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Abstract: This work presents a new numerical algorithm for the time optimal control 
of nonlinear multivariable systems with control and state vectors constraints. The 
algorithm is based on the backpropagation-through-time algorithm (BPTT), which is 
used as a learning algorithm for recurrent neural networks. Also, a heuristic 
algorithm for the time optimal control is presented. This algorithm is based on the 
characteristics of penalty functions for control and state vectors constraints. The 
proposed algorithms are especially suitable for treating complicate state vector 
constraints. Also, the proposed algorithms provide better convergence properties 
then numerical algorithms based on conversion of optimal control problem into a 
nonlinear programming one. The algorithms are applied on the problem of the time 
optimal robot control with the state vector constraints in the form of obstacle 
avoidance. 
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1. Introduction 
 
There are many cases where the time optimal control has been applied in industry, for 
example in the control of industrial robots, where increasing of the speed of motion is 
of primary importance, and minimum-time control is an attractive control strategy for 
this purpose. 
As it is already known from the classical optimal control theory (Bryson & Ho, 
1969), the solution of the optimal control problem requires the solution of the first-
order stationary conditions (two-point boundary-value problem), which can be solved 
analytically only for very simple problems. A review of the different approaches to 
the numerical solution of optimal control problems is given in survey paper (Sargent, 
2000). Sargent recognize essentially three approaches to solve numerically optimal 
control problems: a) numerical solution of the two-point boundary value problem 
given by the necessary conditions, b) complete discretization of the problem, 
converting it into a nonlinear programming one, and c) finite parameterization of the 
control trajectory, again converting the problem into nonlinear programming. 
The problem of state vectors constraints considerably complicates the solution of the 
problem both from the theoretical and numerical aspects. The penalty functions for 
state vectors constraints can be very complicated and impractical, particularly in 
robot control (avoidance of obstacles, cooperative robots work, etc).  
A standard method for reducing the optimal control problem to a nonlinear 
programming one is adding the penalty functions for state and control vector 
constraints and plant equation constraints to the cost function, and optimizing the 
total cost function according to the control and state vectors. In such a way 
formulated problem has very slow convergence due to additional equality constraints 
for plant equation. 
In this paper a new gradient-based numerical algorithm for time optimal control of 
nonlinear multivariable systems with control and state vectors constraints is 
proposed. This algorithm avoids inclusion of plant equation constraints into cost 
function and so provides better convergence properties. Further, the mentioned 
gradient-based approach provides an obvious geometric interpretation of convergence 
properties of the optimal solution. The approximations of the penalty function 
gradient means a certain deviation from the exact direction of the overall cost 
function gradient. However, the approximation of the gradient does not mean the 
approximation of the optimal solution but only slower convergence toward the 
optimal solution. This fact provides much easier deal with complicate state vectors 
constraints what is demonstrated in (Kasac & Novakovic, 2001a) on the example of 
cooperative work of two robots. 
Further, mentioned approach provides numerical solution of a wide class of non-
standard optimal control problems like minimum time control where initial and final 
conditions are parameterised by a coordinate transformation (Kasac & Novakovic, 
2001b).  
This chapter is organized as follows. Section 2 presents a formulation of an optimal 
control problem, and derivation of the corresponding algorithm for solving of this 
problem. An algorithm for a time optimal control has been considered in section 3. A 
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minimum-time robot control problem with state and control vectors constraints is 
presented in section 4. Finally, the comments and the conclusions are emphasized by 
section 5. 
 
2. Optimal control problem formulation 
 
2.1 Discrete-time optimal control problem 
A discrete nonlinear time optimal control problem is considered. The problem is to 
find control vector u(i) and sampling interval τ = tf / N, where tf is terminal time, that 
minimizes the cost function 
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subject to the constraints defined by the plant equations 
 ( ) ( ) ( )( ),iu,ixf1ix =+     (2) 
then the initial and final conditions of the state vector 
 ( ) ( ) ,xNx,x0x f0 ==    (3) 
subject to the control and state vector inequality constraints  
 ( ) ( )( ) ,0iu,ixg ≥      (4) 
and equality constraints 
 ( ) ( )( ) ,0iu,ixh =   (5)    
for i=0, 1,…, N-1, where N is number of sampling intervals, x(i) is n-dimensional 
state vector, u(i) is m-dimensional control vector, g(i) ≡ g(x(i), u(i)) is p-dimensional 
vector function of inequality constraints, and h(i) ≡ h(x(i), u(i)) is q-dimensional 
vector function of equality constraints.  
 
2.2 Penalty method approach  
The next step is the expansion of the cost function (1) by adding penalty functions for 
constraints 
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is the penalty function for the final boundary condition, KB is the coefficient of the 
penalty function and xk(tf) is the k-th component of the state vector at the terminal 
time. Further,  
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is the penalty function for inequality constraints (4), where ( ) ( )( )( )iu,ixgH k
−  is 

Heaviside step function defined as follows  
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while VK̂  is the coefficient of the penalty function for inequality constraints. Finally, 
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there is the penalty function for equality constraints (5) 
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where EK̂  is the coefficient of the penalty function of equality constraints. 
If VV KK τ=ˆ  and EE KK τ=ˆ , the equation (6) can be expressed as  
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so that the problem (1) to (5) can be expressed in the following form 
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The gradient descent algorithm according to the control vector is as follows: 
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where i = 0, 1, …, N-1,  l = 1, 2, …, M, while η is the convergence coefficient, index 
l presents the l-th iteration of the gradient algorithm, and M is the number of 
iterations of the gradient algorithm.  
 
2.3 Gradient calculation 
The gradient of the cost function (11) in l-th iteration of the gradient algorithm is  
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where ( ) ( ) ( )( )iu,ixFiF ≡ . 
Remaining from the sum on the right side of the equation (16) are only terms for 
which ji ≥ , 
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The terms on the right side of the previous equation depend on uk (j) implicitly 
through ( )ix  for ji > , and it follows that 
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On the basis of equation (12), the following partial derivatives are obtained 
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for r = 1, 2, …, n, and 
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for k = 1, 2, …, m, where ( ) ( ) ( )( ) ( ) ( ) ( )( )iu,ixhih,iu,ixgig pppp ≡≡ . 
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The next step is the calculation of partial derivative ( ) ( )juix kr ∂∂ /  on the right side of 
the equation (18). On the basis of equation (14), the chain rule for ordered derivatives 
is obtained  
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for r = 1, 2, …, n,  k = 1, 2, …, m,  j = 0, 1, …, N-1,  i = j+2, …, N-1, where 
( ) ( ) ( )( )ju,jxfjf rr ≡ . 

If the second term on the right side of the expression (17) is denoted as 

 ( ) ( )
( )∑

−

+= ∂
∂

=
1

1

N

ji k
k ju

iFjS , (23) 

then following recurrent algorithm for the calculation of the sum (23) can be obtained 
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where j = N-2, N-3,…, 0; r = 1, 2, …, n; k = 1, 2, …, m. 
In the matrix representation 
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equations (24) can be expressed in the form 
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where P(j) is an n-dimensional vector in j-th time interval, S(j) is an m-dimensional 
vector in j-th time interval and 0 is an n-dimensional zero vector. 
Final step is the calculation of the second term on the right side of the equation (16), 
i.e. the calculation of the penalty function gradient for the final condition of the state 
vector  
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In the matrix representation 
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following recurrent algorithm for the calculation of the )( jY can be obtained 
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for j = N-2, N-3, …, 1, 0,  where D(j) is the nn×  matrix of j-th time interval, whereas 
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I is the unit nn×  matrix. 
 
2.4 Final algorithm 
Using the following matrix representation,  
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we can express the complete algorithm for the optimal control problem (1) to (5), by 
the following four steps: 
1. Initialization of gradient algorithm. Starting with l = 0 we put in the control 
vectors ( ) ( ) ( )( )0

1N
0

1
0

0 u,...,u,u −  arbitrary values, which can be outside of the allowed area 
defined by constraints. 
2. Calculation of state vectors 
 ( )( ) ( )( ) ( )( )( ) ( )( ) ,x0x,iu,ixf1ix 0

llll =+  (28) 
for i = 0, 1, …, N-1 in l-th iteration of the gradient algorithm. 
3. Calculation of gradient 
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for l-th iteration of the gradient algorithm. 
3.1 Initialization for j=N-1. 
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3.2 Iteration for j = N-2, N-3,…, 0. 
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4. Calculation of a new iteration of control vectors on the basis of the gradient 
algorithm  
 ( )( ) ( )( ) ( ) ,jJjuju u

l1l η−=+  (32) 
for l = 0, 1,…, M. We shift the index by one, 1ll +→  and go back to step two. 
In Figure 1 we can see the basic structure of the numerical algorithm for the optimal 
control problem, which is a backward in time iterative algorithm, similar like 
backpropagation-through-time (BPTT) algorithm (Werbos, 1990). The BPTT 
algorithm is time generalization of the neural network backpropagation algorithm, in 
the case when the error, which is minimized, is given along the specified time 
interval. This is the main reason that the BPTT algorithm is mostly used as a learning 
algorithm for recurrent neural networks (Pearlmutter, 1995; Baldi, 1995). 
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Fig. 1. The structure of the BPTT algorithm for optimal control problem. 
 
3. Time optimal control 
 
This section presents the problem of time optimal control (TOC), i.e. control in a 
situation which requires the minimization of the time interval in accordance with the 
given constraints and cost function. There are two approaches to the numerical 
solution of that problem. In the case of time discretization, the control time interval 
equals the product of the number of sampling intervals N and sampling interval τ, so 
that the variability of the time interval can be expressed with one of those variables 
taking the other one as the constant. In the application of the neural network BPTT 
algorithm in time-optimal control (Plumer, 1996), this problem has been solved by 
taking sampling interval τ as the constant and varying the number of sampling 
intervals N. There is a problem with this approach because we have the integer value 
of variable N in the application of the gradient method. This problem can be avoided 
by taking discretization sampling as a continuous variable. However, here the 
problem of non-stability arises, and it can be solved only by taking a very small value 
of the convergence coefficient in the gradient algorithm for variable τ, which 
drastically slows down algorithm convergence. 
This section describes a heuristic approach to solving the problem of time optimal 
control, which is relatively effective in avoiding the above-mentioned problems. The 
method is based on choosing sampling interval τ to minimize the cost function. The 
method also uses the characteristics of penalty functions for boundary conditions and 
constraints. Minimum time, which is the solution of the TOC problem, can be marked 
by tmin = Nτmin. The basic idea is to keep the previously obtained algorithm for 
calculating control vectors for the given constant sampling interval, so that along with 
calculating control vectors in every iteration of the gradient algorithm, the new value 
of sampling interval is being calculated. To emphasize the variability of sampling 
interval τ we will hereinafter use the symbol lττ → , which represents sampling 
interval in l-th iteration of the gradient algorithm. 
We define the new cost function as the sum of penalty functions depending on the 
variable sampling interval in l-th iteration of the gradient algorithm 
 ( ) ,JJJJ 321

l
T ++=τ  (33) 
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with the difference that the coefficients of penalty functions VK̂  and EK̂  are defined 
as constant and independent of sampling interval τ, so that the explicit dependence of 
function ( )l

TJ τ  on τ has been avoided. Determining minimum time for the transition 
from the initial to the final state is meaningful only if constraints on control vectors 
are given. For a given terminal time less than minimum, minf tt < , the inevitable result 
would be violation of control vector constraints, which would lead to an increase in 
the value of penalty functions. On the other hand, for a time greater than minimum, 

minf tt ≥ , the control vector satisfies constraints and penalty functions converge to 
zero. 
In the numerical calculation this means that for minf tt ≥  the value of the sum of 
penalty functions will converge to zero, whereas for minf tt < , that value will converge 
to a positive number, as it is shown in Figure 2. 

TJ
t tf < min

N IT

TJ

N IT

mintt f

(a) (b)  
Fig. 2. Dependence of ( )τTJ  on the number of iterations for (a) minf tt < , and (b) 

minf tt ≥ . 
 
On the basis of previous conclusions, we can define the minimum value of function 

( )τTJ  by defining it as εJ , which is the measure of accuracy of the solution of the 
TOC problem for the given τ. The decreasing of the value of the sum of penalty 
functions, gives the solution closer to the optimum, as it is shown in Figure 3. 
However, the determination of that value requires a greater number of iterations. 

tmin t f

εJ

( ) 0min →> ttJ fT

( ) 0.min >→< constttJ fT

mint̂

TJ

 
Fig. 3. Dependence of ( )τTJ  on the terminal time. 
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Thus, the general heuristic algorithm for the solution of the TOC problem is given as 
follows. 
The first step is the initialisation of τ0, on condition that .min

0 ττ >  The next steps are: 
If ( ) ετ JJ l

T <  Then l1l ττ <+ , or If ( ) ετ JJ l
T ≥  Then l1l ττ =+ , for l = 0, 1, …, M. Since 

we do not know the value of minτ , the initial sampling interval τ0 can be some 
sufficiently large value. If one takes min

0 ττ < , then JT will not achieve the value of εJ  
during iteration, which means that an inadequate initial value has been selected. 
In other words, the next iteration of sampling interval lτ  will be ensued only when 
the value of function lτ  achieves the given value εJ , and this means that .min

l ττ >  As 
lτ  decreases, TJ  converges to an increasingly slow pace toward εJ  until it reaches a 

certain value of lτ  for which TJ  will not be able to reach εJ  or will converge toward 
it very slowly, which means that .min

l ττ <  In that case, one can take 1l
min

−≈ ττ  as an 
approximation for minτ . 
This algorithm structure guarantees stability and convergence toward minτ , because it 
does not change the value of lτ  until the value of function TJ  falls below the given, 
sufficiently low value of εJ . The second step in this algorithm can be expressed with 
the following equation: 
 ( )( ),JJH l

T
l1l

εττ∆ττ −−= −+  (34) 
i.e. each time the condition ( ) ετ JJ l

T <  is met, lτ  decreases by the constant value τ∆ .  
This form of algorithm for the TOC problem enables a simple generalization of the 
algorithm for the optimal control problem (with the fixed control time interval) 
through the expansion of the fourth step of the algorithm by the equation (34). 
 
4. Minimum-time robot control with obstacle avoidance constraints 
 
Optimal control of a non-linear robot model with a defined cast function is still a 
relatively difficult task. The problem becomes more complex when two or more 
robots work in cooperation on a common task sharing workspace, time, constraints, 
and the cost function. In this section, the previously derived time optimal control 
algorithm will be applied to minimum-time control of a robot with two degrees of 
freedom. 
  
4.1 Dynamics of the robot with two degrees of freedom 
The non-linear dynamic model of the robot with two degrees of freedom is presented 
through cylindrical coordinates in the form (Heiman, 1981) 
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and 
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where [ ]T21 qqq =  are cylindrical coordinates of the centre of the mass of link 3, M is 
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a total mass (manipulator hand and load), m is link mass, I1 is the total moment of 
inertial of link 1 and 2 in relation to axis Z, I2 is the moment of inertial of link 3 in 
relation to the axis which is parallel to axis Y and goes through point S, and a is the 
distance between the centre of mass M and point S (Figure 4.). The variable P1(t) 
stands for the control torque of the rotation q1, while P2(t) is the control force of the 
translation q2.  
Numerical values of the above-motioned parameters are: 

,N500P,Nm600P,m1.1a,kgm193II,kg97m,kg50M
maxmax 21

2
21 ====+==  

where 
max1P  is the maximum allowed moment and 

max2P  is the maximum allowed 
force. The above-mentioned system of the second-order differential equations can be 
transformed into a system of the first-order differential equations, by introducing the 
following coordinate transformation: 
 .,,,,, 221124231211 PuPuqxqxqxqx ====== ��  
Also, for the sake of a more elegant expression, the following constants are 
employed: 
 .MmA,Ma2A,MaIIA 32

2
211 +==++=  

As the result we obtain a robot model in the form: 
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�

�

�

 (37) 

Thus, the dynamics of the robot with two degrees of freedom has been presented by 
the system of four non-linear first-order differential equations. 
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Fig. 4. Robotic manipulator with two degrees of freedom - rotation and translation 
(left) and intersection of the robot manipulator and the obstacle (right). 
 



 11

4.2 Obstacle avoidance problem 
One of the tasks that are given to the robot is bypassing obstacles. It is assumed that 
the position and form of the obstacle are known. For the sake of simplicity, an 
obstacle shape as a circle with radius R′  is taken, with the centre in point ( )00 y,x . The 
minimum distance between the circle and the robot hand is marked as Rδ . This is the 
minimum allowed distance between the robot hand and the obstacle. The equation of 
the circle of the radius RRR δ+′=  is  
 ( ) ( ) ,Ryyxx 22

0
2

0 =−+−  (38) 
and the robot hand is shown as the length which lies on the line .qtanxy 1=  
From the previous two equations one can obtain conditions of the intersection of the 
obstacle circle and the robot line as well as the coordinates of section points (Figure 
4). The coordinates of intersections of the robot line and the obstacle circle are: 

 ( ) ( )
( ) ,tan,

tan12
tan2

12,12,1
1

2
1100

2,1 qxy
q

qDqyx
x =

+

+
=

∓  (39) 

where D(q1) must be 
 ( ) ( ) ( )( ) .0Ryxqtan14qtanyx4qD 22

0
2
01

22
1001 ≥−++−+=  (40) 

The distances between the intersection points and the origin of the coordinate system 
are 2

2
2
22

2
1

2
11 yxr,yxr +=+= . If the fewer of the two distances is marked 

{ }21min r,rminr = , then it enables the formulation of condition, which guarantees that 
the robot hand will avoid the obstacle in i-th time interval 
 ( ) ( )( ),iqriqa 1min2 ≤+  (41) 
for i = 0, 1, …, N, where a + q2(i) is the length of the robot arm. The penalty function 
for constraints has the form 

 ( )( ) ( )( ) ( ) ( )( ),iq,iqHaiqiqrKJ
N

0i
21

2
21minp3 ∑

=

±−−=  (42) 

where 
 ( ) ( )( ) ( )( ) ( )( ) ( )( )( )iqDHaiqiqrHiq,iqH 121min21

+−± −−=  (43) 
and ( ) ( )xHxH −= −+ . Partial derivatives of the penalty function according to the state 
vector are given by the equations 

 ( ) ( ) ( )( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( )( ) ( ) ( )( ) .iq,iqHaiqiqrK2
iq

J

,iq,iqHaiqiqr
iq

rK2
iq

J

2121minp
2

3

2121min
1

min
p

1

3

±

±

−−−=
∂
∂

−−
∂
∂

=
∂
∂

 (44) 

If it is assumed that the circle is in the first quadrant, then pair (x0, y0) and tan q1 are 
positive and it is obvious that 1min rr = . If parameter 1r  is expressed as a function of 

1q , a very complicated relation and an even more complex partial derivative has been 
obtained  
 ( ) ( ) .

iq
r

iq
r

1

2

1

min

∂
∂

=
∂
∂  (45) 

In order to avoid complications with the calculation of this partial derivative, only the 
change of the radius, as a consequence of violation of the constraint, has been taken 
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into account, i.e. the following equations have been employed 

 ( ) ( ) ( ) ( )( ) .,,0 21
2

3

1

3 iqiqHK
iq

J
iq

J
p

±=
∂
∂

=
∂
∂  (46) 

As it will be shown in the following text, the above-mentioned approximations do not 
affect the quality of the solution, except for possibly decreasing the speed of 
convergence toward the optimal solution. The previous expressions mean that in case 
of the intersection of the manipulator hand and the obstacle, the angle 1q  is not 
changed, whereas the length of the manipulator, i.e. 2q , is decreased with the constant 
rate represented by the positive coefficient pK . This significantly simplifies the 
problem and reduces it to the geometrical determination of the line section where the 
hand of the manipulator and the edge of the obstacle are positioned. 
However, another problem crops up following the avoidance of complications with 
the exact calculation of partial derivative. The method of the conjugated gradient does 
not give good results in this case because the above-mentioned partial derivatives do 
not belong to the penalty function (42). Therefore, the gradient algorithm with a 
constant learning coefficient is used. 
The problem that is considered in the following text is the transformation of the 
initial robot state  
 ( ) [ ] ( ) [ ] ( ) [ ] ( ) [ ] ,/00,10,/00,12/0 4321 smxmxsradxradx ==== π  
into the final state 
 ( ) [ ] ( ) [ ] ( ) [ ] ( ) [ ] ,/0,1,/0,12/5 4121 smtxmtxsradtxradtx ffff ==== π  
with the condition of avoiding the obstacle in the form of a circle with radius 

[ ]m2.0R =′ . The coordinates of the circle centre are given by [ ] [ ]m1y,m1x 00 == , and 
the minimum distance is [ ]m01.0R =δ , for minimum time fmin tt ≡ , and with the 
control constraints  
 ( ) ( ) ,, max22max11 utuutu ≤≤  (47) 
where 
 [ ] [ ] .N500u,Nm600u max2max1 ==  
The cost function equals 321 JJJJ ++= , where function TJ  has the same form as 
function J , with the difference that instead of the variable value τ  the constant 0τ  is 
taken as the initial value of the iteration process for calculating minτ , in order to avoid 
the explicit dependence of TJ  on τ . The gradient algorithm with the constant 
coefficient of convergence η is used. The values of the constants are given as 
follows: 
 .1000,1000,01.0,600,30000,1000 ====== ηpVB KKKMN  
As it can be seen in Figure 5., with [ ]s00001.0=τ∆  and the accuracy 01.0J =ε , it is 
obtained the minimum time [ ]s71.1tmin = . Using the neural network BPTT algorithm 
with the parameter 30000M = , the simulation results of the minimum time dynamics 
of the robot are shown in Figures 6 with [ ]s71.1tmin = . 
Figure 7. shows the trajectory of the robot hand ( )aq2 +  in the plane x-y. 
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Fig. 5. Time dependence of control variables (left) and state variables (right). 
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The obstacle is a circle with the radius [ ]m2.0R =′  (obstacle 1), i.e. a circle with the 
radius [ ]m21.0R =  (obstacle 2) including the given minimum distance [ ]m01.0R =δ . It 
can be seen that the optimal trajectory (trajectory 1) touches the circle with the radius 
R, i.e. avoids the obstacle by reaching minimum distance in one point. The figure also 
shows the trajectory for the same time [ ]s71.1tmin = , in the case when conditions for 
avoiding the obstacle do not exist (trajectory 2). 
 
5. Conclusion 
 
This work presents a new gradient-based approach to solution of the time optimal 
control problem, which is especially suitable for treating complicate state vector 
constraints. Formal similarity with neural networks learning algorithms provides high 
parallelism of computational tasks and solution of high dimensional optimal control 
problems. The future research will be focused on the problem of worst-case analysis 
for the problem of robot parameter uncertainty. Also, different heuristic modification 
of the gradient algorithm will be used for improvement of the algorithm convergence. 
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