
IMPLEMENTATION OF SPARSE MATRIX ARITHMETIC
ON A DSP PROCESSOR

Davorka Petrinovic, Ivan Lukacevic, Davor Petrinovic,

Faculty of Electrical Engineering and Computing
University of Zagreb,

Unska 3, Croatia

Abstract

The paper presents a method for sparse matrix
multiplication on a DSP processor. Its high efficiency is a
consequence of the proposed pseudo-random data
memory access and parallelism of the multifunctional
instructions of a DSP. Sparse matrix multiplication is
implemented as linear expanded DSP code automatically
generated by specially designed program. The method is
applied to predictive vector quantization of Line
Spectrum Frequencies vectors used in speech coding. It
will be shown that the obtained reduction in
computational complexity and fixed storage requirements
is between two and three-fold.

Key Words
sparse matrix, random access, DSP, speech coding, LSF
quantization, predictive vector quantization

1. Introduction
There are many applications that require operations

with matrices. In this paper we will limit our interest
primarily to multiplication of a matrix with a vector. If
matrix dimensions are relatively large and this operation
is repeated frequently, it represents a computationally
intensive task for the processor. This task can be made
less demanding if the employed matrices are sparse (i.e. a
certain portion of matrix elements is equal to zero).
Sparse matrices may have a regular structure (e.g.
diagonal, multi-diagonal, etc.) or the structure may be
completely arbitrary (determined by the particular
application). The latter case will be analyzed in this paper.
It represents the most demanding problem, since
reduction of computational complexity and storage
requirements can be achieved only by careful and
efficient realization.

Architecture of a processor executing the algorithm
significantly effects the actual implementation and its
performance. Efficient implementation of the sparse
matrix arithmetic requires random data memory access.
This may not be a problem for a RISC-like processor
architectures with large general purpose register files
tightly coupled with ALU [1]. CPU registers can be used
for temporary storage of vector components which can
then be accessed randomly within the program. This is

also not a significant problem for general purpose CISC
architectures that have sophisticated offset-index
addressing modes and can randomly access data memory
buffer.

However, random memory access is not conveniently
supported on a typical DSP architecture, what can
significantly degrade the system performance for
applications of interest. DSP processors were primarily
designed for signal processing applications with
sequential data access and have dedicated hardware
support for indirect memory addressing. Typically, this is
the only type of data access that can be used
simultaneously with ALU or MAC operations in so-called
multifunctional instructions. Nevertheless, it will be
shown in this paper, that even on a DSP-like architecture
it is possible to randomly access data within small
memory buffers. This can be done by combining several
adjacent circular buffers accessible through a set of
address registers. The proposed method called
Pseudo-Random Access (PRA) was successfully applied
for sparse matrix multiplication and will be illustrated in
the paper for a fixed-point implementation on a DSP from
the Analog Devices ADSP21XX family.

In the second part of the paper, the proposed sparse
matrix multiplication is used for efficient implementation
of the switched-adaptive predictive Vector Quantization
(VQ) of Line Spectrum Frequencies (LSF) vectors for
applications in speech coding [2], [3]. Finally, we will
demonstrate how design parameters of the coder affect the
computational complexity, memory requirements and
performance/quality of the LSF coder.

2. Sparse matrix multiplication

We will consider a particular problem of multiplying a
sparse matrix A={ai,j} by a full column vector X={xj} as
illustrated in the following equation:





















⋅























12

2

1

11,7,6,4,

10,31,3

8,27,23,2

10,15,14,12,1

00000000

0000000000
000000000
00000000

x

x
x

aaaa

aa
aaa

aaaa

rrrr

M
MMM

(1)

Matrix A has r rows and c columns and has an a-priori
defined fixed sparse matrix structure (i.e. pattern of

non-zero elements). Since A can have an arbitrary
structure, the positions (i,j) of its non-zero elements must
be encoded and stored in memory together with their
values ai,j. However, the structure can also be encoded
implicitly if the expanded matrix equations are used, as
illustrated in (2) for the first three rows of A.

1010,311,33

88,277,233,22

1010,155,144,122,11

xaxay
xaxaxay

xaxaxaxay

⋅+⋅=

⋅+⋅+⋅=

⋅+⋅+⋅+⋅=

 (2)

In this case, a separate program must be designed to
implement the multiplication for any given structure, thus
eliminating the need for indexing. Due to irregular
structure of each row, loops cannot be used so the
program must be written as linear code. Although
program memory utilization is increased due to expanded
linear code, it is comparable to the size of memory that
would otherwise be required for non-zero index storage.
In this case, only non-zero values need to be stored in
memory, in sequential order: a[1]=a1,2, a[2]=a1,4, ...,
a[9]=a3,10, The expanded matrix equations become:

1013

8732

105421

]9[]8[
]7[]6[]5[

]4[]3[]2[]1[

xaxay
xaxaxay

xaxaxaxay

⋅+⋅=
⋅+⋅+⋅=

⋅+⋅+⋅+⋅=
 (3)

Multiply-accumulate (MAC) unit of a DSP processor
enables efficient implementation of the inner-product
calculation. Accumulator holds intermediate results and
only the final sum needs to be transferred to a memory
location. Therefore, the ith component, yi, of the output
vector Y is computed by a sequence of MAC operations.
Products of all non-zero elements of the ith matrix row by
the appropriate elements of vector X are accumulated and
finally stored in yi.

The highest performance can be achieved by using
multifunctional instructions in which MAC operations are
combined with data fetches, thus preparing the arguments
for MAC instructions that follow. To achieve high code
density (24-bit instruction word), data access is usually
based on indirect addressing by means of dedicated Data
Address Generation units (DAG). Typically, DAGs are
able to prepare two independent data pointers in each
instruction. Although DAG units are very flexible, they
were primarily designed for sequential data access. In the
stated problem, the matrix elements a[] and the output
vector elements yi are indeed accessed sequentially, but
components xj have to be accessed in a completely
random order, as can be seen from the equation (3). Direct
implementation of random data access on a DSP
processor is usually very inefficient, since the address
register must be initialized in a separate instruction prior
to each access. This may completely diminish complexity
reduction offered by sparse matrices. To solve this
problem, a simple and efficient procedure will be
proposed for mimicking random access with DSP DAG
units that does not need repeated address register
initialization. By incorporating the proposed Pseudo-

Random Access (PRA) procedure into sparse matrix
multiplication, we will demonstrate that the total number
of instructions for implementation is closely proportional
to the number of non-zero elements of A.

3. Pseudo random access using DAG
To access any of c elements of the vector X in a

random order, one would need c pre-initialized address
registers, that could be referenced in data fetch
instructions. The second possible implementation is by
using a single address register that is post-modified for
each consecutive data fetch by one of at least c different
values held in c post-modify registers. Neither of these
approaches is very good, since the number of address
registers and post-modify registers in a DAG is limited.
For example, in ADSP21XX family there are only 4
address registers (I) and 4 post-modify registers (M) for
one data space [4].

The method proposed in this paper, originally
developed in [5], is based on combination of two
described approaches. By initializing the m post-modify
registers to values M0=0, M1=1, M2=2, ..., Mm-1=m-1, it
is possible to modify register I to any address within a
circular buffer of the length m. All available address
registers I0, I1, ... Ik-1 can be initialized to form k adjacent
circular buffers, each of length m. Thus, by using k I
registers and m M registers it is possible to randomly
access m⋅k locations in the memory buffer.



























































12

11

10

9

8

7

6

5

4

3

2

1

x
x
x
x
x
x
x
x
x
x
x
x

M2 M3
M2

M2
M1

M0

I0

I1

I2

m
od

ul
o

4
ci

rc
ul

ar
m

od
ul

o
4

ci
rc

ul
ar

m
od

ul
o

4
ci

rc
ul

ar

Figure 1 An example of Pseudo-Random Access for
sparse matrix multiplication in equation (3)

To illustrate the proposed PRA method,
implementation of the same example given by equations
(1) to (3) will be analyzed. The X vector with 12 elements
is split into three groups of four elements as shown in
Figure 1. Register I0 is used to access components x1 to x4,
register I1 for x5 to x8 and finally I2 for x9 to x12. Registers
I0, I1 and I2 are initialized to point to the first element
used in each group (x2, x5 and x10) as shown on the left
side of the figure. Registers I4 and I5 point to the
beginning of the matrix buffer (&a[1]) and the beginning
of the output buffer (&y1) respectively, both residing in
the Y data space (program memory, PM, in the case of
ADSP21XX processors). Registers I4 and I5 are
post-modified by M4=1 after each access.

The actual implementation of the example on DSP
processor ADSP2181 is shown in Figure 2.

; initialization code
....
; calculate the product of the 1st matrix row and vector elem.
{1} MX0=DM(I0,M2), MY0=PM(I4,M4);
{2} MR=MX0*MY0 (SS), MX0=DM(I0,M3), MY0=PM(I4,M4);
{3} MR=MR+MX0*MY0 (SS), MX0=DM(I1,M2), MY0=PM(I4,M4);
{4} MR=MR+MX0*MY0 (SS), MX0=DM(I2,M0), MY0=PM(I4,M4);
{5} MR=MR+MX0*MY0 (SS), MX0=DM(I0,M2), MY0=PM(I4,M4);
{6} PM(I5,M4)=MR1; save the first result

; calculate the product of the 2nd matrix row and vector elem.
{7} MR=MX0*MY0 (SS), MX0=DM(I1,M1), MY0=PM(I4,M4);
{8} MR=MR+MX0*MY0 (SS), MX0=DM(I1, ...), MY0=PM(I4,M4);
{9} MR=MR+MX0*MY0 (SS), MX0=DM(I0, …), MY0=PM(I4,M4);
{10} PM(I5,M4)=MR1; save the second result

; calculate the product of the 3rd matrix row and vector elem.
{11} MR=MX0*MY0 (SS), MX0=DM(I2, …), MY0=PM(I4,M4);
{12} MR=MR+MX0*MY0 (SS), MX0=DM(..., …), MY0=PM(I4,M4);
{13} PM(I5,M4)=MR1; save the third result
; ……..
; continue for other rows

Figure 2 Implementation of the example on ADSP2181

After initialization, the first vector component to be

used (x2) as well as the first matrix element (a[1]=a1,2) are
fetched into MAC input registers (instruction {1} in
Figure 2). Within the same instruction, the index register
I0 is updated by M2 since the 4th component of the first
group (x4) will be used in the next instruction {2} (see
Figure 1 and equation (3)).

After multiplication of the first pair, x4 and a[2]=a1,4
are fetched and address registers are post-modified. I0 is
updated with M3 to address the component x3 that will be
fetched in instruction {5} and later used for multiplication
with a[5]=a2,3 in instruction {7}. In this case, register M3
is used since adding 3 to the register I0 has the same
effect as decrementing it by 1 (circular addressing with
modulo 4 is used).

The 5th vector component x5 (first of the second group)
is fetched in instruction {3} by using I1 register and is
later used in instruction {4}. There are no other matrix
elements in the 1st row corresponding to the second group,
so I1 register is updated with M2 to address the 7th
component x7 used with the 2nd matrix row element
a[6]=a2,7 (fetched in {7} and used in {8}).

In instruction {4}, the 10th component, x10, (the only
one used in the third group) is fetched with I2 and used
for calculation in {5}. There is no need to update I2, since
it will be used in the 3rd row with the same component x10.
This is achieved by adding M0=0 to it.

Last calculation for the first matrix row is performed
in {5} together with the fetches of the 3rd component x3 as
well as the first nonzero element of the 2nd matrix row
a[5]=a2,3 that will be used in instruction {7}.

Accumulated value of the first output vector
component y1 is saved in {6} to the output buffer in PM,
and I5 register is incremented by M4=1 to point to y2. The
rest of the code can be interpreted analogously.

3.1 Computational complexity

It is obvious from this example that total number of
instructions for multiplication of the whole sparse matrix
A using the proposed PRA based data access is:

1)(++= rCKs A (4)

Number C(A) denotes the number of non-zero elements of
A and r is the number of its rows. The absolute minimum
would be Ks = C(A), i.e. one MAC for each non-zero
element of A. However, for each of r rows one additional
instruction is required for storage of the output
component. Also a single additional instruction is required
for the first fetch (instruction {1}). Initialization of all
used I and M registers was excluded from the above
analysis, requiring additional k+m+3 instructions.

The minimal number of instructions to implement
full-matrix multiplication Kf can also be determined using
equation (4), where C(A) = r⋅c. Therefore, complexity
reduction offered by this particular implementation of
sparse matrix multiplication can be determined as:

1)(
1

++
++⋅==

rC
rcr

K
K

R
s

f

A
 (5)

3.2 Implementation for large matrices

As was previously discussed, the maximum buffer size
that can be randomly accessed using the proposed PRA
method is m⋅k, thus limiting the maximum number of
columns in A to c≤m⋅k. For a typical DSP, m=k=4, so the
maximum size of A is r×16. Number of rows r is limited
only by the available program memory size needed to
implement the expanded multiplication code.

However, the PRA method can also be applied to
larger matrices (c>m⋅k) if matrix A is split into vertical
stripes of width m⋅k, e.g.: A1, A2 and A3. Vector X is also
split into three sub-vectors X1, X2 and X3 as illustrated in
Figure 3.

[]
[]
[] 















+
















+
















=
















⋅
































































321

3

2

1

321 YYY
X
X
X

AAA

c=3m⋅k

r r

Figure 3 Implementation of PRA method for

multiplication of large sparse matrices

Thus, matrix multiplication can be performed by
adding the results of three sub-matrix multiplication:

332211321 XAXAXAYYYY ⋅+⋅+⋅=++= (6)

Multiplication of the sub-matrix Ai and the sub-vector
Xi is performed as already described, since all elements of
the sub-vector are accessible randomly through the PRA
method. Before proceeding to the next sub-matrix, the
address pointers I0 to Ik-1 must be re-initialized to point
within k groups of the next sub-vector Xi+1. This

re-initialization requires only k additional instructions for
each sub-matrix.

Computation of the final result Y can be performed at
the end by adding contributions Y1, Y2 and Y3.
Alternatively, it can be done within the main program
itself if the accumulated contributions of the previous
sub-matrix multiplication are read into MAC before
accumulating the new products in each of the rows. A
single additional instruction for each of the rows of each
of the sub-matrices is sufficient for this task.

4. Application of the method to predictive
quantization of speech

The actual problem that inspired the development of
the proposed method is related to quantization of Linear
Predictive Coding (LPC) parameters of speech. Most
contemporary speech coders use the LPC parameters or
some equivalent representation such as Line Spectral
Frequencies (LSF) (as it is done in this paper) for
modeling the transfer function of speech production
system. In the encoder, these parameters are frequently
grouped into vectors and are quantized by means of
Vector Quantization (VQ) before transmission or storage.
It has been shown [6] that exploiting dependencies
between consecutive vectors enables reduction of the
overall bit-rate. One solution for achieving this is by
means of Predictive Vector Quantization (PVQ).

A simplified PVQ encoder is illustrated in Figure 4.
Prediction)(~ nx of the input LSF vector x(n) is calculated
using typically first order vector linear predictor (a
matrix) and a previous quantized vector)1(ˆ −nx . The
difference of the original and the predicted vector, e(n) is
then vector quantized by means of split or multistage VQ
[7].

VECTOR
LINEAR

PREDICTOR

VQ +

+

x(n) e(n)

)(~ nx

)(ˆ ne

)(ˆ nx

VQ index

Figure 4 PVQ quantization scheme

To enable adaptation of the predictor to the LSF
vector process the predictor is frequently realized as a
bank of N switched matrices obtained in the design
process, [8], [9]. So called switched-prediction (SP) is
therefore performed as in (7), by multiplying each of the
matrices Al with a vector)1(ˆ −nx .

Nlnn ll ,,1 ,)1(ˆ)(~ L=−⋅= xAx (7)

The matrix yielding prediction vector)(~ nlx closest to the
input vector x(n) is then selected for prediction.

Decoder incorporates the same set of prediction
matrices and the VQ codebooks as the encoder. The
information describing which matrix has actually been

used represents side information and has to be sent to the
decoder together with the index of the selected VQ
codeword. Bit allocation between switched predictor and
VQ determines the trade-off between quality and
complexity of the quantization scheme. It has been shown
[9] that for a fixed bit-rate, the SP-VQ scheme with
predictor consisting of only two matrices results with the
best performance. On the other hand, this case is also the
most computationally demanding since VQ codebooks
have to be rather large if perceptually transparent
quantization is required.

Recently a research has been performed [2], [3] in
order to investigate possible reduction of complexity of
the SP-VQ quantization scheme on the account of
increased number of switched prediction matrices. It was
shown that 16, 32 or 64 matrices instead of 2 can save
quite a lot of operations. The approach is most effective
for higher bit-rates and lower analysis frame-rates.

To further simplify prediction yet with higher number
of matrices (of dimension 10 × 10 in our aplication), the
use of sparse matrices is introduced instead of regular full
matrices. Therefore a new method for optimal sparse
matrix design was proposed that insures minimal loss of
prediction gain due to introduced simplification [3]. The
obtained sparse prediction matrices actually reflect only
the most significant correlations between components of
the input vector process and therefore have irregular
structures as can be seen in an example in Figure 5.

Figure 5 An example of sparse switched prediction
matrices with N = 32 and η = 6

Non-zero elements are marked with black rectangles
while all the rest are zeros. A design parameter η called
the element reduction factor was introduced as the ratio of
the total number of matrix elements of the full and the
sparse case. In this example factor η = 6 was used, what
means that only one sixth of the total number of full
matrix elements is present in sparse matrices. It should be
stressed that sparse matrix elements are not equal to those
from the full matrices but are specially determined to be
optimal for the particular sparse structure. The proposed
sparse switched prediction was combined with split VQ
with 4-6 split for ten-dimensional vectors e(n) (i.e.

c = 10). A number of LSF quantizers was designed by
varying the following parameters: number of switched
prediction matrices N, their sparse structure η and
resolution of the VQ codebooks (b1 for the first, 4-
dimensional codebook and b2 for the second, 6-
dimensional). Details concerning design and evaluation of
the proposed quantizers in Matlab can be found in [2], [3].
On the other hand, their actual realization for the fixed
point DSP processor ADSP2181 will be explained in
sequel.

4.1 Implementation of SP-VQ with sparse matrices

It is obvious from discussion in the previous section
that effectiveness of the proposed SP-VQ method with
sparse matrices directly depends on its implementation.
For different values of parameters N and η, prediction
matrices Al have different structures so manual assembly
coding would be rather tedious. Therefore, to reduce the
programming effort as well as possible errors, an
automatic DSP source code generator has been developed.
It is a specialized tool realized in Matlab that starts from
any number of designed sparse matrices, analyzes them
and finally generates an optimal expanded prediction DSP
code based on the proposed implementation described in
section 3. The rest of the LSF quantizer has been
hand-coded in the assembly language and that includes
the following blocks: computation of the error vector and
its energy, selection of the prediction matrix, split VQ,
reconstruction and stabilization of the encoded LSF
vector.

The results presented in this paper include PVQ
quantizers with N = 2 and N = 32 switched matrices both
designed at the analysis frame-rate of 100 frames/sec.
Performance of the quantizers with total bit-rate B
between 15 and 19 bits/frame was analyzed as a function
of element reduction factor η. Computational complexity,
K, expressed as the number of CPU cycles [cyc] for
encoding one LSF vector and fixed memory storage
requirements, M, were determined for all quantizers as
measures of implementation effectiveness. To
demonstrate the influence of each part of the algorithm,
the results are also presented individually for prediction
(denoted with Kp and Mp) and vector quantization (KVQ
and MVQ).

The number of DSP cycles for prediction is shown in
Table 1. It is divided into two parts. The first part, Kpp, is
for the actual prediction and it is a function of all three
parameters (N, c, η). The second part, Kps, includes
computation of the error vectors, their energies and final
selection of the prediction matrix so it does not depend on
η. Complexity reduction offered by sparse matrices for
N = 32 can be observed by comparing the first row of the
table to the other three with η = 3, 6 and 10. These values
are close to the estimated value given by equation (4)
which has to be multiplied with number of matrices N.
Indeed, the reduction is almost 10-fold for η = 10.
Unfortunately, the overall complexity reduction due to
sparse matrices is lower since the matrix selection code

must also be included with a fixed complexity of
Kps = 1601 cyc. For quantizers with N = 2 only the full
matrix case with Kp = 476 cyc. was considered because
the reduction offered by sparse structure is negligible
compared to the VQ complexity KVQ as will be shown.

Table 1 Number of CPU cycles for prediction

N = 2 N = 32 Kp [cyc] Kpp Kps Kpp Kps
full 379 97 6996

η = 3 - - 1460
η = 6 - - 948

η = 10 - - 735

1601

Fixed memory requirement for prediction part Mp,

given in Table 2 includes storage of non-zero elements of
all matrices as well as the number of program memory
words for the respective implementation (expanded linear
code for sparse case). Although the quantizers with 32
sparse matrices may seem inferior compared to the full
case with N = 2, the overall benefit will be obvious after
analyzing the VQ complexity as well.

Table 2 Number of fixed memory locations Mp used for
prediction matrices and prediction code

Mp [words] N = 2 N = 32
full 215 3215

η = 3 - 2527
η = 6 - 1481

η = 10 - 1055

Depending on the overall bit-rate B, one of the split
VQ codebook pairs b1 - b2 listed in Table 3 with
resolutions b1 and b2 is used in conjunction with 1 or 5
bits for the switched predictor. The first five pairs (with
total VQ rate BVQ = b1 + b2 from 10 to 14) are used with
N = 32, while the last five pairs (BVQ from 14 to 18) are
used with N = 32. It can be observed that VQ complexity
KVQ and table sizes MVQ increase 16-fold as the total rate
BVQ is increased from 10 to 18.

Table 3 Complexity KVQ and memory storage requirement
MVQ for split VQ

BVQ b1 - b2
KVQ

[cyc]
MVQ

[words]
10 4-6 1731 448
11 5-6 1992 512
12 5-7 3405 896
13 5-8 6232 1664
14 6-8 6752 1792
15 6-9 12449 3328
16 7-9 13500 3584
17 7-10 24840 6656
18 8-10 26942 7168

Finally, by combining the results for prediction and
VQ, the overall complexity K and fixed memory storage
requirements M were determined for all combinations of
B, N and η. These are shown in Table 4 and Table 5. The
required MIPS throughput of a DSP for the whole task
can be found by multiplying the values of K in Table 4 by
the frame-rate of 100 frames/sec. By comparing the
results for N = 2 and N = 32 reduction in both K and M is
obvious, with cca. 3-fold reduction of complexity and 2-
fold reduction of storage obtained at higher bit-rates.

Table 4 Total complexity K for encoding one LSF vector

K
[cyc] N = 2 N = 32

B full full η = 3 η = 6 η = 10
15 7228 8727 4792 4280 4067
16 12925 8988 5053 4541 4328
17 13976 10401 6466 5954 5741
18 25316 13228 9293 8781 8568
19 27418 13748 9813 9301 9088

Table 5 Total memory size M for tables and predict. code

M
[words] N = 2 N = 32

B full full η = 3 η = 6 η = 10
15 2007 3663 2975 1929 1503
16 3543 3727 3039 1993 1567
17 3799 4111 3423 2377 1951
18 6871 4879 4191 3145 2719
19 7383 5007 4319 3273 2847

These results would be misleading without

considering the quality of the designed quantizers. Their
performance was evaluated by the average log spectral
distortion, SD between the unquantized and quantized
LPC filters and is given in Table 6. More detailed
discussion on simulation setup and evaluation can be
found in [3]. As can be observed from the table, the
increase of distortion compared to the baseline quantizers
with N = 2 is a consequence of two factors: increased
number of matrices and increased η. It is obvious that
performance of quantizers with η = 3 is practically the
same as that of full predictor quantizers with N = 32. On
the other hand, degradation of quality for quantizers with
η = 10 can hardly be justified by relatively small
additional reduction of K and M. Therefore, a good
compromise is offered by quantizers with η between 3
and 6.

To gain the best insight into the advantages of the
proposed sparse matrix approach it is fair to compare the
baseline (N = 2) and sparse quantizers of the same quality.
It leads to comparison of sparse quantizers having one bit
more of the total bit-rate then the baseline quantizers. For
example, sparse quantizer with N = 32, η = 6 and B = 18
has the same quality as the full quantizer with N = 2 and
B = 18 while the complexity and storage are reduced by
factors 2.7 and 2.1, respectively.

Table 6 Average spectral distortion values, SD

SD
[dB] N = 2 N = 32

B full full η = 3 η = 6 η = 10
15 1.09 1.15 1.15 1.17 1.20
16 1.02 1.07 1.08 1.09 1.12
17 0.94 0.98 0.99 1.00 1.04
18 0.87 0.91 0.92 0.93 0.96
19 0.81 0.85 0.86 0.87 0.89

5. Conclusion

It has been demonstrated that even on a DSP-like
architecture it is possible to access data memory locations
randomly within multifunctional ALU/MAC instructions.
With the proposed Pseudo-Random Access (PRA),
multiplication of a sparse matrix with a column vector can
be performed on a DSP with a minimal number of
instructions. A method for predictive vector quantization
of LSF vectors with sparse matrices was implemented
using the PRA-based approach. Transparent quantization
of LSF vectors (SD = 1 dB) can be obtained with sparse
quantizer with 32 matrices, 1/6th of matrix elements and
total bit-rate of 17 bits/vector. Such quantizer requires
only 2377 words of table storage and 0.6 MIPS for
execution on a DSP.

References
[1] J. L. Hennessy, D. A. Patterson, Computer architecture: a
quantitative approach (San Francisco, Ca: Morgan Kaufmann
Publishers, 1996)
[2] D. Petrinovic, D. Petrinovic, Sparse vector linear prediction
with near-optimal matrix structures, Proc. of International.
Workshop on Image and Signal Processing and Analysis, Pula,
Croatia, 2000, pp. 235-240.
[3] D. Petrinovic, D. Petrinovic, Reduced complexity LSF vector
quantization with switched-adaptive prediction, to be presented
at International Symposium on Image and Signal Processing
and Analysis, Rome, Italy, September 18-20, 2003
[4] ADSP-2100 family user's manual (Analog Devices, Inc.,
1995)
[5] I. Lukacevic, Predictive vector quantization of line spectrum
frequencies of the speech signal, Diploma Thesis (in Croatian),
University of Zagreb, Faculty of Electrical Engineering and
Computing, 2000
[6] T. Eriksson, J. Linden, J. Skoglund, Interframe LSF
quantization for noisy channels, IEEE Transaction on Speech
And Audio Processing, vol. 7, no. 5, pp. 495-509, Sept. 1999.
[7] A. Gersho, R. M. Gray, Vector quantization and signal
compression, (Kluwer Academic Publishers,
Boston/Dordrecht/London, 1991)
[8] M. Yong, G. Davidson, A. Gersho, Encoding of LPC spectral
parameters using switched-adaptive interframe vector prediction,
Proc. ICASSP, vol.1, 1988, pp. 402-405.
[9] S. Wang, E. Paksoy, A. Gersho, Product code vector
quantization of LPC parameters, in Speech and audio coding for
wireless and network applications, (editors: B. S. Atal, V.
Cuperman, A. Gersho, Kluwer Acad. Pub., pp. 251-258, 1993.)

