
Migration to Multitier Application Architecture: A Case Study

Mirta Baranović, Ladislav Mačkala
Faculty of Electrical Engineering and Computing, University of Zagreb

Unska 3, HR-10000 Zagreb, Croatia
mirta.baranovic@fer.hr, ladislav.mackala@fer.hr

and
Denis Kranjčec

University Computing Centre (SRCE), Zagreb
Marohnićeva bb, HR-10000 Zagreb, Croatia

denis.kranjcec@srce.hr

Abstract. During the migration of an
application to a new system, it is usually
desirable to start using new tools while keeping
existing models. However, challenges brought by
new technologies often lead to modifications in
architecture of the existing system.

Two similar applications with different
architecture not sharing the same code base
present a possible point of improvement.
 Development of a new multi-tier application
based on open standards was an attempt to solve
problems brought by old architecture. Special
attention was given to implementation of specific
feature of existing applications. Quality solution
was achieved using stable platform and design
patterns.

Keywords. Multitier Architecture, Application
Migration, Design Patterns.

1. Introduction

Computerization of the system of high
education in the Republic of Croatia [2] is a
project that started at the end of 1998. It is large
in size and complexity and requires a number of
years to be completed. The project is based upon
the experience gathered since 1992 on a similar
project implemented on the Faculty of Electrical
Engineering and Computing (FER) of the
University in Zagreb [1]. This implementation
covers a complete evidence of syllabuses, the
educational program fulfillment, course
scheduling and all the students' activities, starting
from the entrance examination, education and
examinations to the graduation thesis and issuing
of graduation certificate (diploma) and its
supplement with the evidence of the student's
performance.

Devices like kiosks with touch screen
monitors (Studomat), Internet access (Studonet)

and voice service (Studophone) have been
introduced to facilitate the administrative
procedures to all the involved parties. The
system was based on the Informix RDBMS with
applications written in INFORMIX-4GL.
Software for Studomat was written in Visual
Basic, while software for Studonet was created
later using CGI, HTML and JavaScript
technologies.

 Migration to modern technologies is
achieved by design of a completely new system.
Character based user interfaces are replaced with
graphical ones, Java programming language is
used, and so is JavaScript in combination with
HTML and XML technologies. Although, the
first goal of migration to new technologies is to
keep existing architecture and to add a small
number of new features, most often it is
impossible to resist the challenges that new
technology brings. Modified architecture of this
new system combined with aforementioned
technologies will allow, among other things,
integration of Studomat and Studonet
applications that will simplify the code
maintenance and improve the scalability of the
system.

2. Old Studomat/Studonet application

Applications that had been developed in the
old system enabled the students’ interaction with
the Faculty administration. Information became
more available to the students and the
administrative tasks became easier to achieve.

2.1. Functionality

The basic idea was to install the application

on a kiosk-like device with a touch screen and a
printer and to put such a kiosk in a place with
public access at faculties, thus granting the

students 24 hours availability and consequently
greater independence of Student Service working
hours.

 The Studomat offered following options to
the students:

• Applying for an exam or canceling that
application, viewing the results of
written exams

• Enrolling in a new academic year:
choosing courses for senior students and
choosing the mentor to guide the
graduation thesis

• Printing of various documents and grade
lists

• Notifying students about matters of
interest via e-mail

• Presenting the summary of all relevant
information pertaining to the student

An improvement of the system was the
development of a web application named
Studonet that allowed students to accomplish
simple, but often required tasks using Internet
from the comfort of their own room, without
having to come to their faculties.

2.2. Model

Entire information system was based on a

relational DBMS. Decisions about application
architecture design were made by analyzing
requirements placed on application.

 One part of mentioned functions of the
system such as enrolling in a new academic year
and choosing courses encompasses very
demanding interaction between a user and the
application. This interaction consists of
navigation through a complex menu tree because
it is based on an extremely complicated business
rules system. Transaction complexity level is
high and includes interaction with 30 or more
database tables.

 One Studomat (kiosk with installed
application) can be connected to several printers.
Then it controls them, checks their status and
evenly distributes the workload during printing.
Documents to be printed are dynamically created
because they consist of database data and static
text.

 Considering all mentioned above, the only
choice for Studomat application was two-tier
application architecture (also known as client-
server). Known flaws of two-tier architecture
had little significance because of the rather small
number of Studomats.

 Requirements placed on Studonet were very
different from those placed on Studomat because
intended functionality consisted of simple menus
with a minimal set of business rules on the client
with emphasis on its availability and on small
requirements while connecting the client through
web interface. Hence, Studonet architecture is a
variation of three-tier architecture most
commonly used by web applications.

 Studomat and Studonet shared some of their
functionality so it made sense to base them on
the same part of business rules.

Stored
Procedures

Triggers
Tables

CGI Script

VisualBasic Application

HTML
JavaScript

Client (Web Browser)

Web Server

Client (Standalone Application)

DBMS

User Interface

User Interface
+

Presentation Logic
+

Business Logic

Presentation Logic

Business Logic Data

HTTP(S)

ODBC

ODBC

Printer 1

Printer N

NATIVE

NATIVE

.

.

.

Figure 1. Studomat and Studonet

2.3. Implementation

Studomat is a standalone application written

in MS Visual Basic using ODBC for database
access and native printer access. Visual Basic
and its development environment made the
design of rich GUI possible, and full integration
with Windows operating system allowed good
printer control. Documents were in MS Word
format.

 Analysis yielded that one Studomat covered
the needs of roughly 1000 students, which, for
FER, meant 3-4 Studomats and 2 printers.
Overload occurred several times a year when a
large number of students wanted to accomplish
similar actions in the same time. The server part
of Studonet was created using CGI technology
that was the only available server-side
technology at the time of development. The
client part of Studonet was created using a
combination of HTML and JavaScript language
which is sufficient for design of a simple user
interface.

 Studonet later appeared to be rather sensitive
to workload because of limited scalability of CGI
technology because it starts separate processes
for each new client.

3. New Studomat application

During the development of the new
information system that is expected to include all
institutions of higher education in Croatia, a new
version of Studomat had to be developed as well.
In the analysis phase all problems discovered
during the development and exploitation of the
old system and requirements placed on the new
system were taken into account.

3.1. Motivation

The new application is supposed to contain all

of Studonet's and Studomat's functionality and
also some additional enhancements. Similarly to
the old system, the new application should have
two different "allotropic modifications" based on
old Studomat and Studonet with similar set of
functions and requirements.

 The first idea was to take the complete code
base of the old Studomat/Studonet and, after
some modifications, use it in the new system.
Another solution was to write the whole
programming code from scratch using the insight
and experience gained during development of the
old Studomat.

 From performed analysis it was concluded
that the greatest potential problem of this new
system would be the different code base and low
scalability.

 The part of business rules that was located in
the database was a solid basis, but each form of
the application contained a part of business logic
and the complete presentation logic. That made
the debugging and adding of new features a
difficult and error prone task. Adding support for
new technologies, that are yet to come (mobile
clients, web services), would be expensive and
the problem of code maintenance would
constantly grow.

 Scalability has become important because to
the contrary of the old system (4000 users), the
new system has to be able to handle continuous
growth of the number of users up to about
100000 when all institutions enter the system.
Several Studomat-kiosks, realized as typical fat
clients that keep connection to the database open
all the time would be substituted by about 150 of
Studomat-kiosks that continually overload the
database. Web load would also increase
significantly and more than CGI technology
could support.

 Maximum data security is an aspect that
cannot be neglected because user's confidential
data are transferred over web.

 Since a number of applications were already
developed for the new system, it would be
desirable, if possible, to use the existing
programming code. Existing applications were
developed using our own framework [6]
designed for development of standalone
applications, which could also be used.

 Intensive use of design patterns would make
the interchange of ideas within the development
team easier and the maintenance of programming
code less demanding.

The choice of technologies should be, as
much as possible, based on open systems and
industrial standards rather than on proprietary
technologies in order to maximally avoid vendor
lock-in.

3.2. Choice of technologies

Starting from the requirements for open

architecture, industrial standards and object-
oriented programming language, Java appeared
to be the optimal choice, taking into account that
applications for the new system and the
framework they are based on were written in
Java 2 Standard Edition.

As a logical extension Java 2 Enterprise
Edition was considered. The Java 2 Platform,
Enterprise Edition (J2EE) defines the standard
for developing multi-tier enterprise applications.
J2EE simplifies enterprise applications by basing
them on standardized, modular components, by
providing a complete set of services to those
components, and by handling many details of
application behavior automatically, without
complex programming.

All J2EE technologies have proved
themselves on the market as stable, reliable and
complete which was also an important factor in
choosing the development platform.

The choice of technology for user interface
design was between HTML/JavaScript
combination and Java applets. Although Java
applets appears as a natural combination with
Java as server technology, still HTML/
JavaScript seems to be a better choice, mainly
because of small requirements on the client, but
also because of maturity of this standard. HTML
definitely brings a certain trade-off because it is
inappropriate for design of complex user
interfaces.

Document printing introduced an additional
dose of complexity because the old solution was
completely inadequate for the new platform.
XML standard together with belonging
technologies (XSL, XSL-FO) and PDF as an end
document format is a good choice.

3.3. Model

The choice of application architecture is a

strategic decision in the application development
process. Based on all available parameters,
multi-tier architecture consisting of a thin client,
a middle-tier with presentation logic, a middle-
tier with business rules and a database was
chosen [4].

The client controls data presentation for the
user and the capturing of user’s actions.

 The presentation layer was realized as a set
of components that are executed on a web server.
The standard design pattern for this layer is a
Model-View-Controller design pattern [5].

 The component (Java Servlet) that represents
the front controller is the only input into the
application. When a request arrives, as first, the
security checks are completed and then a second
controller component to process the received
request is chosen. The controller component
takes over the request and determines which
methods of the model and with what arguments
should be called.

 The model is represented by a Java
Enterprise Bean component which is located in
the business logic layer and on whom different
operations are performed.

 After the state of the model has been
changed, the controller receives data and passes
them to the View which is represented by a
JavaServer Pages component, which displays the
new state of the model to the user. The
JavaServer Pages component receives only the
necessary data for user interface generation
through custom tag library in HTML and
JavaScript.

 In Enterprise JavaBean components a part of
the business rules and all of the database access
code are implemented. The presentation layer
controller uses them as models, calling their
methods thus indirectly manipulating data in the
data layer.

 The business logic layer was created using
Session Façade design pattern [3]. This provides
great independence of the presentation layer
from business logic. Calling of just one remote
method performs complete business logic and it

consequently minimizes both, the network traffic
and the number of network calls that introduce
latency. This solution conceals internal model
structure from the client, and changes in internal
structure of the model do not imply changes in
the client.

 Data exchanged between the presentation
layer and the business logic layer frequently are
not of simple data types but rather complex
structures because they represent data extracted
from multiple tables in the database. To avoid
remote procedure call overhead during access to
and manipulation of data, Data Transfer Objects
design pattern [3] was used. When a client
requests data, it calls a method in the business
logic layer who then fetches all the required data
from the data layer and creates a Data Transfer
Object, Java class which contains and
encapsulates bulk data in one network
transportable bundle. The same principle is used
when a client wants to create, modify or erase
data, except in that case the client creates a Data
Transfer Object and sends it to the EJB layer
using one network call.

Front
Controller

Controller

View

Model

User
Interface

Layer

Data
Layer

Business Rules
Layer

Presentation
Layer

EJB1
(acting

as
Session
Facade)

Data

EJB2
Java Servlet

HTML
+

JavaScript
Java class

JavaServer
Pages

Web
Browser

EJB3

HTTP Request
Business Method Call

Business Method Call

SQL Call

SQL Call

Data Transfer Object
HTML page

Instantiate

Business Method Call

JavaBean

4a

4b

5b

5a

6

3

21

8

7

Figure 2. Architecture details

The data layer is represented by relational

database.
The issue of document printing is solved

using a separate Java application acting as the
server to which Enterprise JavaBeans are
connected as clients and are sending their
printing requests. These requests contain only the
basic data for the PrinterServer application to
receive the requests from the EJB component
using RMI protocol. The PrinterServer then
extracts data from the database, generates an
XML document, by a series of transformations
brings it into the final form (PDF) and prints it
on one of the connected printers, performing

automatically load-balancing between connected
printers.

 E-mail sending is realized using a message
queue. If a student performs a certain action on
the Studomat, causing results about which s/he
wants to be notified, the EJB sends a message to
the application for notification using the JMS
which then generates an e-mail and sends it to
the user (student). The Studomat does not wait
for the message to be sent because message
sending proceeds asynchronously.

Stored
Procedures

Triggers
Tables

Servlet

Java Server Pages

Enterprise JavaBeans

HTML
JavaScript

Client (Web Browser)

Web Server

Application Server

DBMS

User Interface

Business Logic

Presentation Logic

Business Logic Data

HTTP(S)

RMI

JDBC

Printer 1 Printer N

Print Server

Java Application RMI

...

Java
Printing

API

Message Queue

Send Mail

RMI

Figure 3. Architecture overview

3.4. Implementation

Throughout the implementation of each of the

aforementioned application layers, the choices
made were constantly questioned and better
solutions to the encountered problems were
searched for. The general idea was to use as
many proved concepts as possible.

 The choice of HTML and JavaScript in user
interface design brought some anticipated
problems with different implementations of these
standards in different web browsers. Differences
between HTML implementations are minimal,
while the story with JavaScript is much worse, so
in the end, a separate JavaScript code had to be
written for each supported web browser.

 Special attention was given to the design of
user interface with the ability to display data in a
clear and unambiguous way and to enable
meaningful and precise interaction with the
application.

 Each segment of this user interface is
completely suitable for the touch screen on
Studomat kiosks: the menus are placed on one
side to avoid moving hands over the screen, and
the button size corresponds to the size of the
fingers. During logging on to the system, virtual
keyboard is displayed.

 There are some small differences in the
interface and some big differences in the
functionality when the application is not used
from an Internet kiosk. All options demanding
interaction with other systems are disabled, e.g.
documents are printed on a printer situated at the
faculty and the student must be there to pick it
up.

 Due to security and nondisclosure of
confidential data, special care had to be taken to
prevent that the presented web pages are cached
on the computer using Studomat application.
This was done to avoid situations where a
student uses the Studomat in some Internet cafe
and all viewed pages remain cached on the
Internet cafe computer. Real life experience has
shown that web browsers do not comply with
settings selected in the HTTP protocol and the
viewed web pages, despite explicitly instructing
otherwise, can be cached on local hard disks. The
only solution that really disables caching is to
direct all requests through servlets.

 At first, a complete implementation of
business rules within the EJB layer was planned.
However, after initial testing, it became clear that
using the Entity EJBs, due to the extremely
complex database structure, is sometimes very
demanding on computer resources, what results
in long response times and it was decided that
this solution is not acceptable.

 The next introduced and tested solution was
a partial implementation of business rules in data
layer in the form of stored procedures. Due to the
mentioned transaction complexity, these
procedures were written in a modular fashion to
avoid code duplication and to simplify
maintenance. At first, this solution seemed as a
good one, but after being tested with a bigger
workload, it resulted in DBMS overload and
congestion because of intensive use of stored
procedures. In a complex, real world example, a
call of procedure that determines which courses a
student can choose resulted with 1500 successive
procedure calls. For a simulation of 15 students
choosing courses concurrently and repeatedly,
average response time was 109 s. A simulation
with 30 students fully congested the database.
Afterwards it was concluded that it was
necessary to reduce the modularity in stored
procedures. Now, in the same example, the
number of procedure calls was reduced to 400
and average time decreased to 10 s (for 15
students). Increasing of number of students didn't
increase average time significantly. Other
operations performed on the Studomat aren't so

demandable and can be easily ignored in
performance measuring. The maximum number
of students choosing courses simultaneously is
estimated to be about 150 (when system is fully
implemented).

Also some temporary results from stored
procedures are cached in EJB layer for later use.

After these alterations had been made, the
response time dropped significantly, and the
application was able to bear a substantially larger
number of users without DBMS congestion.

3.5. Achieved goals

Our aspiration to unique code base demanded

abandoning the existing model of "allotropic
modifications" with different architecture in
favor of a single unified application with all
business rules and all the features, achieving
different functionality by different (or at least
modified) user interface and presentation logic.
The introducing of a new type of client is much
easier because it is only necessary to program a
lesser part of the presentation logic for a desired
type of client, while most of the existing
presentation logic and the complete business
logic are reusable. This minimizes and
centralizes code maintenance, makes addition of
new features easier, decreases the number of
bugs and consequently decreases the cost of the
entire system.

The scalability and performance problems
are very well solved using distributed application
concept which is the basis for multi-tier
application architecture. The presentation logic
and the business rules are distinctly separated in
this model and are located in separate
components.

Using the PrintServer concept for printer
control completely accomplishes the goal,
because it enables the necessary control over
printers, and raises its scalability by allowing
printers and print servers to be added depending
on workload.

4. Conclusion

Strategic decisions made during development
of a new application reflect in the choice of
application architecture and technology. By
migrating from an application having two forms
of similar functionality but different code base
and proprietary technology to the application
with scalable, multi-tier architecture having a
unique code base, based on open technology and

industrial standards, all the set goals have been
achieved, but with some compromises.

 Scalability was accomplished using multi-tier
architecture; the unified code base decreases
maintenance costs and bug problems and makes
the addition of new features easier. The choice of
Java platform and Linux operating system
resulted in a stable system, while the quality and
readability of the programming code and the
possibility of verification of founded concepts
was achieved by applying various design
patterns. The security was realized using several
elements in all the layers. Implementation of all
the necessary features has been accomplished.

 During the system development, certain
concepts had to be altered and adapted due to
poor performance caused by a distinctive
situation. The database appeared to be the
greatest problem due to very complex
transactions and occasional very complex data
extraction. Much of the time was spent finding
the optimal model of implementation of business
rules, but, in the end, the results were more than
satisfactory.

5. References

[1] D. Kalpić, J. Anzil, V. Dumanić, H.

Zoković: Student Administration System,
Proceedings of the 15th International
Conference on Information Technology
Interfaces, Pula, Croatia, June 15-18, 1993,
pp. 123-128

[2] D. Kalpić, M. Baranović, V. Mornar, S.
Krajcar: Development of an Integral
University Management System,
Proceedings of the International Conference
on Systems Engineering, Communications
and Information Technologies, Punta
Arenas, Chile, April 16-19, 2001-05-23

[3] F. Marinescu: EJB Design Patterns, Wiley
Computer Publishing, 2002

[4] N. Kassem and the Enterprise Team:
Designing Enterprise Applications with Java
2 Platform, Enterprise Edition, Sun
Microsystems, 2000

[5] E. Gamma, R. Helm, R. Johnson, J.
Vlissides: Design Patterns, Elements of
Reusable Object-Oriented Systems,
Addison-Wesley, 1998

[6] M. Baranović, S. Zakošek, L. Mačkala:
Creating Database-aware Java Classes
Based on Extended Data Dictionary and
Abstract Classes, SCI2001/ISAS 2001,
Orlando, 2001

