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Abstract 
 

In this paper several techniques are investigated for 
reduction of complexity and/or improving quality of a line 
spectrum frequencies (LSF) quantization based on switched 
prediction (SP) and vector quantization (VQ). For switched 
prediction, a higher number of prediction matrices is 
proposed. Quality of the quantized speech is improved by the 
prediction multi-candidate and delayed decision algorithm. It 
is shown that quantizers with delayed decision can save up to 
one bit still having similar or even lower complexity than the 
baseline quantizers with 2 switched matrices. By efficient 
implementation of prediction, lower complexity can be 
achieved through use of prediction matrices with reduced 
number of non-zero elements. By combining such sparse 
matrices and multiple prediction candidates, the best quality-
complexity compromise quantizers can be obtained as 
demonstrated by experimental results. 

 

1. Introduction 
 

A combination of switched prediction [1], [2] and either 
split or multi-stage vector quantization has frequently been 
used in modern speech coders for LSF quantization. In such 
memory-based quantization scheme, the prediction of an input 
LSF vector is calculated first by selecting one prediction 
matrix among the set of previously designed matrices. The 
difference between the original and the predicted vector is 
then vector quantized. In split VQ (SVQ) that is employed in 
this work, a single vector is divided into few subvectors and 
each subvector is quantized independently. Bit allocation 
between switched predictor and VQ codebooks determines the 
trade-off between quantizer complexity and quality. For the 
fixed total number of bits per frame, the highest quality is 
achieved if only one bit is assigned to the predictor [1]. Such 
quantizer is most frequently used and will be called the 
baseline quantizer. Nevertheless, for transparent quantization, 
this bit allocation also results with the highest number of 
operations since VQ is rather complex.  

For applications in which LSF quantization should be less 
computationally demanding, complexity of the VQ can be 
reduced by allocating more bits to the predictor. That is the 
direction followed in this study. Although computationally 
more efficient, this approach introduces some distortion 
compared to the baseline, 2 switched matrix case. Therefore, 
in the first part of this paper, it will be presented how the 
quality of the SP-SVQ scheme with higher number of 
switched matrices can be improved by applying so called 
multi-candidate and delayed decision algorithm. This 
algorithm (also known as M-L search) represents a very 

important part in multi-stage vector quantization [3]. Similar 
to the work presented in [4], it is employed in this study for 
determining the best prediction matrix among several 
prediction candidates according to results after vector 
quantization. It will be shown that compared to the baseline 
quantizer, proposed quantizers with 4, 5 or 6 bits allocated for 
predictor result with comparable quality and lower 
complexity, but can also offer much higher quality if more 
then 4 candidates are used.  

In the second part of the paper, a recently reported 
approach [5] for additional reduction of the number of 
operations for the studied quantization scheme will be shortly 
reviewed. This approach is aimed towards simplifying the 
prediction part since the prediction may also become an 
intensive task due to increased number of matrices. 
Simplification is achieved by replacing a larger number of 
matrix elements with zeros based on some selection criterion. 
Certainly, prediction calculation is then performed only on the 
remaining non-zero elements. Although more efficient, the 
simplification introduces some additional distortion.  

Therefore, in the final part of the paper two independently 
analyzed approaches are combined in order to find the best 
quality-complexity trade-off. It will be shown that LSF 
quantizers with 16, 32 or 64 sparse prediction matrices and 
delayed decision achieve the same quantization performance 
as the baseline systems with only 2 full matrices but at less 
then half of the operations for quantization.  
 

2. Simulation setup 
 

It is evident from introduction that this paper presents 
several techniques. Each of them will be shortly explained and 
its role and the obtained results discussed in the sections that 
follow. The aspects of simulation setup and quantizer 
evaluation that are common to all will be summarized here.  

All of the LSF quantizers were designed based on a speech 
database containing 20 minutes of speech (119960 LSF 
vectors), spoken by 2 male and 2 female speakers. Different 
speech material obtained from 7 male and 3 female speakers 
(59980 vectors) was used for their evaluation. Both databases 
were created by sampling at 8kHz and using 10th order robust 
LPC analysis. The analysis was performed on 25ms speech 
segments with two different LPC frame rates: FR = 100 and 
50 frames/s. Switched prediction with b = 1 up to 6 bits for 
predictor (number of matrices N = 2b) was combined with split 
VQ (4-6 split). The total number of bits per frame, B, was 
varied from 19 to 23 bits at 50=FR  frames/s and from 15 to 
19 at 100=FR  fr./s. The SVQ codebook sizes for a certain 
value of B and b were determined based on the minimum 
spectral distortion. 



Quantization performance was evaluated by the average 
log spectral distortion, SD, and percentage of the outlier 
frames with SD greater then 2 dB. Quantization complexity, 
denoted with K, was calculated as the total number of 
operations (multiplications, additions and comparisons) for 
prediction and VQ required for quantization of a single input 
vector. All results presented here were obtained based on 
vectors from the evaluation speech database. 
 

3. SP-SVQ with delayed decision 
 

In a classical SP-SVQ LSF quantization scheme [1], first 
order vector linear prediction of the input LSF vector x(n) is 
performed first. It is based on a preceding quantized vector 

)1(ˆ −nx  and a predictor composed of N switched matrices Ai, 
i = 1,..., N determined in the design process. Prediction 
residual e(n) is found as a difference between the original and 
the prediction vector and it is then vector quantized. The 
reconstructed LSF vector ),,(ˆ nn jmnx  is obtained by a 
similar process described with: 

)(ˆ) , ,1(ˆ),,( ˆ 11 njmnjmn jnnmnn exAx +−= −−  (1) 

where Am is a switched matrix chosen as "best" for prediction 
and jê  represents the "closest" quantized value of the 

prediction residual, both for the n-th LSF vector. 
Index j is a result of minimization of the weighted 

Euclidean distance (WED) commonly used as distortion 
measure in VQ. On the other hand, index m is normally 
obtained from the minimal squared or weighted squared 
Euclidean norm of the prediction residual (i.e. residual energy) 
and has no direct relation to the final result after quantization.  

Since there is no guarantee that the best prediction residual 
will produce the best overall result it is reasonable to 
determine the best prediction according to the combined 
prediction-quantization result (i.e. delayed decision). To avoid 
prohibitively complex exhaustive search of all possible 
combinations for indexes m and j, quantization is performed 
on a group of residual vectors (called prediction candidates) 
ranked according to the minimal squared Euclidean norm 
criterion.  

To evaluate this approach, a group of quantizers with 
different parameters b and number of prediction candidates, 
M, was designed. Their performance at FR = 50 fr./s with 
B = 21 is presented in Figure 1 while quantizers with B = 16 
(FR = 100) are shown in Figure 2. Different lines connect 
quantizers of the same total number of bits for predictor while 
each symbol type represents a quantizer of different value for 
M.  

As expected, complexity of quantization is increased if 
more then one prediction residual ,is vector quantized, but on 
the other hand performance gain is significant. The relative 
improvement of quality is inversely proportional to the 
number of candidates. It is interesting to compare the baseline 
quantizers with b = 1 (marked with circles) to those with 
higher number of prediction matrices and higher M. Although 
quantizers with higher b and only one candidate (i.e. classical 
approach) offer substantial reduction of complexity (except for 
the quantizer with b = 6 at FR = 100, Fig. 2), they suffer from 
certain loss of quality. As can be seen, this can be very 
efficiently compensated for by increasing the number of 

candidates to 2 or 4, thus obtaining quantizers with lower 
distortion and still less computation then the baseline.  
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Figure 1. Number of operations vs. SD for SP-SVQ quantizers 
with delayed decision, B = 21, FR = 50 fr./s 
 

0.94 0.96 0.98 1.0 1.02 1.04 1.06 1.085

10

15

20

25

30

35

40

M = 1 
M = 2 
M = 4 
M = 8 
M =16 

b = 6
b = 5 
b = 4 
b = 3 
b = 2 
b = 1

K 
[×

10
3  o

pe
ra

tio
ns

] 

SD [dB]  
Figure 2. Number of operations vs. SD for SP-SVQ quantizers 
with delayed decision, B = 16, FR = 100 fr./s 
 

On the other hand, if quantization quality is of primary 
interest, quantizers with b = 5 or 6 bits for predictor and more 
then 4 candidates represent very good options. For such 
quantizers the reduction of SD compared to the baseline 
quantizer is close to 0.1 dB, at FR = 50. 
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Figure 3. Number of bits per frame vs. SD for baseline and 
quantizers with delayed decision, FR = 50 fr./s 
 



Furthermore, if the positions of the baseline quantizers 
having one more bit per frame (B = 22 and B = 17) are 
observed (circled stars), it is obvious that this technique can 
actually save up one bit of the total bit-rate sometimes even 
with lower overall complexity. 

To demonstrate that the improvement offered by delayed 
decision algorithm is consistent over all considered bit-rates, 
the baseline quantizers and those with 4 candidate and b = 5 
are shown in Figure 3 for FR = 50. It can also be noted that all 
multi-candidate quantizers in Figure 3 have between 10 and 
30% lower complexity then the baseline quantizers.  
 

4. Quantizers with sparse predictors 
 

Prior research used as basis for this paper has been focused 
on computationally efficient SP-SVQ spectrum quantization 
techniques obtained by modifying the prediction part. 
Approach that has proved the best in that sense is allocating 
more bits for predictor and additionally reducing the number 
of operations for prediction by replacing some nonzero 
elements in prediction matrices with zeros (i.e. matrices 
become sparse). This approach will be shortly described next. 

Two issues had to be addressed: first, which matrix 
elements to set to zero and second how to calculate the 
optimal values of the remaining nonzero elements. An 
algorithm has been developed [5] for calculating optimal 
sparse predictors that also incorporates the optimal criterion 
for element reduction. In the algorithm, no restrictions on the 
sparse matrix structure (zero-nonzero element arrangement) 
are made, so each row of any prediction matrix can have an 
arbitrary number of nonzero elements on arbitrary positions 
and is therefore treated independently of others. That way 
prediction matrix rows are actually scalar predictors of the 
order equal to the number of nonzero elements. Replacing 
nonzero elements with zeros in any matrix row results with the 
increase of prediction residual energy since the order of that 
scalar predictor is reduced and furthermore, its element values 
are no longer optimal. If the element values are recalculated 
(i.e. made optimal) [5] for the reduced prediction row, the 
increase of residual energy would be less. Thus, by the 
proposed criterion for element reduction, the elements to be 
replaced with zeros are selected in a way that the increase of 
the residual energy after re-computation of the prediction 
matrix row is the least. In a switched predictor scheme, those 
elements are searched across all rows of all switched matrices. 

Design of sparse switched predictors is an iterative 
procedure resulting with a new set of optimal matrices in each 
iteration that, in addition, have less and less nonzero elements 
as iterating progresses. Each iteration is characterized by a 
number called the element reduction factor, η, defined as the 
ratio between total number of elements in all N full switched 
matrices of dimension k × k and total number of nonzero 
elements S in all sparse matrices: 

SkN 2⋅=η  (2) 

In the quantizer design the optimal sparse predictor and the 
SVQ codebooks are first designed in the open-loop and then 
refined by a certain number of closed-loop iterations as in [1]. 
Extensive simulations have been performed and SP-SVQ 
quantizers with sparse predictors (called sparse quantizers for 
short) for different values of η, b, B and at both frame rates 
have been designed. Only the most interesting results will be 
presented here. Performance of a group of proposed quantizers 

with element reduction factors η equal to 3, 6 and 10 and with 
b = 4, 5 and 6 is shown in Figure 4. These quantizers are 
realized at FR = 100 fr./s with total of B = 16 and 17 
bits/frame. Besides these sparse quantizers, full quantizers 
(η = 1) with b = 1 (circled stars) and b = 4, 5 and 6 (triangles) 
are also shown for comparison since the former result with the 
highest quality while the latter group illustrates the influence 
of higher number of switched prediction matrices.  
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Figure 4. Number of operations vs. SD for sparse and full 
quantizers with different b and η, at FR = 100 fr./s 

 
It is obvious from Figure 4 that the increase of the number 

of (full) matrices (compare stars with triangles) simplifies 
computation in most cases, but can also make it even more 
complex (b = 6). The increase of distortion is also evident. 
Technique with sparse matrices reduces K for all values of b, 
most effectively for b = 5 and 6. As for the element reduction 
factor, it can be noticed that quantizers with η = 3 (squares) 
offer the steepest reduction in number of operations relative to 
the full matrix cases as well as the highest quality of all sparse 
quantizers. If even lower complexity is required, quantizers 
with η = 6 can be used. Those with η = 10 result with the 
highest distortion and insignificant decrease of K compared to 
cases with η = 6 but may be used for implementations with 
limited memory capacity. 

The choice of the best quantizer concerning b depends on 
the total number of bits per frame and can be either 4, 5 or 6. 
Complexity of quantizers with b < 4 is higher so they were 
not further discussed. The achieved reduction of K for sparse 
quantizers compared to the baseline quantizers with b = 1 
(stars) also depends on B and is higher for higher values of B. 
For FR = 50 fr./s the increase of the number of matrices by 
itself greatly reduces the total number of operations for 
quantization, but sparse quantizers with η = 3 offer some 
additional reduction of K (see Figure 5, for M = 1) . 

 
5. Sparse SP-SVQ with delayed decision 

 
From discussion in the previous sections it is obvious that 

delayed decision improves quantization quality on the account 
of increased complexity. On the other hand, the technique with 
sparse matrices reduces prediction complexity but introduces 
some additional distortion. Combining the two approaches 
comes as a logical solution for achieving the best complexity-
quality trade-off.  

To evaluate the effectiveness of the proposed technique a 
large number of LSF quantizers was designed. Figures 5 i 6 



present the results obtained for B = 21 bits/frame at FR = 50 
fr./s and B = 16 at FR = 100 fr./s respectively. Only the 
quantizers with values of b that result with best complexity-
quality trade-off are shown. Others may be less complex but 
exhibit higher distortion or vice versa. 
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Figure 5. Number of operations vs. SD for different 
quantizers, B = 21, at FR = 50 fr./s 
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Figure 6. Number of operations vs. SD for different 
quantizers, B = 16, at FR = 100 fr./s 

 
The sparse and the full quantizers obtained without delayed 

decision are located at the bottom right side of both figures 
(M = 1). The effect of multiple prediction candidates is 
obvious: the quantizers move towards lower values of 
distortion but require somewhat higher number of operations 
for quantization. Proposed quantizers with M = 2 achieve 
quality comparable to the baseline quantizers using less then 
half of the number of operations. Quantizers with M = 4 are 
still less complex but offer reduction of SD of 0.02-0.05 dB 
depending on other quantizer parameters. 

The percentage of outliers p2dB obtained for all presented 
techniques will be discussed based on the results shown in 
Figure 7. As it was reported previously [1], the increase of the 
number of matrices increases p2dB. (compare the baseline 
quantizer marked with a circle to full quantizers, M = 1). 
Technique with sparse prediction matrices does not increase 
the outliers more then it is a consequence of the increased 
distortion. Since outliers are perceptually important, the best 
quantizer should have the lowest p2dB for any resulting SD. As 
can be seen in the figure, sparse quantizers with delayed 
decision exhibit such behavior while p2dB of the full multi-
candidate quantizers is generally higher. 
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Figure 7. Percentage of outliers vs. SD for different 
quantizers, B = 21, at FR = 50 fr./s 
 

6. Conclusion 
 

Contrary to the previously reported results that the highest 
quality of SP-SVQ quantizers can be achieved with only 2 
prediction matrices, it is shown in this paper that much better 
quality can be obtained using 32 or 64 matrices and delayed 
decision algorithm. If the optimal sparse matrices are used in 
conjunction with delayed decision, the resulting quantizers 
achieve the quality comparable to the baseline quantizers but 
with less then half of complexity. 
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