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Abstract 

 
A modification of a classical Predictive Vector 

Quantization (PVQ) technique with switched-adaptive 
prediction for line spectrum frequencies (LSF) 
quantization is proposed in this paper, enabling 
significant reduction in complexity. Lower complexity is 
achieved through use of higher number of switched 
prediction matrices but with reduced number of their non-
zero elements. The structures of such matrices and 
optimal matrix elements are obtained to maximize the 
quantizer closed-loop prediction gain. A comparison of 
the proposed quantizer to the ones with full prediction 
matrices as well as to the quantizer incorporating 
diagonal matrices is given. The effectiveness of the 
proposed approach is shown and the trade-off between 
complexity and quality of the quantizer is analyzed. 

 
 

1. Introduction 
 
It has been shown by many authors that applying 

memory-based techniques for speech spectrum 
quantization results with lower bit-rates compared to the 
memoryless VQ. This has also been substantiated in a 
recent survey [1] showing that quantization schemes 
based on predictive vector quantization (PVQ) approach 
theoretical limit that can be achieved with interframe 
coding techniques. The line spectrum frequencies (LSF) 
representation of the LPC spectrum has been established 
as the best parameter set for such quantization schemes 
since LSF vectors of successive speech frames exhibit 
strong correlation. Adaptation of the predictor to the input 
LSF process is usually performed by switching between 
several pre-designed prediction matrices as in [2]. Bit 
allocation between switched predictor (SP) and VQ 
determines the trade-off between quantizer complexity 
and quality. The SP-VQ scheme with only two switched 
matrices (the one with the highest VQ complexity) has 

been shown [3] to result with the lowest average spectral 
distortion and has therefore been applied by a number of 
authors. 

In this work the aspect of computational complexity of 
the SP-VQ has primarily been investigated. The research 
is based on the fact that by increasing the number of 
switched predictor matrices VQ complexity can be 
considerably reduced. This, however, can sometimes 
result with significant increase of complexity of 
prediction that has to be dealt with. Prediction of any 
input vector is usually performed by multiplication of the 
vector with all switched matrices (typically of dimension 
10×10) and selecting the one that results with the closest 
prediction. One possible way of simplifying this task is 
utilizing binary-tree search of prediction matrices instead 
of the optimal exhaustive search [4]. Another approach is 
setting to zero most of the elements of switched matrices 
that has to be supported by efficient computational 
procedures then performed only on the remaining nonzero 
elements. For example, full prediction matrices can be 
approximated with diagonal ones, as mentioned by some 
authors in [1], [2] and later investigated in [5]. 

Although a certain loss of quantization quality is 
inevitable if prediction matrix elements are zeroed, a 
fixed structure (pattern of zero and nonzero elements) of 
diagonal prediction matrices may not result with the best 
quality of reconstructed speech for that number of 
nonzero elements. A general technique that does not 
impose any restrictions on the matrix structures was 
introduced in [6]. Moreover, in this approach matrix 
element values are calculated to be optimal for the 
obtained structures. Application of this technique in LSF 
quantization is presented in this paper with detailed 
analysis of the achievable results. It will be shown that the 
obtained sparse prediction matrix quantizers (called 
'sparse quantizers' for short) with 32 or 64 switched 
matrices can have several times lower overall complexity 
compared to the baseline SP-VQ systems with only 2 
matrices. Furthermore, sparse quantizers outperform 



quantizers with diagonal prediction matrices, for cases 
with equal total number of predictor nonzero elements. 

 
2. Sparse switched predictor design 

 
In the classical SP-VQ quantization scheme, design of 

the switched predictor is an iterative procedure [3]. In 
each iteration input vectors of the training sequence are 
encoded and classified into N classes based on prediction 
matrices used for their prediction. For each of the classes 
covariance matrices are calculated as in (1) and (2): 
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and then used for determination of a new set of prediction 
matrices Nmkk
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Design of sparse switched predictors is also an 
iterative procedure resulting with a new set of optimal 
matrices in each iteration that, in addition, have less and 
less nonzero elements as iterating progresses. 
Computational complexity of prediction is proportional to 
the total number of nonzero elements in all N switched 
matrices. Therefore each iteration p is characterized by a 
number called the element reduction factor, η, defined as 
the ratio between total number of elements in full 
matrices of dimension k and total number of nonzero 
elements S in all sparse matrices: 

)()( 2 pSkNp ⋅=η . (4)  

One design iteration consists of the two basic steps: 1. 
iterative predictor refinement for the current sparse 
structure and 2. determination of the new predictor 
structure. Suppose that p-1 design iterations have already 
been performed. The pth iteration starts from N switched 
matrices determined in the second step of the previous 
iteration. Matrix elements are optimal for their current 
structures but were calculated from covariance matrices 
(vector classification) corresponding to the previous 
iteration. Therefore, keeping the structures fixed, a set of 
prediction matrices is iteratively refined in the first step of 
the pth iteration. This is performed analogously to the 
classical design procedure by repetitive encoding 
(reclassification) and predictor calculation until the 
change in prediction gain is small enough. Due to the 

sparse structure, prediction matrix elements are calculated 
differently than in (3), by way of modified algorithm [6].  

At this point the resulting matrices are saved since they 
represent optimal solutions for given structures and factor 
η (p). Second design step is then performed in order to 
obtain switched matrices of higher element reduction. 
New structures are realized by setting to zero an arbitrary 
number of nonzero elements selected among all elements 
of all switched matrices by applying the reduction 
criterion that ensures the highest prediction gain. This 
criterion together with the modified algorithm for 
calculation of the optimal element values of sparse 
matrices is briefly described in the following section. 
After element reduction and recalculation, the current 
iteration is finished.  

The above design procedure is repeated until all sets of 
sparse matrices of desired element reduction factors η are 
obtained. Since there is no restriction on the choice of the 
removed elements, the method results with sparse 
matrices having different number of nonzero elements 
located on different positions in each of the matrices. This 
way the matrix structures and element values are 
inherently adjusted to model only the strongest 
correlations of the input LSF vector process. 

An example of a sparse predictor with N = 8 matrices 
having in total 1/10-th of elements of the full predictor is 
shown in Figure 1. The black fields represent nonzero 
elements while the white fields represent zeros. 

 
Figure 1. Sparse prediction matrices with k=10, N=8 
and η = 10 

 
2.1. Sparse predictor computation 

 
An algorithm has been developed [6] for calculating 

optimal sparse predictors that also incorporates the 
optimal criterion for element reduction. Sparse matrices 
are always calculated row by row since the structure of 
each of them can be different. Each row of any sparse 
prediction matrix can be treated as a scalar predictor of 
the order equal to the number of nonzero elements in that 
particular row. If an additional nonzero element of the ith 



row is set to zero, predictor order is reduced by one, 
resulting with monotonic increase of the prediction 
residual energy. This increase can be reduced if the 
remaining elements of that row are recomputed to be 
optimal for the new predictor order. Therefore the 
elements are set to zero in a way that the increase of the 
residual energy after row re-computation is the least.  

Let ))(( ir
iα  denote the optimal ith row of any sparse 

switched matrix (matrix index m is omitted for 
simplicity). Number )(ir  denotes the number of elements 
already set to zero in that particular row. According to the 
algorithm, ))(( ir

iα  is calculated as: 
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where vector iγ  is the ith column of the covariance matrix 

mΓ . Matrix ))(( ir
iB  is an auxiliary matrix associated with 

))(( ir
iα , having )(ir  rows and )(ir  columns equal to zero 

vectors. The indexes of zero rows and columns 
correspond to the positions of zeroes in ))(( ir

iα . Initially, 
for the row with all nonzero elements ( 0)( =ir ), matrix 

)0(
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mC . Criterion for reduction of one 
additional element of the ith row is given by: 
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i.e. as the ratio of the square of every nonzero element of 
that row ))((

,
ir

jia  and corresponding diagonal element 
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iB . If this criterion is applied to 

all rows ki ,,1K=  independently, the element ))((
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that results with the smallest ratio across the whole matrix 
is found and then set to zero. Only the matrix ))(( Ir

IB  
corresponding to the selected row has to be recalculated. 
The recursive expression for calculation is given by:  
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where ))((
)(

ir
jiβ  represents the jth column of ))(( ir

iB .  
The above operation performed by substituting i = I 

and j = J will zero the Jth row and column of )1)(( +Ir
IB . 

New optimal row )1)(( +Ir
Iα  is then obtained as in (5) thus 

increasing the prediction residual energy by )1)((
,

+Ir
JID . In 

the switched predictor scheme, the element search is 
performed over all N matrices and the element resulting 
with the least increase is selected as the one for reduction. 

3. Simulation results 
 

Extensive simulations were carried out with a number 
of different LSF quantizers. Speech database used for 
quantizer design contained 20 minutes of speech (119960 
LSF vectors), spoken by 2 male and 2 female speakers. 
Quantizers were evaluated on a different speech material 
obtained from 7 male and 3 female speakers (59980 
vectors). Both databases were created from speech data 
sampled at 8kHz and analyzed using 10th (k=10) order 
LPC analysis performed on 25ms speech segments at two 
different LPC frame rates: FR = 100 and 50 frames/s.  

Designed quantizers combined switched prediction and 
full-searched split vector quantization (split 4-6) of the 
prediction residual. The total number of bits per frame, B, 
was varied from 19 to 23 bits for FR = 50 fr./s and from 
15 to 19 for FR = 100 fr./s. The number of bits specifying 
the switched prediction matrix was b = 1, 4, 5 and 6 
(number of matrices N = 2b). For the given B, the bit 
allocations (for predictor b, and the first and the second 
sub-vector codebook, b1-b2) producing the best results 
are given in Table 1.  

 
Table 1. Bit allocations for quantizers  
 

FR=50 fr./s 
b \ B 19 20 21 22 23 

4 6- 9 7- 9 7-10 8-10 8-11
5 6- 8 6- 9 7- 9 7-10 8-10
6 5- 8 6- 8 6- 9 7- 9 7-10

FR=100 fr./s 
b \ B 15 16 17 18 19 

4 5- 6 5- 7 5- 8 6- 8 6- 9 
5 4- 6 5- 6 5- 7 5- 8 6- 8 
6 4- 5 4- 6 5- 6 5- 7 6- 7 

 
Initial predictors and vector quantizers obtained in the 

open-loop design procedure were improved in the closed-
loop as in [3]. Besides the proposed sparse quantizers 
with different element reduction factors η, a group of 
quantizers with normal (full) prediction matrices was also 
designed for comparison (called 'full quantizers'). 

Quality of the proposed quantization scheme was 
evaluated by the average log spectral distortion, SD, 
determined on the evaluation database as the RMS error 
between the original and the quantized LPC log power 
spectra. Percentage of the outlier frames with SD greater 
then 2 dB was also calculated. Another important 
performance measure was the overall quantizer 
complexity, denoted with K. It was calculated as the total 
number of arithmetic operations (multiplications, 
additions and comparisons) for both prediction and VQ 
that are required for quantization of a single input vector. 
Since this work was aimed towards reducing complexity 



while maximizing the quantizer quality, most of the 
results are presented as complexity (K) vs. distortion (SD) 
curves. 

For illustration of the influence of element reduction 
factor η, sparse quantizers with 10 different values of η 
(from 1 to 10 in steps of 1) were designed for B = 21 
(FR = 50) and for B = 17 bits/frame (FR = 100). The 
results are shown in Figures 2 and 3 where each point on 
the curves represents one quantizer obtained with 
different values of η and b. As expected, higher η (less 
nonzero elements) results with lower complexity at the 
cost of somewhat increased SD. Obviously the highest 
reduction of complexity occurs for quantizers with the 
highest number of matrices (b = 6) but for these SD is 
also increased the most. It is interesting to observe that K 
falls abruptly as η is increased from 1 to 6, but only minor 
complexity reductions can be gained afterwards. 
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Figure 2. Number of operations vs. SD  for sparse 
quantizers with B = 21 and different η (FR = 50 fr./s) 
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Figure 3. Number of operations vs. SD  for sparse 
quantizers with B = 17 and different η  (FR = 100 fr/s) 
 

Quantizers for all other values of B were designed with 
three different element reduction factors η equal to 
3, 6 and 10. Their performance obtained with the highest 
tested number of switched matrices (b = 6) is shown in 
Figure 4 for FR = 50 and Figure 5 for FR = 100. Besides 
these sparse quantizers, full quantizers with b = 1 and 
b = 6 are also shown for reference since the former result 
with the highest quality while the latter group 
demonstrates the influence of the increased number of 
switched prediction matrices. In the figures, quantizers of 
different types are represented with different symbols 
while the lines connect quantizers having the same total 
number of bits per frame.  

First, the difference between full quantizers designed 
for two different frame rates is discussed. Namely, 
increasing the number of matrices from 2 (b = 1) to 64 
(b = 6) causes great reduction of number of operations at 
FR = 50 fr./s. On the other hand, for higher frame rate VQ 
codebooks are smaller so the number of operations for 
prediction (with b=5 or 6) prevails over the one for VQ. 
As a consequence, full quantizers with b=6 and B<18 
require even more operations compared to those with b=1 
(Fig. 5).  

As can be seen on Figures 4 and 5 for quantizers with 
(η >1), the proposed technique with sparse matrices 
solves the problem at higher frame-rate and also enables 
additional reduction of complexity for quantizers at 
FR = 50 fr./s. Complexity reduction factor κ is introduced 
as ratio of total number of operations for quantization (K) 
between any full quantizer with 2 switched prediction 
matrices and the sparse quantizer designed for the same B. 
The highest factors κ are obtained for sparse quantizers 
with element reduction factor η =10 and predictors with 
b = 5 or 6, depending on the value of B. Factors are in the 
range 3.0-6.1 for FR = 50, and 1.5-4.0 for FR = 100. 
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Figure 4. Number of operations vs. SD  for different 
sparse and full quantizers (FR = 50 fr./s) 
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Figure 5. Number of operations vs. SD  for different 
sparse and full quantizers (FR = 100 fr./s) 
 

Sparse predictor structure as well as the increased 
number of switched matrices result with certain loss in 
quality of sparse quantizers compared to the full 
quantizers with b = 1 (both having the same number of 
bits per frame, B). This loss can be expressed as the 
required increase of bit-rate, B∆ , of sparse quantizers for 
achieving the quality (SD) of baseline quantizers. These 
values are almost independent of B so they were averaged 
across all used bit-rates. The resulting values of B∆  for 
different sparse quantizers are given in Table 2. It is 
obvious that the numbers are very similar at both frame-
rates and increase with both b and η . Comparing the 
values in Table 2 with results on Figures 4 i 5, it is 
obvious that the best complexity-performance trade-off 
can be achieved with sparse quantizers with η = 6. 

 
Table 2. The average increase of bit-rate ∆B for 
different sparse quantizers compared to the full 
quantizers with b = 1 
 

B∆  [bit] η b 
FR = 50 FR = 100 

5 0.72 0.76 3 
6 0.74 0.76 
5 0.89 0.91 6 6 0.97 0.93 
5 1.23 1.33 10 6 1.34 1.38 

 
As can be seen in the example on Figure 6, the 

percentage of outliers, p2dB, is not increased by the sparse 
matrix technique itself. It is somewhat higher for 
quantizers with higher b compared to quantizers with 
b = 1 since the same VQ codebooks are used for all 
residual vectors (regardless of the class).  
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Figure 6. Percentage of outliers vs. SD  for different 
quantizers (FR = 100 fr./s) 

 
To emphasize the advantage of the proposed 

technique, sparse quantizers with η = 10 are compared to 
quantizers designed with diagonal prediction matrices 
(called 'diagonal quantizers' for short). These diagonal 
quantizers are chosen for comparison since they represent 
the simplest and most straightforward approach for 
reducing the complexity of prediction. Both the sparse 
and the diagonal type of predictors have the same total 
number of nonzero matrix elements and therefore result 
with the same complexity. A group of such quantizers 
designed with b = 6 and at FR = 50 is shown on Figure 7 
together with full quantizers with b = 1 for reference. It is 
obvious that the resulting spectral distortion of the 
optimal sparse quantizers is much lower then it is the case 
of quantizers with diagonal prediction matrices. This 
difference is around 1 bit if expressed in B∆ . 

 

 

Figure 7. Number of operations vs. SD  for quantizers 
with sparse, diagonal and full predictors (FR = 50 fr/s) 
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In this paper, it has been demonstrated based on 
various simulation results that the proposed technique 
offers a good solution if complexity of the SP-VQ 
quantization scheme is a matter of concern. The actual 
implementation was outside the scope of this paper. 
Nevertheless, this technique has been implemented in real 
hardware and the obtained results substantiate the 
effectiveness of the approach. 

 
4. Conclusion 
 

Although reduction of the LSF quantizer complexity 
can be achieved in various ways, this paper demonstrates 
how this can be accomplished by modifying prediction in 
the SP-VQ scheme by using large number of sparse 
switched prediction matrices. It was shown that proposed 
quantizers with optimal sparse matrix structures result 
with lower spectral distortion (or require 1 bit less) then 
those designed with diagonal predictors. By variation of 
several design parameters, it is possible to realize the 
quantizer that offers the best compromise between 
complexity and quantization quality for the actual 
application. Although this technique was tested on the 
LSF process, it may be applied to any vector process with 
similar correlation properties.  
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