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Abstract - The Green’s function for different re-
alizations of soft and hard surfaces are devel-
oped by using the asymptotic boundary condi-
tion and the spectral domain approach. We con-
sider the following geometries: the ideal PEC/
PMC strip surface, the strip-loaded grounded
slab and the corrugated surface. The strips and
corrugations are straight in all cases. The asymp-

totic boundary conditions are valid in the lim-,

iting sense, when the period of the strips is ap-
proaching zero. The surface waves appear as
poles in the developed Green’s functions. The
fulfillment of both soft and hard boundary con-
ditions is discussed in the near and far field re-
gions. In some cases the appearance of the sur-
face waves prevents the boundary condition in
the near field region from being fulfilled.

Introduction

Recently, the concept of soft and hard surfaces has
been introduced in electromagnetic theory as surfaces
along which the power density respectively is zero or has
a maximum {1]. It has been shown that such surfaces
can be used to control radiation, scattering and prop-
agation characteristics of the waves, and thereby can
be used to design better antennas. Two most common
realizations are the corrugated surface and the strip-
loaded grounded dielectric slab. The latter has the ad-
vantages of low cost and light weight in comparison
with the corrugated surface.

The rigorous analysis of open soft and hard surfaces
has previously only been performed when they are ex-
cited by plane waves [2], [3]. This is a sufficiently good
model only for analyzing wave propagation in certain
waveguides or for open surfaces when the source is far
away from the surface. The obtained results are not
satisfactory in applications such as hard struts [4], be-
cause then the model predicts zero bandwidth of the
hard surface for grazing incidence which is not the case
in practice. The bandwidth of hard struts may actu-
ally be as large as 30% [4]. Furthermore, the plane wave
model cannot predict surface waves which may be ex-
cited in the slab or along the grating. The first step in
making a more general model was the two-dimensional
(2D) analysis of the open hard surface in [5).

If the source is not a plane wave the rigorous analysis
of the artificially soft and hard surfaces is a complicated
procedure. For example, the strip-loaded surfaces can
be rigorously analyzed by using the periodical property
of the structure, thus expanding the fields in Floquet
modes. The transverse corrugations are known to be
well modeled by the surface impedance approach, see
e.g. [6, pp. 440-442], but this does not work for longi-
tudinal corrugations if there are a spectrum of incident
waves. The reason is that the surface impedance for
the longitudinal case varies strongly with angle of inci-
dence.

One simplification of the problem can be made by
using the asymptotic boundary conditions introduced
in [7] - [9]. If the width of the strip is narrow and
the periodicity of the strips is small compared to the
wavelength (which is common in practice), we can treat
the structure in an asymptotic way, as if the width
and the periodicity of the strips approach zero. This
method do not suffer from the complexity of the Flo-
quet mode technique and from the limitations of the
surface impedance method. Furthermore, the asymp-
totic boundary conditions can be easily applied to sur-
faces of arbitrary shape (not only canonical problems)
and to the strips or corrugations which are generally
nonperiodical (in general they can be placed randomly
provided the distance between them is small enough).

Green’s functions

The procedure of deriving the Green’s function in
the spectral domain follows the one explained in [10].
For convenience the soft and hard surface is placed in
the plane z = 0 and the z’ and y' coordinate of the
source are £’ = y' = 0. The clectric field of the Hertz
dipole above the general soft or hard surface has the
form

G(z,y,z{z")
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Here ~ denotes the two-dimensional Fourier transfor-
mation with 3, and 8, as spectral variables.

An ideally soft or hard surface behaves like a perfect
electric conductor (PEC) for one polarization and like
a perfect magnetic conductor (PMC) for the other po-
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larization [1]. Let us consider the realization consisting
of narrow PEC/PMC strips (Fig. 1.a), which is ideally
soft and hard when the excitation is a plane wave. The
boundary conditions are

ET =0 H =0 (2)
If the source is located at the interface, .the second of
these boundary conditions is equal to Hy*" = —JZ°4"°°.

For brevity, we give the result only for the case when
the source is at the interface (the other expressions are
more complex). However, all the main properties of
the Green’s functions for other positions of the source
are found to be the same as when the source is at the
interface. The spectral domain Green's functions for
the z-oriented Hertz dipole are (the observation point
is in the air, i.e z > 0)
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Figure 1. Different realizations of surfaces that are soft
in the zz-plane and hard in the yz-plane.

Here - denotes the Fourier transformation, 3, and
By are the coordinates in the spectral domain, k¥ =
k§ — B2 — 02, k} = w’uoeo (Im k2 <0).

For the strip-loaded grounded dielectric slab, at the
dielectric-air interface, where the strips are located (Fig,.
1.b), the asymptotic strip boundary conditions are [8]

E;Iiielectric =0 E;ir =0

Egtelectrac — E;ur H:tclectrtc — H;/"r (6)
If the source is located at the interface, the fourth
of these boundary conditions is equal to Hgtetectric
HB' = Jgouree Like for the ideally hard and soft sur-
face, we give the result only for the case when the source
is at the interface. The spectral domain Green’s func-
tions for the z-oriented Hertz dipole are (the observa-
tion point is in the air)
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Here ¢, is the relative permittivity of the dielectric slab,
d is the thickness of the slab, k7 = k2 — 32 -
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Finally, for the corrugated surface (Fig. 1.c) we as-
sume that the electric field in the corrugations is di-
rected orthogonal to the walls with no variation in that
direction (i.e. E(z,y,z) = %E.(y,z) for the geometry
in Fig. 1.c). In other words, only the fundamental
mode of the parallel plate waveguide formed by the
walls of the corrugations is excited. The field inside
the corrugations, with a discrete variation from cor-
rugation to corrugation, is matched to the outer field
which generally varies in the direction perpendicular to
the corrugations [7]. In order to obtain enough bound-
ary conditions we have to match both the tangential
electric and magnetic fields at the corrugated interface.
This can be done by considering a parallel plate waveg-
uide problem with a metal shunt corresponding to the
bottom of the corrugations. As a excitation we suppose
a plane wave because we derive the Green’s functions in
spectral domain where the solution is superposition of
the plane wave solutions. We use the method described
in [7] and [11, pp. 129-130]. For the external field with
the e=7P=%¢—7Bv¥ variation the vector potential has a
form

F.(y,z) = (F*e"-"v erko=Fi: L eV e”’0_"3‘)6_“3"”,

(10)
where ¢, is the relative permittivity of the dielectric ma-
terial, k3 = w?eup and d is the depth of corrugations
(Fig. 1.c). After calculating the ratio of the constants



F* and F~ we get the boundary conditions at the in-

terface .
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As before we obtain (the z-oriented Hertz dipole is lo-
cated at the interface, the observation point is in the
air)
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E- and H-plane fields

The near and far fields are plotted in Fig. 2 for dif-
ferent realizations of hard and soft surfaces (¢ and ¢ are
respectively the polar and azimuth angles in the spher-
ical coordinate system). The free-space wavelength is
defined by MJARD = 4d\/e; — 1, and at this frequency
the hard boundary condition is fulfilled in the 2D case,
i.e. when the excitation is an infinitely long constant
filament current [5]. In the present 3D case, the hard
boundary condition is fulfilled expectedly for all struc-
tures in the far field in H plane, while the near field
pattern predicts surface waves.

The presence of the surface waves is important for
the fulfillment of the hard boundary condition. This
can be seen in Fig 3, where the E, component of the
near field is shown for the corrugated surface excited
by a constant filament current which has a length of
20\HARD 3long the x axis. The different curves show the
field evaluated at different heights z above corrugations.
We see that the hard boundary condition is fulfilled in
the near field region at those corrugations which are lo-
cated under the source. Similar results are obtaified in
the case of the ideal PEC/PMC strip surface. However,
for the strip-loaded dielectric slab there are two types of
surface waves: a strip grating wave propagating along
the strips and an ordinary surface wave [12]. The latter
is needed in order to realize the hard boundary condi-
tion. The former has a propagation constant which is
different from the one in free-space.

The results of the ideal PEC/PMUC strip surface are
not changing with frequency. The soft boundary con-
dition is fulfilled in E plane in both the near and far
field regions (Fig 2). For the other structures the ra-
diation patterns are similar to the ideal case although

at the frequency defined by AHARD the soft boundary
condition is not fulfilled. For the corrugated surface the
soft boundary condition occurs when A§OFT = d/4, /e,
and changes slowly with frequency. In the case of the
strip-loaded dielectric slab we see that the field peaks
up close to the boundary in the E plane but looks oth-
erwise similar to the ideal case. The peak corresponds
to a surface wave which has a propagation constant dif-
ferent from in free-space. This surface wave is needed
in order to create the soft form of the field pattern, but
it also destroys the soft boundary condition exactly at
the interface. The surface wave can be removed by us-
ing lossy dielectric. In practical applications with finite
lengths of the surface, the effect of the surface waves
can be removed by preventing it from radiating from
the end of the slab [13].

Conclusion

We have derived the Green’s functions for differ-
ent realizations of hard and soft surfaces. The struc-
tures are considered in an approximate way by using
the asymptotic boundary conditions which turn out to
be a good approximation if the periodicity of the struc-
ture is small compared to the wavelength. By using the
asymptotic boundary condition approach we are able to
predict surface waves, which properties can be deter-
mined by considering the poles of the spectral Green’s
function. This approach is in particular advantageous
in comparison with the plane wave model because the
latter cannot describe the properties of surface waves.
There are three different types of surface waves: a strip
grating wave propagating along the strips of the strip-
loaded dielectric slab, an ordinary dielectric slab surface
waves and surface waves occurring due to presence of
the corrugated surface and the ideal PEC/PMC sur-
face. Two of them are desired in order to obtain the
hard boundary condition. However, the strip grating
wave of the strip-loaded dielectric slab prevents the
hard boundary condition in the near field region from
being fulfilled, and thus is undesired.
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Figure 3. The E, component of the near electric field in
the plane defined by y = 5Af AFP . The corrugated sur-
face is excited by a constant filament current which has
a length of 2A\{ARP along the ¢ axis. The results are
at the frequency defined by NARP =4dv/e, — 1, ¢, =
2.52.
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