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Abstract - A very efficient yet rigorous method is presented  results. If subdomain basis functions were used, the
for the analysis of the input impedance of a magnetic dipole. number of basis functions needeguld bemuch larger
The method is based on the welknown Moment Method (>100 typically). Oncehe mode coefficientsre known,

(MoM) and can be used for the analysis of single elements o ingt impedancand the radiatiosharacteristics can
and arrays as well. The antenna is fed by an electric point- be determined

source or it can be excited by an incidentvave. We have
found a way to evaluate analyticallythe infinite integrals
involved with the moment method. Thisresults in a great
reduction of computer time. The results computed by using Il THEORETICAL FORMULATION
the presented theory show very good convergence.
A great disadvantage of the method of moments is the
fact that thismethod is, from a numerical point view,
| INTRODUCTION very time consuming. The Sommerfeld integral
representation of the considered structureveisy poorly
In this article the spatidields in integrated magnetic convergent. The theoretical formulatidhat we propose
dipole antennas are investigated. We hastsen the in this contribution,shows how to determine in dosed
method of moments in order to perform the analysis. Analytical form the integration needed in the MoM
currentloop is chosen to represetite magnetic dipole. approach. Our approach is appropriatestmplify the
Thegeometry othe structure under examinationsisown  MoM type evaluation of the currents induced on arbitrarily
in Fig.1. shaped magnetic dipokntennaelementsand toextract
important information to be used the projectabout the
influence of the frequency, constitutive parameters,
thickness of the slaiMoreover, weremark thatonce the
modelization of the considered magnetic dipole is
obtained, the number of the elements in the array
configuration is no longer an obstacle for the analysis.
The tangential component of the total spatial electric
> field must vanish on the metallic surface Shaf magnetic
y dipole (Fig.1.):

nxES=-nxE' on S , (1)

whereE' andE® are the incident anscattered fieldandn
is the unity normalector on S. To analyzéhe current
loop we supposéhat theconductor of which thdoop is

Theloop islocated at the z=0 plane. The electric point-formed isthin, i.e. that the radius of theonductor a is

rce is located nd s th molex much smaller than the loop radius b (Fig.1.).
source is located ap=gs and ¢ is the (complex) Subsequentlythe current on thkop is supposed to be

permittivity of the substrate material. Applying the methoqonfined on the conductor axisand —theboundary

of moments, the integral equation whidkfinesthe total  congition is applied only tdhe axial component of the
electric field outsidéheloop can be transformed into & setg|ectric field on SNow (1), in a cylindrical coordinate

of linear e_quations by selecting appropriate expansion _"’“%9stempan be rewritten as:
test functions forthe unknown current on the metallic
structure embedded in the substrate [1], [2]. After applying s i
some analyticalmanipulations we arrive at a matrix Eo="E : (2)
equation.

The unknown current on theop is expanded ientire  Equation (2) can bdormally rewritten in an operator
domain sinusoidal basis functions. We have chosen entf@m: '
domain basis functions on theop [3], because only a few L[I]:Ezp , 3)
of these modesire needed in order to obtain accurate

Fig.1. Geometry of the problem.



which can then beolved byusing the moment method which is thensolved forthe unknowrcoefficients }. To
procedure. For the geometry in Fig. 1. it can be shivah  evaluate (11) it is necessary to determine how L

the integro-differential operator L is: transforms the basis functions (6). It can be shown that:
L{ ejncp} —
L[1]= Emub codg- ) @)1
I jooeb @) _j Bopb n? 0 o (14)
) g =265 2 (Ko +Kuma)= ey Kale .
B O @
where: In (14), K, are thecoefficients ofthe Fourier series given
by:
2n
R=42b2[1- codp-o)]+ & = Kk y= L @B —ij@ L)
\/ [ ] K, (=K_,) 2n£ e e pha , (15

— (5)
= b \/4 sihﬁvzi(p@+ %ﬁ ’ where R is given by (5).

Because ofhe rotationabymmetry ofthe ring and the
and k is thewave number in the dielectric medium in bi-orthogonality of f and w, the matrix [Z,] is diagonal
which the magnetic dipole is placed. with elements given by:

As basis functions we choose functions of the form:

' Zon =0 m#n
fo=el® : (6) and
Now, the electriccurrent on thdoop can be expanded in _ & 1 On
Fourier series in terms of the basis functions given in (6): Zyn=jminb 22 K t5K 1~ HpH K ng . (16)

@=) I,y = > 1, @)

So [Z.] can beeasily inverted to findthe unknown
currentcoefficient vector []] from (13). Once the current
I, are the unknowrcoefficients to be determined. By coefficientsare determined, the current distribution on the
substituting (7) into (3)pecause othe linearity of the loop can befound form (7). So, for an Dirac delsmurce

operator L, we have: with amplitude \ placed atp=0°, the current distribution
is:
S 1 tES L] £
Lo | =)L =E . 8 ®
. n nD ; n n (0] ( ) |((p): z Vn ejn(p: Vs z 1 ejncp:
. . . n znn n=-co znn

For the weighting functions we choose: (17)

W= f:n: e‘jm‘p . (9) V COS (n (P) O
By applying the inner product with the weighting 00 Znn ﬁ

functions on (8) we obtain:
Also the input admittance of the currdabp - magnetic
dipole can be calculated. The admittance=gt=0° is:
S I (W L[f ) = W nED) . (10)
n 100 <« 1 1 d

Y, =——== —_—=— 42
" Vs n:Z—oo Znn Z00 n:1znn

(18)
Introducing the notation:

To calculate thecoefficients K given by (15) a

Z :<w m:L[f n]>: 2j’Te—jmcp L[ejn(p'] bdp (11) following recursion relation can be used:
and ’ Kni =Ky +8K, , (19)
V= <Wm, Eip> :Te_jm‘p E"0 b dp : (12) whereAK, is given by:
0
DK =Qp0ey(2Kb)+ ] Jpn o(2KE) (20)

(10) can be written in a matrix form:

Here J is theBessel function othe first kind of order n,
[Zmn] Eﬁl n] =[V m] ; (13) andQ,is the Lommel-Weber function defined as:



1" excitation at ¢=@=0° are shown in Figs. éand 7
Q,(x)= ;[J’sin(x sifb-r) @& . (21) respectively. The calculatiowas performed for four
0 resonant cases, i.e. kb=0.5; 1; 1.5 and 2.
The current distribution induced by a plameave
excitation is shown in Figs. 8 and 9.

To start the recursion given by (19) tbeefficient kK
can be calculated as:

2kb . 2kb %

1 b 1 i

Ko== In?@—— Qo(X)dx == |Jo(¥) dx . (22)

°mla 2£° 2£° 1E+04
o . 1E+02 — N\
When a magnetic dipole is used as a receigimgnna, 1E+00 NN
it is interesting tostudy the current distribution on the >
loop induced by glanewaveincident on the dipole. The 1E-02 N
elements of thevoltage excitation vectaare agairgiven 1E-04 h
by (12). For a planevavewith a unitary amplitude at the 1 E_pg
origin (Fig.1.), with electric fieldrector oriented only in

the direction transverse to z axend incidenfrom the 1E-08 >
direction given by ¢ ,8) the excitationvector elements 1E-10 n
are:

0 2 4 6 8 10
= 1b e in® D) - i,
Vo =1th "€ [J,1(kbsirB) - J-4( kb sif)] . (23) Fig.2. Difference in perceritetweerthe successive values
of the real part of the input admittancelculated
for increasing number n of terms time series (18)
for the cases W=0.1 (solid), 0.2 (dashed), 0.3

In the casethat the magnetitield vector is orientednly
in the direction transverse to z axis, the excitatientor

elements are: (dotted), a/b=0.01 .
V,=Tb j"*1e™ "% cosp, O 24) %
HInsa(kbsirg)+ J_4( kb sif,)] 20 _
|
S
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Il NUMERICAL RESULTS REAY
The properties of a magnetic dipole habeen N
calculated using théheory described in sectidh Also NN
the efficiency andconvergence dhis approach havieeen 5 NG
tested. ~<
To calculate an exact input admittance, according to 0 — n

(18), an infinite sum should be made. In practical
applications this sum should be truncated at a certain 0 2 4 6 8 10 12 14

finite number of terms n. The criteridar determining n~ _ _ _

at which the sum will be truncated is the requiaeduracy Fig.3. Difference in perceritetweerthe successive values

of the computed result. of the imaginary part of the input admittance

The input admittancevas calculated for different n. calculated for increasing number n of terms in the
The difference in percent betweesuccessiveesults for series (18) forthe cases W=0.1 (solid), 0.2
increasing n at three normalized frequeneies shown in (dashed), 0.3 (dotted), a/b=0.01 .

Figs.2and 3. It can beeenthat theconvergence isery
good and thatfor =9 an error oflessthan 2% can be
expected. Nevertheless, it should be #aéd by increasing Re{Yin } [mS]
the ratio a/b (the wire becomes thicker), the convergence is 8
slowerand insome casethe imaginary part of the input
admittance shows oscillatory behaviorThis can be 6
ascribed to théact that thetheory was developestarting I
from the thin wire approximation. 4 |
The calculated reahnd imaginary part of the input ,f
impedance in function of thebfatio is shown in Figs. 4 2 |
and 5. Here b is the loop radius ani the wavelength. / W\ /
In this case it was chosen=9, what is acompromise 0 —
between result accuracy and time required for
computation.

The real and imaginary part of tlealculated current . . .
TN, ; Fig. 4. Realpart of the input admittance asfunction of
distribution on theloop for the case of Dirac delta
P b/A, n=9, a/b=0.01 (solid), a/b=0.001 (dashed) .
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.Imaginary part of the input admittance as a

function of bA, n=9, a/b=0.01 (solid), a/b=0.001 Fig.8. Realpart of the curreninduced on thdoop by an

(dashed). incidentwave (=0°; 8;=45°) with the electridield
transverse to z axis fdhe cases kb=0.5 (dotted),
1.0 (solid), 1.5 (dot-dashedand 2(dashed);

ge{cu”e”t} [mAl a/b=0.01, n=9 .
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Fig.6. Realpart of the currenexcited onthe loop by a Angle o [Deg]

Im{Current} [mA]

Dirac delta source (¥ 1 V) at ¢=@=0° for the

cases kb=0.5 (dotted),0 (solid), 1.5 (dot-dashed) ¢y g |maginary part of the currentinduced on the loop
and 2 (dashed); a/b=0.01, n=9 by an incidentwave (=0°; 6,=45°) with the
electric field transverse to z axis fdhe cases
kb=0.5 (dotted), 1.0 (solid), 1.5 (dot-dashedy 2
(dashed); a/b=0.01, n=9 .
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N\ i IV CONCLUSIONS
o[ 22N 1/
AN /’ AN / / An efficient and accurate method for calculating the
0 \55 ¢ N PE; properties of a curredbop - magnetic dipolehas been
O\ ¢+ 'V/(— P presented. The calculation is basedtmm moment method
2 L= e B e N L A :
K NI procedureyet a way taalculate theassociate integrals in
. a closed formhasbeen usedThis allowed a very efficient
4 and accurate calculation witkiery goodconvergence. So
0 90 180 270 360 only a few members of the resulting series have to be
added to achieve accurate results.
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