
A Moment Method Solution for the Input Impedance
of a Magnetic Dipole

L. Vegni°, A. Toscano°, and D. Bonefacic+

°Third University of Rome, Department of Electronic Engineering,
Via della Vasca Navale 84, I-00146 Roma, Italy

Fax (+ 39 6) 55 79 078  Phone (+39 6) 55 17 7003  E-mail: vegni@inf.uniroma3.it
+University of Zagreb, Faculty of Electrical Engineering and Computing,

Unska 3, HR-10000 Zagreb, Croatia
Fax (+ 385 1) 61 11 396 Phone (+ 385 1) 61 29 772 E-mail: bona@zea.cc.fer.hr

Abstract - A very efficient yet rigorous method is presented
for the analysis of the input impedance of a magnetic dipole.
The method is based on the well known Moment Method
(MoM) and can be used for the analysis of single elements
and arrays as well. The antenna is fed by an electric point-
source or it can be excited by an incident wave. We have
found a way to evaluate analytically the infinite integrals
involved with the moment method. This results in a great
reduction of computer time. The results computed by using
the presented theory show very good convergence.

I  INTRODUCTION

In this article the spatial fields in integrated magnetic
dipole antennas are investigated. We have chosen the
method of moments in order to perform the analysis. A
current loop is chosen to represent the magnetic dipole.
The geometry of the structure under examination is shown
in Fig.1.

Fig.1. Geometry of the problem.

The loop is located at the z=0 plane. The electric point-
source is located at φ=φS  and εr is the (complex)
permittivity of the substrate material. Applying the method
of moments, the integral equation which defines the total
electric field outside the loop can be transformed into a set
of linear equations by selecting appropriate expansion and
test functions for the unknown current on the metallic
structure embedded in the substrate [1], [2]. After applying
some analytical manipulations we arrive at a matrix
equation.

The unknown current on the loop is expanded in entire
domain sinusoidal basis functions. We have chosen entire
domain basis functions on the loop [3], because only a few
of these modes are needed in order to obtain accurate

results. If subdomain basis functions were used, the
number of basis functions needed would be much larger
(>100 typically). Once the mode coefficients are known,
the input impedance and the radiation characteristics can
be determined.

II  THEORETICAL FORMULATION

A great disadvantage of the method of moments is the
fact that this method is, from a numerical point of view,
very time consuming. The Sommerfeld integral
representation of the considered structure is very poorly
convergent. The theoretical formulation, that we propose
in this contribution, shows how to determine in a closed
analytical form the integration needed in the MoM
approach. Our approach is appropriate to simplify the
MoM type evaluation of the currents induced on arbitrarily
shaped magnetic dipole antenna elements and to extract
important information to be used in the project, about the
influence of the frequency, constitutive parameters,
thickness of the slab. Moreover, we remark that, once the
modelization of the considered magnetic dipole is
obtained, the number of the elements in the array
configuration is no longer an obstacle for the analysis.

The tangential component of the total spatial electric
field must vanish on the metallic surface S of the magnetic
dipole (Fig.1.):

n E n E× = − ×s i on    S   , (1)

where Ei and Es are the incident and scattered field and n
is the unity normal vector on S. To analyze the current
loop we suppose that the conductor of which the loop is
formed is thin, i.e. that the radius of the conductor a is
much smaller than the loop radius b (Fig.1.).
Subsequently, the current on the loop is supposed to be
confined on the conductor axis, and the boundary
condition is applied only to the axial component of the
electric field on S. Now (1), in a cylindrical coordinate
system, can be rewritten as:

E Es i
φ φ=− . (2)

Equation (2) can be formally rewritten in an operator
form:

L I Ei[ ] = φ , (3)
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which can then be solved by using the moment method
procedure. For the geometry in Fig. 1. it can be shown that
the integro-differential operator L is:
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where:

( )[ ]R b a

b sin
a
b

= − − + =

=
−


 


 +



 




2 1

4
2

2 2

2

cos '

'
,

φ φ

φ φ (5)

and k is the wave number in the dielectric medium in
which the magnetic dipole is placed.

As basis functions we choose functions of the form:

f en
jn= φ . (6)

Now, the electric current on the loop can be expanded in
Fourier series in terms of the basis functions given in (6):

I I f I en n n
jn

nn
( )φ φ= = ∑∑ . (7)

In are the unknown coefficients to be determined. By
substituting (7) into (3), because of the linearity of the
operator L, we have:
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For the weighting functions we choose:

w f em m
jm= = −* φ . (9)

By applying the inner product with the weighting
functions on (8) we obtain:
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Introducing the notation:
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(10) can be written in a matrix form:

[ ] [ ] [ ]Z I Vmn n m⋅ = ,  (13)

which is then solved for the unknown coefficients In. To
evaluate (11) it is necessary to determine how L
transforms the basis functions (6). It can be shown that:
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In (14), Kn are the coefficients of the Fourier series given
by:
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where R is given by (5).
Because of the rotational symmetry of the ring and the

bi-orthogonality of fn and wm, the matrix [Zmn] is diagonal
with elements given by:

Z mn = 0 ; m ≠ n
and
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So [Zmn] can be easily inverted to find the unknown
current coefficient vector [In] from (13). Once the current
coefficients are determined, the current distribution on the
loop can be found form (7). So, for an Dirac delta source
with amplitude Vs placed at φs=0°, the current distribution
is:
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Also the input admittance of the current loop - magnetic
dipole can be calculated. The admittance at φ=φs=0° is:
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To calculate the coefficients Kn given by (15) a
following recursion relation can be used:

K K Kn n n+ = +1 ∆ ,  (19)

where ∆Kn is given by:

∆ ΩK k b j J k bn n n= ++ +2 1 2 12 2( ) ( )      .  (20)

Here Jn is the Bessel function of the first kind of order n,
and Ωn is the Lommel-Weber function defined as:
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To start the recursion given by (19) the coefficient K0

can be calculated as:
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When a magnetic dipole is used as a receiving antenna,
it is interesting to study the current distribution on the
loop induced by a plane wave incident on the dipole. The
elements of the voltage excitation vector are again given
by (12). For a plane wave with a unitary amplitude at the
origin (Fig.1.), with electric field vector oriented only in
the direction transverse to z axis, and incident from the
direction given by (φi ,θi) the excitation vector elements
are:
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In the case that the magnetic field  vector is oriented only
in the direction transverse to z axis, the excitation vector
elements are:
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III  NUMERICAL RESULTS

The properties of a magnetic dipole have been
calculated using the theory described in section II. Also
the efficiency and convergence of this approach have been
tested.

To calculate an exact input admittance, according to
(18), an infinite sum should be made. In practical
applications this sum should be truncated at a certain
finite number of terms n. The criterion for determining n
at which the sum will be truncated is the required accuracy
of the computed result.

The input admittance was calculated for different n.
The difference in percent between successive results for
increasing n at three normalized frequencies are shown in
Figs.2 and 3. It can be seen that the convergence is very
good and that for n≥9 an error of less than 2% can be
expected. Nevertheless, it should be said that by increasing
the ratio a/b (the wire becomes thicker), the convergence is
slower and in some cases the imaginary part of the input
admittance shows oscillatory behavior. This can be
ascribed to the fact that the theory was developed starting
from the thin wire approximation.

The calculated real and imaginary part of the input
impedance in function of the b/λ ratio is shown in Figs. 4
and 5. Here b is the loop radius and λ is the wavelength.
In this case it was chosen n=9, what is a compromise
between result accuracy and time required for
computation.

The real and imaginary part of the calculated current
distribution on the loop for the case of Dirac delta

excitation at φ=φs=0° are shown in Figs. 6 and 7
respectively. The calculation was performed for four
resonant cases, i.e. kb=0.5 ; 1; 1.5 and 2.

The current distribution induced by a plane wave
excitation is shown in Figs. 8 and 9.

2 4 6 8 10

n1E-10
1E-08
1E-06
1E-04
1E-02
1E+00
1E+02
1E+04

%

0

Fig.2. Difference in percent between the successive values
of the real part of the input admittance calculated
for increasing number n of terms in the series (18)
for the cases b/λ=0.1 (solid), 0.2 (dashed), 0.3
(dotted), a/b=0.01 .
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Fig.3. Difference in percent between the successive values
of the imaginary part of the input admittance
calculated for increasing number n of terms in the
series (18) for the cases b/λ=0.1 (solid), 0.2
(dashed), 0.3 (dotted), a/b=0.01 .
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Fig. 4. Real part of the input admittance as a function of
b/λ, n=9, a/b=0.01 (solid), a/b=0.001 (dashed) .
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Fig. 5. Imaginary  part  of  the  input  admittance  as  a
function of b/λ, n=9, a/b=0.01 (solid), a/b=0.001
(dashed).
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Fig.6. Real part of the current excited on the loop by a
Dirac delta source (Vs= 1 V) at φ=φs=0° for the
cases kb=0.5 (dotted), 1.0 (solid), 1.5 (dot-dashed)
and 2 (dashed); a/b=0.01, n=9
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Fig.7. Imaginary part of the current excited on the loop by
a Dirac delta source (Vs= 1 V) at φ=φs=0° for the
cases kb=0.5 (dotted), 1.0 (solid), 1.5 (dot-dashed)
and 2 (dashed); a/b=0.01, n=9
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Fig.8. Real part of the current induced on the loop by an
incident wave (φi=0°; θi=45°) with the electric field
transverse to z axis for the cases kb=0.5 (dotted),
1.0 (solid), 1.5 (dot-dashed) and 2 (dashed);
a/b=0.01, n=9 .
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Fig.9. Imaginary  part  of the  current induced  on the loop
by an incident wave (φi=0°; θi=45°) with the
electric field transverse to z axis for the cases
kb=0.5 (dotted), 1.0 (solid), 1.5 (dot-dashed) and 2
(dashed); a/b=0.01, n=9 .

IV  CONCLUSIONS

An efficient and accurate method for calculating the
properties of a current loop - magnetic dipole has been
presented. The calculation is based on the moment method
procedure, yet a way to calculate the associate integrals in
a closed form has been used. This allowed a very efficient
and accurate calculation with very good convergence. So
only a few members of the resulting series have to be
added to achieve accurate results.
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