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Abstract 

The paper presents a method for sparse matrix 
multiplication on a DSP processor. Its high efficiency is a 
consequence of the proposed pseudo-random data 
memory access and parallelism of the multifunctional 
instructions of a DSP. Sparse matrix multiplication is 
implemented as linear expanded DSP code automatically 
generated by specially designed program. The method is 
applied to predictive vector quantization of Line 
Spectrum Frequencies vectors used in speech coding. It 
will be shown that the obtained reduction in 
computational complexity and fixed storage requirements 
is between two and three-fold. 
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1. Introduction 
There are many applications that require operations 

with matrices. In this paper we will limit our interest 
primarily to multiplication of a matrix with a vector. If 
matrix dimensions are relatively large and this operation 
is repeated frequently, it represents a computationally 
intensive task for the processor. This task can be made 
less demanding if the employed matrices are sparse (i.e. a 
certain portion of matrix elements is equal to zero). 
Sparse matrices may have a regular structure (e.g. 
diagonal, multi-diagonal, etc.) or the structure may be 
completely arbitrary (determined by the particular 
application). The latter case will be analyzed in this paper. 
It represents the most demanding problem, since 
reduction of computational complexity and storage 
requirements can be achieved only by careful and 
efficient realization. 

Architecture of a processor executing the algorithm 
significantly effects the actual implementation and its 
performance. Efficient implementation of the sparse 
matrix arithmetic requires random data memory access. 
This may not be a problem for a RISC-like processor 
architectures with large general purpose register files 
tightly coupled with ALU [1]. CPU registers can be used 
for temporary storage of vector components which can 
then be accessed randomly within the program. This is 

also not a significant problem for general purpose CISC 
architectures that have sophisticated offset-index 
addressing modes and can randomly access data memory 
buffer. 

However, random memory access is not conveniently 
supported on a typical DSP architecture, what can 
significantly degrade the system performance for 
applications of interest. DSP processors were primarily 
designed for signal processing applications with 
sequential data access and have dedicated hardware 
support for indirect memory addressing. Typically, this is 
the only type of data access that can be used 
simultaneously with ALU or MAC operations in so-called 
multifunctional instructions. Nevertheless, it will be 
shown in this paper, that even on a DSP-like architecture 
it is possible to randomly access data within small 
memory buffers. This can be done by combining several 
adjacent circular buffers accessible through a set of 
address registers. The proposed method called 
Pseudo-Random Access (PRA) was successfully applied 
for sparse matrix multiplication and will be illustrated in 
the paper for a fixed-point implementation on a DSP from 
the Analog Devices ADSP21XX family. 

In the second part of the paper, the proposed sparse 
matrix multiplication is used for efficient implementation 
of the switched-adaptive predictive Vector Quantization 
(VQ) of Line Spectrum Frequencies (LSF) vectors for 
applications in speech coding [2], [3]. Finally, we will 
demonstrate how design parameters of the coder affect the 
computational complexity, memory requirements and 
performance/quality of the LSF coder.  

2. Sparse matrix multiplication 

We will consider a particular problem of multiplying a 
sparse matrix A={ai,j} by a full column vector X={xj} as 
illustrated in the following equation: 
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Matrix A has r rows and c columns and has an a-priori 
defined fixed sparse matrix structure (i.e. pattern of 



non-zero elements). Since A can have an arbitrary 
structure, the positions (i,j) of its non-zero elements must 
be encoded and stored in memory together with their 
values ai,j. However, the structure can also be encoded 
implicitly if the expanded matrix equations are used, as 
illustrated in (2) for the first three rows of A. 
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In this case, a separate program must be designed to 
implement the multiplication for any given structure, thus 
eliminating the need for indexing. Due to irregular 
structure of each row, loops cannot be used so the 
program must be written as linear code. Although 
program memory utilization is increased due to expanded 
linear code, it is comparable to the size of memory that 
would otherwise be required for non-zero index storage. 
In this case, only non-zero values need to be stored in 
memory, in sequential order: a[1]=a1,2, a[2]=a1,4, ..., 
a[9]=a3,10, ... . The expanded matrix equations become: 

1013

8732

105421

]9[]8[
]7[]6[]5[

]4[]3[]2[]1[

xaxay
xaxaxay

xaxaxaxay

⋅+⋅=
⋅+⋅+⋅=

⋅+⋅+⋅+⋅=
 (3)

Multiply-accumulate (MAC) unit of a DSP processor 
enables efficient implementation of the inner-product 
calculation. Accumulator holds intermediate results and 
only the final sum needs to be transferred to a memory 
location. Therefore, the ith component, yi, of the output 
vector Y is computed by a sequence of MAC operations. 
Products of all non-zero elements of the ith matrix row by 
the appropriate elements of vector X are accumulated and 
finally stored in yi. 

The highest performance can be achieved by using 
multifunctional instructions in which MAC operations are 
combined with data fetches, thus preparing the arguments 
for MAC instructions that follow. To achieve high code 
density (24-bit instruction word), data access is usually 
based on indirect addressing by means of dedicated Data 
Address Generation units (DAG). Typically, DAGs are 
able to prepare two independent data pointers in each 
instruction. Although DAG units are very flexible, they 
were primarily designed for sequential data access. In the 
stated problem, the matrix elements a[ ] and the output 
vector elements yi are indeed accessed sequentially, but 
components xj have to be accessed in a completely 
random order, as can be seen from the equation (3). Direct 
implementation of random data access on a DSP 
processor is usually very inefficient, since the address 
register must be initialized in a separate instruction prior 
to each access. This may completely diminish complexity 
reduction offered by sparse matrices. To solve this 
problem, a simple and efficient procedure will be 
proposed for mimicking random access with DSP DAG 
units that does not need repeated address register 
initialization. By incorporating the proposed Pseudo-

Random Access (PRA) procedure into sparse matrix 
multiplication, we will demonstrate that the total number 
of instructions for implementation is closely proportional 
to the number of non-zero elements of A. 

3. Pseudo random access using DAG 
To access any of c elements of the vector X in a 

random order, one would need c pre-initialized address 
registers, that could be referenced in data fetch 
instructions. The second possible implementation is by 
using a single address register that is post-modified for 
each consecutive data fetch by one of at least c different 
values held in c post-modify registers. Neither of these 
approaches is very good, since the number of address 
registers and post-modify registers in a DAG is limited. 
For example, in ADSP21XX family there are only 4 
address registers (I) and 4 post-modify registers (M) for 
one data space [4]. 

The method proposed in this paper, originally 
developed in [5], is based on combination of two 
described approaches. By initializing the m post-modify 
registers to values M0=0, M1=1, M2=2, ..., Mm-1=m-1, it 
is possible to modify register I to any address within a 
circular buffer of the length m. All available address 
registers I0, I1, ... Ik-1 can be initialized to form k adjacent 
circular buffers, each of length m. Thus, by using k I 
registers and m M registers it is possible to randomly 
access m⋅k locations in the memory buffer. 
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Figure 1 An example of Pseudo-Random Access for 
sparse matrix multiplication in equation (3) 

 

To illustrate the proposed PRA method, 
implementation of the same example given by equations 
(1) to (3) will be analyzed. The X vector with 12 elements 
is split into three groups of four elements as shown in 
Figure 1. Register I0 is used to access components x1 to x4, 
register I1 for x5 to x8 and finally I2 for x9 to x12. Registers 
I0, I1 and I2 are initialized to point to the first element 
used in each group (x2, x5 and x10) as shown on the left 
side of the figure. Registers I4 and I5 point to the 
beginning of the matrix buffer (&a[1]) and the beginning 
of the output buffer (&y1) respectively, both residing in 
the Y data space (program memory, PM, in the case of 
ADSP21XX processors). Registers I4 and I5 are 
post-modified by M4=1 after each access.  



The actual implementation of the example on DSP 
processor ADSP2181 is shown in Figure 2.  

 
; initialization code
....
; calculate the product of the 1st matrix row and vector elem.
{1}                                             MX0=DM(I0,M2),   MY0=PM(I4,M4);
{2} MR=MX0*MY0 (SS),           MX0=DM(I0,M3),   MY0=PM(I4,M4);
{3} MR=MR+MX0*MY0 (SS),   MX0=DM(I1,M2),   MY0=PM(I4,M4);
{4} MR=MR+MX0*MY0 (SS),   MX0=DM(I2,M0),   MY0=PM(I4,M4);
{5} MR=MR+MX0*MY0 (SS),   MX0=DM(I0,M2),   MY0=PM(I4,M4);
{6} PM(I5,M4)=MR1;             save the first result

; calculate the product of the 2nd matrix row and vector elem.
{7} MR=MX0*MY0 (SS),          MX0=DM(I1,M1),    MY0=PM(I4,M4);
{8} MR=MR+MX0*MY0 (SS),  MX0=DM(I1, ... ),    MY0=PM(I4,M4);
{9} MR=MR+MX0*MY0 (SS),  MX0=DM(I0, … ),   MY0=PM(I4,M4);
{10} PM(I5,M4)=MR1;             save the second result

; calculate the product of the 3rd matrix row and vector elem.
{11} MR=MX0*MY0 (SS),          MX0=DM(I2, … ),   MY0=PM(I4,M4);
{12} MR=MR+MX0*MY0 (SS),  MX0=DM(..., … ),   MY0=PM(I4,M4);
{13} PM(I5,M4)=MR1;               save the third result
; ……..
; continue for other rows  

 

Figure 2 Implementation of the example on ADSP2181 
 
After initialization, the first vector component to be 

used (x2) as well as the first matrix element (a[1]=a1,2) are 
fetched into MAC input registers (instruction {1} in 
Figure 2). Within the same instruction, the index register 
I0 is updated by M2 since the 4th component of the first 
group (x4) will be used in the next instruction {2} (see 
Figure 1 and equation (3) ). 

After multiplication of the first pair, x4 and a[2]=a1,4 
are fetched and address registers are post-modified. I0 is 
updated with M3 to address the component x3 that will be 
fetched in instruction {5} and later used for multiplication 
with a[5]=a2,3 in instruction {7}. In this case, register M3 
is used since adding 3 to the register I0 has the same 
effect as decrementing it by 1 (circular addressing with 
modulo 4 is used). 

The 5th vector component x5 (first of the second group) 
is fetched in instruction {3} by using I1 register and is 
later used in instruction {4}. There are no other matrix 
elements in the 1st row corresponding to the second group, 
so I1 register is updated with M2 to address the 7th 
component x7 used with the 2nd matrix row element 
a[6]=a2,7 (fetched in {7} and used in {8}).  

In instruction {4}, the 10th component, x10, (the only 
one used in the third group) is fetched with I2 and used 
for calculation in {5}. There is no need to update I2, since 
it will be used in the 3rd row with the same component x10. 
This is achieved by adding M0=0 to it.  

Last calculation for the first matrix row is performed 
in {5} together with the fetches of the 3rd component x3 as 
well as the first nonzero element of the 2nd matrix row 
a[5]=a2,3 that will be used in instruction {7}. 

Accumulated value of the first output vector 
component y1 is saved in {6} to the output buffer in PM, 
and I5 register is incremented by M4=1 to point to y2. The 
rest of the code can be interpreted analogously. 

3.1 Computational complexity  

It is obvious from this example that total number of 
instructions for multiplication of the whole sparse matrix 
A using the proposed PRA based data access is: 

1)( ++= rCKs A  (4)

Number C(A) denotes the number of non-zero elements of 
A and r is the number of its rows. The absolute minimum 
would be Ks = C(A), i.e. one MAC for each non-zero 
element of A. However, for each of r rows one additional 
instruction is required for storage of the output 
component. Also a single additional instruction is required 
for the first fetch (instruction {1}). Initialization of all 
used I and M registers was excluded from the above 
analysis, requiring additional k+m+3 instructions. 

The minimal number of instructions to implement 
full-matrix multiplication Kf can also be determined using 
equation (4), where C(A) = r⋅c. Therefore, complexity 
reduction offered by this particular implementation of 
sparse matrix multiplication can be determined as: 
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3.2 Implementation for large matrices 

As was previously discussed, the maximum buffer size 
that can be randomly accessed using the proposed PRA 
method is m⋅k, thus limiting the maximum number of 
columns in A to c≤m⋅k. For a typical DSP, m=k=4, so the 
maximum size of A is r×16. Number of rows r is limited 
only by the available program memory size needed to 
implement the expanded multiplication code. 

However, the PRA method can also be applied to 
larger matrices (c>m⋅k) if matrix A is split into vertical 
stripes of width m⋅k, e.g.: A1, A2 and A3. Vector X is also 
split into three sub-vectors X1, X2 and X3 as illustrated in 
Figure 3. 
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Figure 3 Implementation of PRA method for 

multiplication of large sparse matrices  
 

Thus, matrix multiplication can be performed by 
adding the results of three sub-matrix multiplication: 

332211321 XAXAXAYYYY ⋅+⋅+⋅=++=  (6)

Multiplication of the sub-matrix Ai and the sub-vector 
Xi is performed as already described, since all elements of 
the sub-vector are accessible randomly through the PRA 
method. Before proceeding to the next sub-matrix, the 
address pointers I0 to Ik-1 must be re-initialized to point 
within k groups of the next sub-vector Xi+1. This 



re-initialization requires only k additional instructions for 
each sub-matrix. 

Computation of the final result Y can be performed at 
the end by adding contributions Y1, Y2 and Y3. 
Alternatively, it can be done within the main program 
itself if the accumulated contributions of the previous 
sub-matrix multiplication are read into MAC before 
accumulating the new products in each of the rows. A 
single additional instruction for each of the rows of each 
of the sub-matrices is sufficient for this task.  

4. Application of the method to predictive 
quantization of speech 

The actual problem that inspired the development of 
the proposed method is related to quantization of Linear 
Predictive Coding (LPC) parameters of speech. Most 
contemporary speech coders use the LPC parameters or 
some equivalent representation such as Line Spectral 
Frequencies (LSF) (as it is done in this paper) for 
modeling the transfer function of speech production 
system. In the encoder, these parameters are frequently 
grouped into vectors and are quantized by means of 
Vector Quantization (VQ) before transmission or storage. 
It has been shown [6] that exploiting dependencies 
between consecutive vectors enables reduction of the 
overall bit-rate. One solution for achieving this is by 
means of Predictive Vector Quantization (PVQ). 

A simplified PVQ encoder is illustrated in Figure 4. 
Prediction )(~ nx of the input LSF vector x(n) is calculated 
using typically first order vector linear predictor (a 
matrix) and a previous quantized vector )1(ˆ −nx . The 
difference of the original and the predicted vector, e(n) is 
then vector quantized by means of split or multistage VQ 
[7]. 
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Figure 4 PVQ quantization scheme 

 

To enable adaptation of the predictor to the LSF 
vector process the predictor is frequently realized as a 
bank of N switched matrices obtained in the design 
process, [8], [9]. So called switched-prediction (SP) is 
therefore performed as in (7), by multiplying each of the 
matrices Al with a vector )1(ˆ −nx .  

Nlnn ll ,,1    ,   )1(ˆ)(~ L=−⋅= xAx  (7) 

The matrix yielding prediction vector )(~ nlx  closest to the 
input vector x(n) is then selected for prediction.  

Decoder incorporates the same set of prediction 
matrices and the VQ codebooks as the encoder. The 
information describing which matrix has actually been 

used represents side information and has to be sent to the 
decoder together with the index of the selected VQ 
codeword. Bit allocation between switched predictor and 
VQ determines the trade-off between quality and 
complexity of the quantization scheme. It has been shown 
[9] that for a fixed bit-rate, the SP-VQ scheme with 
predictor consisting of only two matrices results with the 
best performance. On the other hand, this case is also the 
most computationally demanding since VQ codebooks 
have to be rather large if perceptually transparent 
quantization is required.  

Recently a research has been performed [2], [3] in 
order to investigate possible reduction of complexity of 
the SP-VQ quantization scheme on the account of 
increased number of switched prediction matrices. It was 
shown that 16, 32 or 64 matrices instead of 2 can save 
quite a lot of operations. The approach is most effective 
for higher bit-rates and lower analysis frame-rates.  

To further simplify prediction yet with higher number 
of matrices (of dimension 10 × 10 in our aplication), the 
use of sparse matrices is introduced instead of regular full 
matrices. Therefore a new method for optimal sparse 
matrix design was proposed that insures minimal loss of 
prediction gain due to introduced simplification [3]. The 
obtained sparse prediction matrices actually reflect only 
the most significant correlations between components of 
the input vector process and therefore have irregular 
structures as can be seen in an example in Figure 5.  

 

 

Figure 5 An example of sparse switched prediction 
matrices with N = 32 and η = 6 

 

Non-zero elements are marked with black rectangles 
while all the rest are zeros. A design parameter η called 
the element reduction factor was introduced as the ratio of 
the total number of matrix elements of the full and the 
sparse case. In this example factor η = 6 was used, what 
means that only one sixth of the total number of full 
matrix elements is present in sparse matrices. It should be 
stressed that sparse matrix elements are not equal to those 
from the full matrices but are specially determined to be 
optimal for the particular sparse structure. The proposed 
sparse switched prediction was combined with split VQ 
with 4-6 split for ten-dimensional vectors e(n) (i.e. 



c = 10). A number of LSF quantizers was designed by 
varying the following parameters: number of switched 
prediction matrices N, their sparse structure η and 
resolution of the VQ codebooks (b1 for the first, 4-
dimensional codebook and b2 for the second, 6-
dimensional). Details concerning design and evaluation of 
the proposed quantizers in Matlab can be found in [2], [3]. 
On the other hand, their actual realization for the fixed 
point DSP processor ADSP2181 will be explained in 
sequel. 

4.1 Implementation of SP-VQ with sparse matrices 

It is obvious from discussion in the previous section 
that effectiveness of the proposed SP-VQ method with 
sparse matrices directly depends on its implementation. 
For different values of parameters N and η, prediction 
matrices Al have different structures so manual assembly 
coding would be rather tedious. Therefore, to reduce the 
programming effort as well as possible errors, an 
automatic DSP source code generator has been developed. 
It is a specialized tool realized in Matlab that starts from 
any number of designed sparse matrices, analyzes them 
and finally generates an optimal expanded prediction DSP 
code based on the proposed implementation described in 
section 3. The rest of the LSF quantizer has been 
hand-coded in the assembly language and that includes 
the following blocks: computation of the error vector and 
its energy, selection of the prediction matrix, split VQ, 
reconstruction and stabilization of the encoded LSF 
vector. 

The results presented in this paper include PVQ 
quantizers with N = 2 and N = 32 switched matrices both 
designed at the analysis frame-rate of 100 frames/sec. 
Performance of the quantizers with total bit-rate B 
between 15 and 19 bits/frame was analyzed as a function 
of element reduction factor η. Computational complexity, 
K, expressed as the number of CPU cycles [cyc] for 
encoding one LSF vector and fixed memory storage 
requirements, M, were determined for all quantizers as 
measures of implementation effectiveness. To 
demonstrate the influence of each part of the algorithm, 
the results are also presented individually for prediction 
(denoted with Kp and Mp) and vector quantization (KVQ 
and MVQ). 

The number of DSP cycles for prediction is shown in 
Table 1. It is divided into two parts. The first part, Kpp, is 
for the actual prediction and it is a function of all three 
parameters (N, c, η). The second part, Kps, includes 
computation of the error vectors, their energies and final 
selection of the prediction matrix so it does not depend on 
η. Complexity reduction offered by sparse matrices for 
N = 32 can be observed by comparing the first row of the 
table to the other three with η = 3, 6 and 10. These values 
are close to the estimated value given by equation (4) 
which has to be multiplied with number of matrices N. 
Indeed, the reduction is almost 10-fold for η = 10. 
Unfortunately, the overall complexity reduction due to 
sparse matrices is lower since the matrix selection code 

must also be included with a fixed complexity of  
Kps = 1601 cyc. For quantizers with N = 2 only the full 
matrix case with Kp = 476 cyc. was considered because 
the reduction offered by sparse structure is negligible 
compared to the VQ complexity KVQ as will be shown. 

Table 1 Number of CPU cycles for prediction  

N = 2 N = 32 Kp [cyc] Kpp Kps Kpp Kps 
full 379 97 6996 

η = 3 - - 1460 
η = 6 - - 948 

η = 10 - - 735 

1601

 
Fixed memory requirement for prediction part Mp, 

given in Table 2 includes storage of non-zero elements of 
all matrices as well as the number of program memory 
words for the respective implementation (expanded linear 
code for sparse case). Although the quantizers with 32 
sparse matrices may seem inferior compared to the full 
case with N = 2, the overall benefit will be obvious after 
analyzing the VQ complexity as well.  

Table 2 Number of fixed memory locations  Mp used for 
prediction matrices and prediction code  

Mp [words] N = 2 N = 32 
full 215 3215 

η = 3 - 2527 
η = 6 - 1481 

η = 10 - 1055 
 

Depending on the overall bit-rate B, one of the split 
VQ codebook pairs b1 - b2 listed in Table 3 with 
resolutions b1 and b2 is used in conjunction with 1 or 5 
bits for the switched predictor. The first five pairs (with 
total VQ rate BVQ = b1 + b2 from 10 to 14) are used with 
N = 32, while the last five pairs (BVQ from 14 to 18) are 
used with N = 32. It can be observed that VQ complexity 
KVQ and table sizes MVQ increase 16-fold as the total rate 
BVQ is increased from 10 to 18. 

Table 3 Complexity KVQ and memory storage requirement 
MVQ for split VQ 

BVQ b1 - b2
KVQ 

[cyc] 
MVQ 

[words]
10 4-6 1731 448 
11 5-6 1992 512 
12 5-7 3405 896 
13 5-8 6232 1664 
14 6-8 6752 1792 
15 6-9 12449 3328 
16 7-9 13500 3584 
17 7-10 24840 6656 
18 8-10 26942 7168 

 



Finally, by combining the results for prediction and 
VQ, the overall complexity K and fixed memory storage 
requirements M were determined for all combinations of 
B, N and η. These are shown in Table 4 and Table 5. The 
required MIPS throughput of a DSP for the whole task 
can be found by multiplying the values of K in Table 4 by 
the frame-rate of 100 frames/sec. By comparing the 
results for N = 2 and N = 32 reduction in both K and M is 
obvious, with cca. 3-fold reduction of complexity and 2-
fold reduction of storage obtained at higher bit-rates. 

Table 4 Total complexity K for encoding one LSF vector 

K 
[cyc] N = 2 N = 32 

B full full η = 3 η = 6 η = 10 
15 7228 8727 4792 4280 4067 
16 12925 8988 5053 4541 4328 
17 13976 10401 6466 5954 5741 
18 25316 13228 9293 8781 8568 
19 27418 13748 9813 9301 9088 

Table 5 Total memory size M for  tables and predict. code 

M 
[words] N = 2 N = 32 

B full full η = 3 η = 6 η = 10 
15 2007 3663 2975 1929 1503 
16 3543 3727 3039 1993 1567 
17 3799 4111 3423 2377 1951 
18 6871 4879 4191 3145 2719 
19 7383 5007 4319 3273 2847 

 
These results would be misleading without 

considering the quality of the designed quantizers. Their 
performance was evaluated by the average log spectral 
distortion, SD between the unquantized and quantized 
LPC filters and is given in Table 6. More detailed 
discussion on simulation setup and evaluation can be 
found in [3]. As can be observed from the table, the 
increase of distortion compared to the baseline quantizers 
with N = 2 is a consequence of two factors: increased 
number of matrices and increased η. It is obvious that 
performance of quantizers with η = 3 is practically the 
same as that of full predictor quantizers with N = 32. On 
the other hand, degradation of quality for quantizers with 
η = 10 can hardly be justified by relatively small 
additional reduction of K and M. Therefore, a good 
compromise is offered by quantizers with η between 3 
and 6. 

To gain the best insight into the advantages of the 
proposed sparse matrix approach it is fair to compare the 
baseline (N = 2) and sparse quantizers of the same quality. 
It leads to comparison of sparse quantizers having one bit 
more of the total bit-rate then the baseline quantizers. For 
example, sparse quantizer with N = 32, η = 6 and B = 18 
has the same quality as the full quantizer with N = 2 and 
B = 18 while the complexity and storage are reduced by 
factors 2.7 and 2.1, respectively. 

Table 6 Average spectral distortion values, SD 

SD 
[dB] N = 2 N = 32 

B full full η = 3 η = 6 η = 10 
15 1.09 1.15 1.15 1.17 1.20 
16 1.02 1.07 1.08 1.09 1.12 
17 0.94 0.98 0.99 1.00 1.04 
18 0.87 0.91 0.92 0.93 0.96 
19 0.81 0.85 0.86 0.87 0.89 

5. Conclusion 

It has been demonstrated that even on a DSP-like 
architecture it is possible to access data memory locations 
randomly within multifunctional ALU/MAC instructions. 
With the proposed Pseudo-Random Access (PRA), 
multiplication of a sparse matrix with a column vector can 
be performed on a DSP with a minimal number of 
instructions. A method for predictive vector quantization 
of LSF vectors with sparse matrices was implemented 
using the PRA-based approach. Transparent quantization 
of LSF vectors (SD = 1 dB) can be obtained with sparse 
quantizer with 32 matrices, 1/6th of matrix elements and 
total bit-rate of 17 bits/vector. Such quantizer requires 
only 2377 words of table storage and 0.6 MIPS for 
execution on a DSP. 
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