheromone trap, Pomotrap,
used in Italy to monitor C. pomonella. The system was designed to wirelessly send photos
of detected insects from an orchard to a remote server. The photos were taken with a cell
phone. The traps send a photo every day, which allows for a more accurate choice of timing
for control methods. At the same time, modifications on the trap appearance prevented
the influence of environmental factors on the correct identification of C. pomonella. This
modified trap achieved up to 100% efficacy compared to local visual inspection.
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Ding and Taylor [73] developed an automated pest monitoring system based on deep
learning. This system counts and determines individuals of C. pomonella based on images
taken inside the trap. A convolutional neural network was used to improve the photo quality.
These corrections provided a better ability to distinguish insects from unwanted objects.
External factors were a particular problem, causing blurring and reduced visual texture of the
photos. The varying positions and sizes of the pests also made detection difficult; however,
due to the convolutional layer within the network system, detection was successful.

Compared to previous attempts at pest detection, this approach does not use a pest-
specific technique, and thus it can be adapted to other species and environments with
minimal human effort. In real-time monitoring of C. pomonella in orchards, the pose variety
problem often arises. Therefore, Wen et al. [89] developed a pose estimation-dependent
method to identify field moth species using a deep learning system. The authors used a
combination of shape, color, texture, and numerical features extracted for moth description.
Later, a pyramidal stacked denoising auto-encoder (IpSDAE) was proposed to generate
a deep neural network for moth detection. This model achieved a detection efficiency of
96.9%, showing that this method is suitable for automatic moth detection.

Albanese et al. [90] presented a smart trap for monitoring C. pomonella. The authors
implemented sophisticated machine learning algorithms so that the smart trap is able to
detect pests in orchards in a very short time without the need for cloud infrastructure, which
is common in machine learning applications. All computations are performed on-the-node,
limiting the large amount of data to a simple message of a few bytes. This solution opens
many new possibilities for pest monitoring, including the optimized use of the limited
energy available in the field and, consequently, the possibility of using the energy for an
unlimited lifetime of smart traps. This result shows that it is possible to automate pest
monitoring indefinitely, without the need for farmer intervention.

Preti et al. [54] report the development of a prototype smart trap using the latest
technologies. Detection of C. pomonella individuals was based on preliminary analyzes of
photographs taken daily under field conditions. A brand-new detection algorithm was
developed to identify the trapped insects and qualitative identification parameters, such as
accuracy, precision, and sensitivity, were considered for this prototype.

However, this prototype requires further improvements in both optimization of the
data transmission related to power autonomy to ensure full operability throughout the
monitoring season and in the refinement of the automatic detection algorithm to enable
reliable machine-based count data delivery. In this case, it was demonstrated that the smart
trap system could consistently deliver higher temporal resolution of capture data compared
to standard monitoring at a slightly higher cost to the monitoring.

In the same year, Preti et al. [76] evaluated a commercial smart trap for monitoring the
population of C. pomonella (Trapview; EFOS d.o.o., Slovenia) in Italy. The trap consists of
pest detection software, a pheromone adhesive pad, a camera, and a solar panel. The smart
trap has proven reliable in terms of data transmission speed, photo quality and battery life.
The main drawback is the incorrect detection of multiple morphologically similar insects.
Therefore, it is important to improve the algorithm for detecting the target pest, especially
when less selective pheromones are used. The presence of different objects (insect remains,
seeds, plant parts, etc.) caused interference in pest detection. Further modifications of the
trap could also be related to the automatic differentiation of the sexes of C. pomonella species.

In addition, monitoring of the C. pomonella population was performed using the
“Trapview” system by Pajač Živković et al. [18]. This research confirmed that this trap
provides reliable pest monitoring and that there are no statistically significant differences
in the effectiveness of pest monitoring compared to the classic Delta pheromone trap.
Therefore, based on the aforementioned studies, it can be assumed that the classic Delta
trap can be completely replaced by the smart trap in the monitoring of C. pomonella, as the
correct intervention thresholds have been established during the growing season.

As a result, the industry is moving toward smart solutions, including remote moni-toring
traps (RMT). For example, Schrader et al. [64] presented the low-cost remote monitoring
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trap consisting of a plug-in imaging system in a classic Delta pheromone trap designed for
monitoring C. pomonella. This system consists of an RGB imaging sensor combined with a
microcontroller unit and associated hardware for optimized power usage and data capture.

The advantage of this system is the ability to activate sleep mode to save battery power.
The system is capable of taking a picture every day. This facilitates monitoring of the C.
pomonella population, which is one of the goals of precision agriculture devices. In addition,
the construction cost of the system is about 33 US$ per unit and it has the potential to be
extended to commercial applications through the Internet of Things. The plug-in imaging
system developed can also be integrated with other traps for remote monitoring.

All commercially available smart traps for monitoring C. pomonella are summarized in
Table 1.

Table 1. Commercially available devices for automatic monitoring of codling moth (C. pomonella).

Pest Trap Website

Cydia pomonella (Linnaeus, 1758)

TrapView (Slovenia) https://trapview.com/ (accessed on 15 April 2022)

SightTrap™ (USA) https://www.insectslimited.com/ (accessed on 15 April 2022)

DTN Smart Trap (USA) https://www.dtn.com/ (accessed on 15 April 2022)

iSCOUT® PHEROMONE (Austria) https://metos.at/ (accessed on 15 April 2022)

Semios trap (Canada) https://semios.com/ (accessed on 15 April 2022)

CropVue trap (Canada) https://www.cropvue.com/ (accessed on 15 April 2022)

4.2. Fruit Flies (Tephritidae, Drosophilidae)

Fruit flies are one of the most destructive and economically important pests in horti-
culture, including apple production [91–94], which significantly affects access to the world
market [95]. Fruit flies from the family Tephritidae or “true fruit flies” are highly invasive
species [96]. There is a well-documented history of invasions of these species around the
world, and they continue to spread rapidly despite major efforts to control their spread [97].
Invasions of fruit flies in the wake of climate change pose an increasing challenge to global
food security and complicate management [98].

Species in the Drosophilidae family are referred to as “small fruit flies” or “vinegar
flies” [99]. These species cause extreme losses in fruit yields and quality, while their
invasion has been observed worldwide despite various quarantine procedures [97,100].
Due to changing climatic conditions, the invasive species D. suzukii is spreading rapidly
and establishing itself in new areas around the world [101]. Reyes and Lira-Noriega [102]
predicted a significant expansion of the potential range in most areas of the Northern
Hemisphere by 2050, due to the increase in temperature in this area and the invasive nature
of this pest.

Control of this economically important pest can be accomplished through the use of
pesticides, mass trapping with pheromone baits or colored sticky traps, and the technique
of releasing sterile males (SIT) [103–107]. Due to the economic importance but low inter-
vention thresholds for these pests [108] and the already frequent insecticide treatments
in apples [109], the early detection of pests is critical. As climate change further favors
the invasiveness of these pests and their spread to new areas, automatic pest monitoring
systems are a necessity and the best solution for more efficient and early pest monitoring
under the above conditions.

There are two principles for developing automated fruit flies monitoring devices:
photographing the trapped insect and sensor detection of the insect’s entry into the trap.
Imaging traps capture images of an insect on the trap surface and then send them to the
server. They are usually designed to provide daily data by capturing and sending images
of panels of trapped insects [62]. Shaked et al. [110] developed two types of electronic
traps for monitoring fruit flies. The first trap contains specific volatiles for male and female
Ceratitis capitata (Wiedemann), and the second is based on attracting Dacus ciliatus Loew,
1862; Rhagoletis cerasi (Linnaeus, 1758), and Bactrocera oleae (Rossi, 1790) by yellow color.

https://trapview.com/
https://www.insectslimited.com/
https://www.dtn.com/
https://metos.at/
https://semios.com/
https://www.cropvue.com/
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After the fruit flies are attracted, they become glued to the adhesive plate in both
types of e-traps. Real-time images of the sticky plate surfaces are automatically captured
and transmitted to a server. They demonstrated a remarkable ability to transmit real-time
images of fruit flies and a high specificity in capturing fruit fly species. The ability of the
entomologist to correctly classify fruit flies based on the images was >88%. This semi-
automatic monitoring system opens the way for monitoring different fruit fly species in
other crops while minimizing labor.

In addition, Roosjen et al. [111] demonstrated the feasibility of computer vision-based
monitoring of D. suzukii using sticky traps and data from a static camera, as well as data
from the same camera mounted on a flying unmanned aerial vehicle (UAV). Both data sets
were taken outdoors under different conditions. Using an image database of 4753 annotated
flies, they trained a ResNet-18-based deep convolutional neural network to recognize each
individual and distinguish males from females. In contrast to previous work, this paper
presented a fully automated system highlighting the use of drones to monitor fruit flies in
various fruit crops.

On the other hand, sensor-based traps are designed to provide a time stamp for every
entry of insect pest [62]. The same author, Goldshtein et al. [62], developed an automatic
trap for detection of C. capitata. The Medfly-AT trap is cylindrical in shape and contains
optical sensors to detect pest individuals. Field tests were conducted to evaluate the
efficiency of the automatic trap, and the accuracy ranged from 88% to 100%. Although
the trap shows promise in reducing insecticide use, extensive field testing is needed to
implement it.

The frequency of insect wing beating can also be used for identification, as it depends on
the physiological characteristics of each fruit fly species [112]. Therefore, Potamitis et al. [59]
developed an electronic trap as a modification of the classical trap for fruit flies (McPhail trap).

The insects are identified using the high-quality recordings of the frequency content of
their wingbeat, with an accuracy of 91%. Species identification can be done exclusively in
situ with this version of the trap. With in situ identification, the trap can only distinguish
fruit flies from completely different insects, or it cannot distinguish fruit flies at the species
level (e.g., the difference between Bactrocera dorsalis (Hendel, 1912) and C. capitata). To
improve this trap, Potamitis et al. [113] presented a novel bimodal optoelectronic sensor
based on a Frensel lens and a stereo recorder that records the wingbeat of an insect in flight
and wirelessly reports the count and species identity.

They incorporated some of this technology into an electronic trap for fruit flies men-
tioned earlier. Unlike the systems mentioned above, this type of system can distinguish
C. capitata and B. oleae with 98.99% accuracy. It is also important to emphasize that the
said electronic trap is optimized in terms of detection accuracy and power consumption,
in addition to being affordable for the end user. In addition, Sandrini Moraes et al. [114]
developed an optoelectronic sensor that detects the signal of partial masking of infrared
light by the flies’ wing beat.

They used the aforementioned sensor in a classical McPhail trap to identify C. capitata
and Anastrepha fraterculus (Wiedemann) in real time, and both species were detected with
95% accuracy. This electronic trap, like those mentioned above, can be integrated into an
automated warning system to inform farmers of fruit fly infestations and can contribute to
precision agriculture. Commercial electronic traps that can be used to monitor different
fruit fly species in apple production are listed in Table 2.

In order to obtain very accurate prediction results and early detection of pests, it is
necessary to consider potential factors that influence pest population dynamics, such as
biological characteristics and physical environmental parameters [115]. For this reason,
Jiang et al. [15] developed a remote pest monitoring system or an automatic trapping
and counting device that is a modification of the traditional fruit fly trapping tube and
includes an automatic counting module that is inserted into the tube. It records captured
B. dorsalis individuals, recognizes them by their biological characteristics, and then sends
the information to the remote monitoring platform (RMP).
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Table 2. Commercially available devices for automatic monitoring of fruit flies (Tephritidae
and Drosophilidae).

Category Pest Trap Website

Fruit flies

Drosophila suzukii
(Matsumura, 1931)

iSCOUT® FRUIT FLY (Austria) https://metos.at/ (accessed on 26 April 2022)

TrapView (Slovenia) https://trapview.com/ (accessed on 26 April 2022)

Ceratitis capitata
(Wiedemann, 1824)

iSCOUT® FRUIT FLY (Austria) https://metos.at/ (accessed at 15 April 2022)

TrapView (Slovenia) https://trapview.com/ (accessed on 15 April 2022)

Rhagoletis pomonella
(Walsh, 1867)

iSCOUT® COLOR TRAP (Austria) https://metos.at/ (accessed on 26 April 2022)

RapidAIM (Australija) https://rapidaim.io/ (accessed on 26 April 2022)

The RMP collects environmental data and the number of flies captured, and then
sends all data to the Host Control Platform (HCP) via the wireless Global System of Mobile
Communication (GSM). The function of the HCP is to receive, store, display, and analyze
the database online and provide early warnings. The authors combined the traditional
trapping method with modern communication technology to provide real-time information
on field conditions and pest population dynamics.

Okuyama et al. [116] used this automated pest monitoring system with excellent
networks and a large amount of real-time data to study the daily count data of B. dorsalis
population dynamics. Later, the monitoring system was enhanced with wireless sensor net-
work (WSN) technologies and is now capable of monitoring microclimate, meteorological
and pest data in the field [117].

Liao et al. [118] wanted to improve the above type of system and develop a more accu-
rate device. Therefore, they designed a monitoring system based on two different wireless
protocols: GSM and ZigBee, with three main components: Remote Sensing Information
Gateway (RSIG), a Host Control Platform (HCP), and Wireless Monitoring Nodes (WMNs).
The WMNs transmit the collected data (relative humidity, illumination, temperature, and
number of B. dorsalis individuals captured) to the RSIG, and the RSIG forwards the data to
the database server (HCP) for storage and analysis.

The server can process the data and classify the information into three event types
after analysis: a normal status event, a pest outbreak event, and a sensor failure event,
which can be accessed through an online platform. This early warning system can be
easily deployed in different orchards without the need for additional manpower due to
its machine learning techniques and receiving alerts on cell phones. This early warning
system has great potential to help farmers monitor fruit flies in their orchards.

In addition, Chuang et al. [119] proposed a model that provides a 7-day prediction
of the population dynamics of the aforementioned pest B. dorsalis. More specifically,
it provides unique datasets on B. dorsalis population dynamics using WSN technology.
Moreover, the distribution and biology of this fly will change due to global climate change.
Therefore, it is important to build new predictive models by reconsidering the ecological
behavior of B. dorsalis so that apple production and production of other crops can be
improved and farmers will be able to respond quickly to potential outbreaks of the pest.

Since previous studies mostly used long-term data to predict pest populations [119]
and such data are not useful in all cases, Jiang et al. [120] therefore proposed an interval
type-2 fuzzy logic system (IT2FLS) based on short-term data to predict the population
dynamics of B. dorsalis. Two models were developed and integrated into the proposed
IT2FLS. Compared to previous population dynamics prediction models, these models
shorten the training interval and provide more accurate results.

Zhong et al. [121] developed a visual counting and detection system for six insect
species, including fruit flies. In their approach, a camera was installed at an optimized
position to monitor yellow sticky traps. The insects were detected from the captured images
and counted using the “YOLO” algorithm and Support Vector Machines. In addition, insect
counting, and detection was implemented on a Raspberry Pi system.

https://metos.at/
https://trapview.com/
https://metos.at/
https://trapview.com/
https://metos.at/
https://rapidaim.io/
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The average counting accuracy was 92.50%, and the average classification accuracy
was 90.18%. The proposed system is quite easy to use and at the same time provides
accurate detection data or monitors the spread of insects in real time. This system can
be combined with the various environmental information to form an integrated service
platform that can predict the population dynamics and probability of occurrence at an early
stage to take appropriate control measures.

The damage caused by economically important fruit flies could also be significantly
reduced by using automatic or semi-automatic image analysis systems [22]. Due to the
shortcomings of conventional fruit fly classification systems, Peng et al. [122] proposed
a convolutional neural network algorithm that automatically extracts features to build a
classification model for the four Bactrocera species. The developed model automatically
extracts the features of the fruit fly pests for effective identification with an accuracy rate of
97.19% and solves the problems caused by the manual classification methods.

In addition, Wang et al. [22] developed an image identification system for fruit flies called
AFIS1.0, which combines automatic image identification and manual interactive methods
based on image queries with a user-friendly interface. The system works in such a way that
the user only needs to input images, select feature areas, and click the button to get the image
identification results. At this stage, AFIS1.0 can be used without specific knowledge of the
Tephritidae family species. This brings the application of computer vision technology to
detect economically important fruit flies within reach for farmers. However, the authors
stated that the software will certainly be improved with new features in the future.

Leonardo et al. [123] also developed an automatic and semi-automatic system for
morphological recognition of fruit fly species of the genus Anastrepha Schiner, 1868 using
image processing and machine learning techniques. This kind of system, as with those
above, can help experts reduce the time spent on lengthy insect analyzes and the ecological
losses caused by these fruit fly species. They used mid-level image representations based
on local descriptors to identify three species of the genus Anastrepha. The authors explored
local image descriptors based on key points and machine learning techniques to facilitate
detection of these pests.

Their approaches achieved excellent results in terms of effectiveness compared to
the state-of-art techniques. In addition, Faria et al. [124] developed a system to identify
different species of the genus Anastrepha based on image datasets of the wings and the
aculeus, an ovipositor structure. They used a multimodal fusion classifier approach and
an image analysis system, respectively, to automatically recognize and distinguish three
species: Anastrepha fraterculus (Wiedemann, 1830), Anastrepha obliqua (Macquart, 1835), and
Anastrepha sororcula Zucchi, 1979, based on the features of the aforementioned structures.

In these experiments, the multimodal approach of Fuzzy Support Vector Machines
(FSVM) achieved a classification accuracy of 98.8% under laboratory conditions. This means
that the automatic identification of these species based on image analysis and learning
techniques is an effective alternative to the conventional tedious and inaccurate methods
currently used.

In contrast, Blasco et al. [125] developed an automatic system for distinguishing males
and females of C. capitata species, consisting of a backlight system and image processing
algorithms. The determination is made using five high-resolution images of each insect.
The program analyzes the contour of the abdomen to detect the presence of the ovipositor,
as well as the characteristic spatulate setae of males, with an error rate of 0.6% for females
and 0% for males.

4.3. Other Important Apple Pests
4.3.1. Pear Leaf Blister Moth (Leucoptera maifoliella (O. Costa, 1836)) (Lepidoptera: Lyonetiidae)

The pear leaf blister moth is an economically important pest in apple production [126,127].
It is a multivoltine species [128], and due to changing climatic conditions, it is becoming
more common and with larger populations [129,130].
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The finding that a complete generation of this pest develops successively in a short
period of time after overwintering can be used for its management [77]. The success of
management is determined by two remarkable events: (a) monitoring of the flight of
the first generation and the beginning of oviposition and (b) embryonic development of
caterpillars, their perforation in the leaf and the initial development of mines up to 2 mm
in diameter [130].

Synthetic pheromones for monitoring L. malifoliella have proven useful [129]. How-
ever, the damage caused by this pest in apple orchards occurs because the overwintering
developmental stage is noticed too late due to the small size of the insects and the hiding
behavior of the larvae [130,131]. Late measures of targeted chemical protection led to worse
results [130]. Therefore, the use of automated systems for monitoring this pest enables its
early detection and timely and effective application of insecticides.

Grünig et al. [132] presented a system for monitoring L. malifoliella in apple orchards
based on Big Data and deep-learning algorithms. The authors used 52,322 photographs
taken under field and standard conditions. Deep neural networks (DNNs) were used to
classify damage to apple leaves and examine the phenology of seven standard classes
of damage (Undamaged, Mines/Blister Moth Detected, Physical Damage, Lepidoptera,
Brown Spot, Powdery Mildew, and Feeding Damage from phytophagous insects) predicted
by the DNNs.

They also linked predicted damage occurrence with meteorological data to model
damage phenology. They proposed to solve this problem with data collection by citizen
science or drones. This work also opens new possibilities for early warning of other
economic pests in apple production.

4.3.2. Brown Marmorated Stink Bug (Halyomorpha halys Stål, 1855)

The brown marmorated stink bug has recently received much attention in many
scientific studies [133,134]. This pest is extremely harmful and polyphagous. It feeds
on a wide range of hosts (more than 300 plant species) [135,136] including economically
important crops and also apple [137–139]. It can cause 100% crop losses in fruit and
corn crops [136,140]. As populations of H. halys increased significantly in the U.S., it
very soon replaced lepidopteran pests (C. pomonella and Grapholita molesta (Busck, 1916))
(Lepidoptera: Tortricidae) as major pests in orchards [138]. Early damage is manifested by
fruit deformation, and later feeding by H. halys usually leads to the formation of necrotic
areas and eventually to fruit flesh disintegration [136].

Control of this pest is quite difficult due to its high mobility and polyphagy [140,141].
First, the use of insecticides can be very harmful to beneficial arthropods and lead to an
increase in pest outbreaks. Furthermore, due to the genetic structure of the pest, there is a
possibility that it will respond to this extensive chemical control with resistance [142].

In addition, this pest is highly invasive [136,142], and its life cycle is strongly influenced
by changing climatic conditions, further complicating the management of this species in terms
of both geographic distribution and population growth [143]. Indeed, Kistner et al. [143]
suggested that the number of H. halys generations may be increasing due to climate change,
causing the species to become multivoltine in the northern latitudes of North America and
Europe, where it is currently considered univoltine. This means that key horticultural areas
in Europe, the northeastern United States, and southeastern Canada are most at risk from
this invasive pest. Therefore, the need for rapid, accurate, and real-time monitoring of this
invasive species can only be met through the use of automated pest monitoring systems.

Considering the unstoppable spread of this pest [136] and all the problems mentioned
above, efficient, and sustainable monitoring strategies are increasingly being investigated.
For example, models capable of predicting H. halys population dynamics based on degree
days. These models improve the prediction of future population trends of this pest and
ultimately contribute to efficient management [144].

However, Lippi et al. [145] developed a pest detection system to identify true bugs
(H. halys, Gonocerus acuteangulatus (Goeze, 1778) (Hemiptera: Coreidae), and Palomena
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prasina (Linnaeus, 1761)) (Hemiptera: Pentatomidae) on white sticky traps in a cereal field.
They used the YOLOv4 (You Only Look Once) convolutional neural network (CNN) model
based on deep learning.

It was trained on a user-defined dataset collected in an orchard under realistic con-
ditions and achieved an average accuracy of 94.5%. Moreover, the real-time performance
was experimentally verified on a built-in system (NVIDIA Jetson Xavier) that can be easily
installed on any mobile platform. The research was conducted in hazelnut production but
should be applicable to pest detection in other crops, especially apples.

4.3.3. Oriental Fruit Moth (Grapholita molesta Busck, 1916)

Oriental fruit moth is primarily a pest of stone fruits (peaches, nectarines, and apricots);
however, it also causes significant damage to apples [146,147]. Initially, it causes wilting
and withering of shoots, and later in the growing season, the fruits become wormy and
lose their organoleptic properties [128,147]. This pest is active over a period of four months
and is significantly more numerous than C. pomonella [148].

Due to changing climatic conditions, increasing areas are suitable for invasion by this
pest, suggesting that constant monitoring is needed to respond quickly and reduce the
potential spread of G. molesta in the main commercial horticultural areas [149].

Therefore, an effective and accurate method for monitoring can be found in automatic
pest monitoring systems [150]. Ascolese et al. [151] monitored the population of G. molesta
using commercially available electronic traps (iMETOS iSCOUT® pheromone model and
Trapview Standard model) in peach orchards. These electronic traps consisted of a solar
panel, a housing trap, an adhesive pad with pheromone, and a camera with SD memory
card that sent images to a remote server. The Trapview Standard model had a problem with
detecting other objects (leaves and twigs) from trapped insects. However, the dimensions
and color of the trap proved effective in capturing moths.

On the other hand, iMETOS iSCOUT® also had a problem; however, this was with
sending photos to the platform for further analysis, which was due to a weak network
signal. In addition, Pérez-Aparicio et al. [150] developed an affordable smart trap for
monitoring G. molesta. It consisted of a Raspberry Pi system with an infrared camera
powered by open-source software and housed in a plastic box. Images were downloaded
to a computer via WiFi from the Raspberry’s SD card. The traps were reliable and easy
to use; therefore, with further improvements, traditional pest monitoring methods can be
replaced by the remotely controlled devices for monitoring G. molesta [151].

Commercial electronic traps that can be used to monitor various moth, true bug, thrips,
whitefly, and wasp pests in apple orchards are summarized in Table 3.

Table 3. Commercially available devices for the automatic monitoring of other important apple pests.

Category Pest Trap Website

Moths

Adoxophyes orana
(Fischer Röslerstamm, 1834) iSCOUT® PHEROMONE (Austria) https://metos.at/ (accessed on 15 April 2022)

Synanthedon myopaeformis
(Borkhausen, 1789) iSCOUT® PHEROMONE (Austria) https://metos.at/ (accessed at 15 April 2022)

Zeuzera pyrina (Linnaeus, 1761) iSCOUT® PHEROMONE (Austria) https://metos.at/ (accessed at 15 April 2022)

Pammene rhediella (Clerck, 1759) iSCOUT® PHEROMONE (Austria) https://metos.at/ (accessed at 15 April 2022)

Choristoneura rosaceana (Harris, 1841)
TrapView (Slovenia) https://trapview.com/ (accessed at 15 April 2022)

Semios trap (Canada) https://semios.com/ (accessed at 15 April 2022)

Cydia molesta (Busck. 1916)
TrapView (Slovenia) https://trapview.com/ (accessed at 15 April 2022)

Semios trap (Canada) https://semios.com/ (accessed at 15 April 2022)

https://metos.at/
https://metos.at/
https://metos.at/
https://metos.at/
https://trapview.com/
https://semios.com/
https://trapview.com/
https://semios.com/
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Table 3. Cont.

Category Pest Trap Website

True bugs Halyomorpha halys (Stål, 1855) iSCOUT® BUG (Austria) https://metos.at/ (accessed at 15 April 2022)

Thrips Frankliniella occidentalis
(Pergande, 1895)

iSCOUT® COLOR TRAP
(Austria)

https://metos.at/ (accessed at 15 April 2022)

Whiteflies Quadraspidiotus perniciosus
(Comstock, 1881)

iSCOUT ® PHEROMONE
(Austria)

https://metos.at/ (accessed at 15 April 2022)

Wasps
Hoplocampa testudinea (Klug, 1816) iSCOUT ® COLOR TRAP

(Austria)
https://metos.at/ (accessed at 15 April 2022)

Hoplocampa flava (Linnaeus, 1761) iSCOUT ® COLOR TRAP
(Austria)

https://metos.at/ (accessed at 15 April 2022)

5. Conclusions

Due to changing climatic conditions, there is a need to adapt the current monitoring
techniques. As a result, there are increasing amounts of automated monitoring systems.
In the presented work, automated pest monitoring in apple production is mainly focused
on codling moth (C. pomonella) monitoring due to its economic importance. However,
the automated techniques presented in this article for monitoring other apple pests could
also be used in apple production. The listed commercial smart traps are mostly made
by modifying classical traps for monitoring specific pests. Therefore, this method is the
simplest and most accessible for automatic pest monitoring. Recently, the development of
automated pest monitoring systems is progressing and could completely replace classical
monitoring methods, adding additional improvements and better accessibility for farmers.

Automated monitoring systems could become an indispensable part of sustainable
apple production, successfully improving early pest detection and control. Most impor-
tantly, these techniques and devices will help reduce the environmental footprint while
improving pest monitoring in apple production under changing climatic conditions.
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41. Matošević, D.; Pajač Živković, I. Strane fitofagne vrste kukaca i grinja na drvenastom bilju u Hrvatskoj. Šumarski List 2013, 137,
191–203.

42. Barzman, M.; Bàrberi, P.; Birch, A.N.E.; Boonekamp, P.; Dachbrodt-Saaydeh, S.; Graf, B.; Hommel, B.; Jensen, J.E.; Kiss, J.;
Kudsk, P.; et al. Eight principles of integrated pest management. Agron. Sustain. Dev. 2015, 35, 1199–1215. [CrossRef]

43. Dong, Y.; Xu, F.; Liu, L.; Du, X.; Ren, B.; Guo, A.; Geng, Y.; Ruan, C.; Ye, H.; Huang, W.; et al. Automatic system for crop pest and
disease dynamic monitoring and early forecasting. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4410–4418. [CrossRef]

44. Ehler, L.E. Integrated pest management (IPM): Definition, historical development and implementation, and the other IPM. Pest
Manag. Sci. 2006, 62, 787–789. [CrossRef]

45. Sutherst, R.W.; Constable, F.; Finlay, K.J.; Harrington, R.; Luck, J.; Zalucki, M.P. Adapting to crop pest and pathogen risks under a
changing climate. Clim. Chang. 2011, 2, 220–237. [CrossRef]

46. Hellin, J.; Fisher, E. Climate-smart agriculture and non-agricultural livelihood transformation. Climate 2019, 7, 48. [CrossRef]
47. Faria, P.; Nogueira, T.; Ferreira, A.; Carlos, C.; Rosado, L. AI-powered mobile image acquisition of vineyard insect traps with

automatic quality and adequacy assessment. Agronomy 2021, 11, 731. [CrossRef]
48. Sciarretta, A.; Calabrese, P. Development of automated devices for the monitoring of insect pests. Curr. Agric. Res. J. 2019, 7, 19.

[CrossRef]
49. Heeb, L.; Jenner, E.; Cock, M.J. Climate-smart pest management: Building resilience of farms and landscapes to changing pest

threats. J. Pest Sci. 2019, 92, 951–969. [CrossRef]
50. Adamides, G. A review of climate-smart agriculture applications in Cyprus. Atmosphere 2020, 11, 898. [CrossRef]
51. Lima, M.C.F.; de Almeida Leandro, M.E.D.; Valero, C.; Coronel, L.C.P.; Bazzo, C.O.G. Automatic detection and monitoring of

insect pests—A review. Agriculture 2020, 10, 161. [CrossRef]
52. Saiz-Rubio, V.; Rovira-Más, F. From smart farming towards agriculture 5.0: A review on crop data management. Agronomy 2020,

10, 207. [CrossRef]
53. Blommers, L.H. Integrated pest management in european apple orchards. Ann. Rev. Entomol. 1994, 39, 213–241. [CrossRef]
54. Preti, M.; Favaro, R.; Knight, A.L.; Angeli, S. Remote monitoring of Cydia pomonella adults among an assemblage of nontargets in

sex pheromone-kairomone-baited smart traps. Pest Manag. Sci. 2021, 77, 4084–4090. [CrossRef] [PubMed]
55. Rydhmer, K.; Bick, E.; Still, L.; Strand, A.; Luciano, R.; Helmreich, S.; Beck, B.D.; Grønne, C.; Malmros, L.; Poulsen, K.; et al.

Automating insect monitoring using unsupervised near-infrared sensors. Sci. Rep. 2022, 12, 2603. [CrossRef] [PubMed]
56. Holguin, G.A.; Lehman, B.L.; Hull, L.A.; Jones, V.P.; Park, J. Electronic traps for automated monitoring of insect populations.

IFAC Proc. Vol. 2010, 43, 49–54. [CrossRef]
57. Segalla, A.; Fiacco, G.; Tramarin, L.; Nardello, M.; Brunelli, D. Neural networks for pest detection in precision agriculture. In

Proceedings of the 2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Trento, Italy,
4–6 November 2020. [CrossRef]

58. Fresco, R.; Ferrari, G. Enhancing precision agriculture by internet of things and cyber physical systems. Atti Soc. Tosc. Sci. Nat.
Mem. Suppl. 2018, 125, 53–60.

59. Potamitis, I.; Eliopoulos, P.; Rigakis, I. Automated Remote Insect Surveillance at a Global Scale and the Internet of Things. Robotics
2017, 6, 19. [CrossRef]

60. Chen, Y.; Why, A.; Batista, G.; Mafra-Neto, A.; Keogh, E. Flying insect classification with inexpensive sensors. J. Insect. Behav.
2014, 27, 657–677. [CrossRef]

61. Potamitis, I.; Ganchev, T.; Kontodimas, D. On automatic bioacoustic detection of pests: The cases of Rhynchophorus ferrugineus and
Sitophilus oryzae. J. Econ. Entomol. 2009, 102, 1681–1690. [CrossRef] [PubMed]

62. Goldshtein, E.; Cohen, Y.; Hetzroni, A.; Gazit, Y.; Timar, D.; Rosenfeld, L.; Grinshpon, Y.; Hoffman, A.; Mizrach, A. Development
of an automatic monitoring trap for Mediterranean fruit fly (Ceratitis capitata) to optimize control applications frequency. Comput.
Electron. Agric. 2017, 139, 115–125. [CrossRef]

http://doi.org/10.1080/03235408.2014.882132
http://doi.org/10.1098/rspb.2009.1910
http://doi.org/10.3390/insects12110985
http://doi.org/10.1007/s10340-014-0617-z
http://doi.org/10.1007/s10340-015-0672-0
http://doi.org/10.1007/s13593-015-0327-9
http://doi.org/10.1109/JSTARS.2020.3013340
http://doi.org/10.1002/ps.1247
http://doi.org/10.1002/wcc.102
http://doi.org/10.3390/cli7040048
http://doi.org/10.3390/agronomy11040731
http://doi.org/10.12944/CARJ.7.1.03
http://doi.org/10.1007/s10340-019-01083-y
http://doi.org/10.3390/atmos11090898
http://doi.org/10.3390/agriculture10050161
http://doi.org/10.3390/agronomy10020207
http://doi.org/10.1146/annurev.en.39.010194.001241
http://doi.org/10.1002/ps.6433
http://www.ncbi.nlm.nih.gov/pubmed/33913618
http://doi.org/10.1038/s41598-022-06439-6
http://www.ncbi.nlm.nih.gov/pubmed/35173221
http://doi.org/10.3182/20101206-3-JP-3009.00008
http://doi.org/10.1109/MetroAgriFor50201.2020.9277657
http://doi.org/10.3390/robotics6030019
http://doi.org/10.1007/s10905-014-9454-4
http://doi.org/10.1603/029.102.0436
http://www.ncbi.nlm.nih.gov/pubmed/19736784
http://doi.org/10.1016/j.compag.2017.04.022


Horticulturae 2022, 8, 520 17 of 20

63. Hernández-Serna, A.; Jiménez-Segura, L.F. Automatic identification of species with neural networks. PeerJ 2014, 2, e563.
[CrossRef] [PubMed]

64. Schrader, M.J.; Smytheman, P.; Beers, E.H.; Khot, L.R. An Open-Source Low-Cost Imaging System Plug-In for Pheromone Traps
Aiding Remote Insect Pest Population Monitoring in Fruit Crops. Machines 2022, 10, 52. [CrossRef]

65. Zhang, X.; Yang, Y.H.; Han, Z.; Wang, H.; Gao, C. Object class detection: A survey. ACM Comput. Surv. 2013, 46, 1–53. [CrossRef]
66. Miresmailli, S.; Badulescu, D.; Mahdaviani, M.; Zamar, R.H.; Isman, M.B. Integrating plant chemical ecology, sensors and artificial

intelligence for accurate pest monitoring. In Tomatoes: Agricultural Procedures, Pathogen Interactions and Health Effects; Aube, E.D.,
Poole, F.H., Eds.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2009; pp. 1–17.

67. Almryad, A.S.; Kutucu, H. Automatic identification for field butterflies by convolutional neural networks. Int. J. Eng. Sci. Technol.
2020, 23, 189–195. [CrossRef]

68. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]

69. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 1097–1105. [CrossRef]

70. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; pp. 1–9.

71. Miranda, J.L.; Gerardo, B.D.; Tanguilig, B.T., III. Pest detection and extraction using image processing techniques. Int. J. Comput.
Commun. Eng. 2014, 3, 189–192. [CrossRef]

72. Khalifa, N.E.M.; Loey, M.; Taha, M.H.N. Insect pests recognition based on deep transfer learning models. J. Theor. Appl. Inf.
Technol. 2020, 98, 60–68.

73. Ding, W.; Taylor, G. Automatic moth detection from trap images for pest management. Comput. Electron. Agric. 2016, 123, 17–28.
[CrossRef]

74. Du, L.; Sun, Y.; Chen, S.; Feng, J.; Zhao, Y.; Yan, Z.; Zhang, X.; Bian, Y.A. Novel Object Detection Model Based on Faster R-CNN
for Spodoptera frugiperda According to Feeding Trace of Corn Leaves. Agriculture 2022, 12, 248. [CrossRef]

75. Li, W.; Zheng, T.; Yang, Z.; Li, M.; Sun, C.; Yang, X. Classification and detection of insects from field images using deep learning
for smart pest management: A systematic review. Ecol. Inform. 2021, 66, 101460. [CrossRef]

76. Preti, M.; Moretti, C.; Scarton, G.; Giannotta, G.; Angeli, S. Developing a smart trap prototype equipped with camera for tortricid
pests remote monitoring. Bull. Insectol. 2021, 74, 147–160.

77. Ciglar, I. Integrirana Zaštita Voćnjaka i Vinograda; Zrinski d.d.: Čakovec, Croatia, 1998; p. 82.
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