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ABSTRACT 
 
In this paper we have used a previously reported adaptive 
filter bank structure for image decomposition and lossy 
reconstruction. We used a robust 2D windowed LS (LSW) 
adaptation algorithm to change the filter parameters and to 
adapt them to the local image properties. To improve the 
coding gain of the lossy image compression scheme, 
quantization of the adapted filter parameters has been 
explored. We used a CDF-based method followed by an 
optimization procedure to find the best quantization values. 
The proposed method was applied to a number of synthetic 
and real world images. Reconstructed images were 
perceptually superior, achieving lower square error norm 
when compared to the well-known fixed wavelet scheme. 
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1. Introduction 
 
Adaptive filter bank structure used in this paper enables 
changes of the filter bank parameters for each pixel, 
depending on the local 
properties of the 
analyzed image. The 
fixed part of the filter 
bank provides desired 
number of dual and 
primal vanishing 
moments for the 
corresponding limit 
wavelet functions. 
Error criterion is derived from the wavelet or 
approximation coefficients and the adaptation is conducted 
to achieve more efficient representation of the analyzed 
signal. 

In Seršić [1] a construction of the 1D adaptive wavelet filter 
bank is proposed, and in Vrankić and Seršić [2] the 

adaptive 2D filter bank is presented. In section 2, we give a 
short review of the proposed 2D filter bank structure. 

 

2. Filter Bank Structure 
2.1. Lifting scheme 
 

The lifting scheme enables construction of PR space variant 
and non-linear filter banks. Kovačević and Sweldens [3] 
proposed a construction of wavelet families of increasing 
order in arbitrary dimensions. The construction is based on 
the lifting scheme [4][5], using the interpolation of samples 
in multi-dimensional space [6]. Among different 
nonseparable 2D polyphase decomposition schemes, we 
have chosen the quincunx decimation. Samples from the 
second coset were estimated from the first coset using the 
2D interpolation functions of different orders.  
 

2.2. Adaptive lifting structure 
 

Adaptive prediction filter (dual lifting step) used in this 
paper is constructed as a weighted sum of additive 
components:  

P(z1,z2) = p1⋅P2(z1,z2) + p2⋅[P4(z1,z2) − P2(z1,z2)] +  
   p3⋅[P6(z1,z2) − P4(z1,z2)] + p4⋅[P8(z1,z2) − P6(z1,z2)] 

Figure 1. Structure of the adaptive wavelet filter bank. P2 
- P8 are Neville 2D interpolating filters, U2 - U8 are 
corresponding update filters, pi and ui are variable 
parameters. 

Filters P2, P4, P6 and P8 are Neville interpolating filters 
described in Kovačević and Sweldens [3]. FIR filter 
coefficients selected from symmetric interpolation 
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neighborhoods (rings shown in Figure 2) are given in 
Table 1.  

If the multiplying parameters {p1, p2, p3, p4} are constant, 
chosen from sets {1,0,0,0}I, {1,1,0,0}II, {1,1,1,0}III and 
{1,1,1,1}IV, lifting steps P2(z1, z2), P4(z1, z2), P6(z1, z2) and 
P8(z1, z2) respectively are obtained. They correspond to 2, 4, 
6 or 8 vanishing moments of the corresponding 2D limit 
wavelet function. 
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Figure 2. The quincunx lattice in the sampled domain 
containing X1 coset samples. Ring numbers are marked. 
Black circle represents position of the predicted sample in 
the X2 coset. 

2n ring 1 ring 2 ring 3 ring 4 ring 5 ring 6 ring 7  
2 1       ×2-2 
4 10 -1      ×2-5 
6 174 -27 2 3    ×2-9 
8 23300 -4470 625 850 -75 9 -80 ×2-16

Table 1. Quincunx Neville filters coefficients. 2n is the 
number of vanishing moments. 

Structure in Figure 1 enables splitting of the prediction 
filter in a fixed and variable part. Desired number of 
vanishing moments 2n is achieved by fixing factors p1 to pn 
to value 1. The residual parameters are used as variables 
that can be changed at each point of the decomposition. 

Update filters Ui are constructed as half the adjoint of the 
corresponding predict filters, Ui = P*

i / 2. In order to 
provide vanishing moments to the limit scale function, we 
set the gains u1 – u4: 

p1,…, pn =1 n=1 (I) n=2 (II) n=3 (III) n=4 (IV) 
u1 1 1 1 1 
u2 3/2 1 1 1 
u3 − 3/2 1 1 
u4 − 3/2 3/2 1 

Table 2. Gain ui depends on the actual number of zeros of 
the high-pass filter, unless we fix less or equal number of 
zeros of the low-pass filter. 

If the number of zeros of the LP filter (f=Nyquist) is less or 
equal to the number of zeros of the HP filter (f=0) we have 
“independent” vanishing moments. They do not depend on 
the remaining free parameters, too. 

The construction of the adaptive filter bank is presented in 
Vrankić and Seršić [2]. 

3. Lossy Image Reconstruction Results 
3.1. Adaptation and quantization of filter 

parameters 
 
Adaptation results discussed in this paper are based on the 
filter bank structure with fixed p1 = u1 = 1.  Only p2 is being 
adapted and other parameters were set to zero. At first, we 
applied the adaptive wavelet filter bank to a synthetic 
image X composed of 2 horizontal sine waves of different 
frequencies and different spatial angles. 
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Figure 3. Zero locations in the frequency responses of the 
adaptive two-dimensional HP filter for different values of 
the parameter p2. Top: negative values of p2. Bottom: 
positive values of p2. 

2D windowed least squares (LSW) adaptation was 
computed on the finite rectangular m × m neighborhood of 
the observed pixel. Adaptation algorithm chooses the value 
of the variable filter parameter that gives the minimum 
square norm of the wavelet coefficients for the whole 
neighborhood. The wavelet coefficients are treated as the 
prediction error. We used a modification of the 2D LSW 
algorithm to make it more robust, i.e. to trace prevalent 
image characteristics. Instead of using the whole adaptation 
window, adapted values of p2 were based on M < (m × m) 
pixels that generate lower quadratic prediction error 
(outliers excluded). For details see Vrankić and Seršić [2]. 



  
Figure 4. Left: original image. Right: reconstructed image 
after five decomposition levels with fixed P4 and U2 (no 
adaptation used). 95% of D coefficients are set to zero. 
Annoying artifacts caused by the lossy reconstruction are 
clearly visible. 

Parameter p2 tends to adapt into one of the two values in 
areas corresponding to different sine frequencies (Figure 
5). Zero lines from Figure 3 adjust to cancel the sine 
waves. Prediction becomes near optimal, turning majority 
of the wavelet coefficients to zero. Lossy reconstruction 
(percentage of D coefficients being set to zero) now gives 
significantly better results (Figure 5) when compared to the 
fixed filter banks (Figure 4). 

  

  
Figure 5. Adapted filter parameter p2 computed for the 
image composed of two sine waves. Robust 2D LSW 
adaptation was used on a 3x3 window with M=6. Results 
are given for the first three decomposition levels 
(corresponding central squares are shown). Except for the 
transition area, the parameters are two-valued. Bottom 
right: Resulting reconstruction after 5 decomposition 
levels (95% D were set to zero). There are no visible 
annoying artifacts! 

Of course, information is now partially transferred to p2  
filter parameters. Yet, the parameters are almost 
everywhere set to two discrete values and coding gain is 
still very high.  

To improve the coding gain of real images we have 
considered quantization of filter parameters. Filter 

parameters were quantized in each decomposition level 
with a chosen set of quantization values.  Detail (and 
approximation) coefficients for a given decomposition level 
were recomputed based on the new, quantized values of the 
filter parameters. The new wavelet coefficients are 
generally slightly worse in the entropy sense, when 
compared to those obtained by using the non-quantized 
filter parameters. Fourth row in Figure 7 shows that 
improper selection of quantization vector can result in 
significant reconstruction errors after discarding certain 
percentage of D coefficients. To find a set of quantization 
values that are close to optimal we have created an 
algorithm based on the cumulative distribution function 
(CDF). It calculates the CDF of p2 parameters (for every 
decomposition level separately) and finds N values of p2 
that are equidistant in terms of the CDF values (see Figure 
6). These values are chosen as quanta for a given 
decomposition level.  Example of the CDF-based 
quantization values for 5 decomposition levels is given in 
Table 3. Now, reconstruction gives much better results (last 
row in Figure 7). 

  
Figure 6. Cumulative distribution functions of p2 
parameters in first decomposition level for images Barbara 
(left) and Lena (right). Eight equally spaced CDF values 
are marked with circles. Their corresponding values on the 
x-axis are a good choice for quantization of p2 parameters. 

1. level 2. level 3. level 4. level 5. level 
-4.4599 -9.2365 -8.0724 -5.3906 -4.1480 
-1.8431 -6.3393 -5.5690 -2.1014 -1.3884 
-0.4039 -3.4420 -2.5648 -0.7099 -0.2478 
 0.6428 -1.6485 -0.8124  0.0491  0.2673 
 1.5587 -0.5448  0.0638  0.6184  0.7089 
2.3437 0.4209 0.6896 1.1244 1.1872 

 3.1287 1.3867 1.3155 1.7570 1.7391 
 4.9604 3.3182 2.1917 2.7690 2.5854 

Table 3. Quantization values of p2 parameters for image 
Barbara obtained using the CDF-based algorithm. For 
every decoposition level the eight quantization values 
were calculated. 

In order to minimize the reconstruction error norm we have 
used MATLAB’s optimization function fminsearch. The 
CDF-based quantization vectors were used as the initial 
points for the optimization procedure. Optimization was 
done level by level, i.e. filter parameters in the next 
decomposition level were optimized based on the outputs of 
the previous, already optimized level. Results for some 
images are shown in Table 4. 



  

  

  

  

  
Figure 7. First row: the original image. Following rows 
show the 5-level lossy reconstruction (85% coeffs set 
zero). Second row: fixed P4. Third row: adapted p2 
(window 3x3, M=6). Notice the high-valued artifact on 
the left leg caused by high values of p2. It causes very high 
overall error (see Table 4). Fourth row: adapted p2 
quantized with ill-posed quanta. Fifth row: quanta 
obtained by using the CDF-based algorithm give excellent 
reconstruction results. 

Adapted p2 (robust 2D LSW)  Fixed P4 No q. Sim. q. CDF q. oCDF q. 
Barbara 10.3 15.8 14.2 5.74 5.73 
Lena 2.05 1.44 2.08 1.55 1.54 
Goldhill 5.82 4.24 5.61 4.47 4.46 
Peppers 2.22 1.73 2.17 1.76 1.73 

Table 4. Error norms (× 106) for lossy reconstruction of 
different images. Reconstruction is done for 5 
decomposition levels. In each decomposition level 85% of 
D coefficients were set to zero. Abbreviations used: No q. 
– original (not quantized) p2 parameters; Sim. q. – 
symmetrically distributed quantization values (same in all 
levels): [-20 -10 -5 0 5 10 20]; CDF q. – quantization 
values obtained from a CDF-based algorithm; oCDF q. – 
optimized values of CDF q.  

 

4. Conclusion 
 
In this paper we have used the adaptive filter bank structure 
that outperforms its fixed counterparts. The robust 2D LSW 
adaptation algorithm has been employed because of its 
good properties in the sense of resulting entropy of wavelet 
coefficients and good tracking of prevalent local image 
features. To improve the coding gain for the lossy image 
compression purpose, quantization of the filter parameters 
has been explored. CDF-based method for finding 
quantization values of the filter parameters shows very 
good results. The reconstructed images are perceptually 
almost as good as those obtained without quantization of 
the filter parameters. Additional improvements have been 
obtained by using optimization of quantization levels 
around the initial CDF-based values. All together, the 
proposed lossy reconstruction scheme using the adaptive 
wavelet filter bank combined with the CDF-based 
quantization of filter parameters gives better perceptual 
results and lower quadratic error norm when compared to 
the fixed wavelet filter bank. 
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