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Computing, University of Zagreb - mentor

3. Professor dr. sc. Božidar Vojnović, Rud̄er Bošković Institute
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Rad je obranjen 7. srpnja 2003. godine.





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Seing the Forest and the Leaves at the Same Time . . . . . . . . . 1
1.1.2 Second Generation Wavelets and the Lifting Scheme . . . . . . . 2

1.2 Overview of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Wavelet Filter Banks and Multiresolution Analysis 5
2.1 Fundamentals of Filter Banks . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Downsampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Upsampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 The Two Noble Identities . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.4 Perfect Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.5 Polyphase Representation . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Wavelet Filter Banks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.1 Multiresolution Analysis . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.2 Wavelet Series and Iterated Filter Banks . . . . . . . . . . . . . . . 25

2.3 The Lifting Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.1 Dual Lifting Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3.2 Primal Lifting Step . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.3 Alternating Dual and Primal Lifting Step . . . . . . . . . . . . . . 31

3 Two-Dimensional Nonseparable Wavelet Filter Banks Using Lifting Scheme 33
3.1 Multidimensional Signals and Notation . . . . . . . . . . . . . . . . . . . 33
3.2 Nonseparable Versus Separable . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Two-Dimensional Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1 Lattices and Dilation Matrix . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 Downsampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.3 Upsampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.4 Simplest Nonseparable Choice: Quincunx Sampling . . . . . . . . 40

vii



3.4 Quincunx Interpolating Filter Banks . . . . . . . . . . . . . . . . . . . . . 42
3.4.1 Interpolating Filters . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.2 Neville Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.3 Construction of Quincunx Neville Filters . . . . . . . . . . . . . . 42
3.4.4 Predict and Update . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.5 Vanishing Moments . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.6 Interchange of Dual and Primal Functions . . . . . . . . . . . . . 48
3.4.7 Iterated Filter Banks . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4 Filter Banks With Variable Parameters 53
4.1 Bad Way To Change Filter Parameters . . . . . . . . . . . . . . . . . . . . 53

4.1.1 Predict Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.1.2 Update Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Good Way To Change Filter Parameters . . . . . . . . . . . . . . . . . . . 61
4.2.1 Predict Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.2 Update Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Importance of Lower Prediction Sections . . . . . . . . . . . . . . . . . . 76

5 Proposed Adaptive Structure 79
5.1 Adaptive Filter Bank Structure . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Adaptation Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.1 Adapted Filter Parameters and Perfect Reconstruction . . . . . . 82
5.3 Least Squares Adaptation Methods . . . . . . . . . . . . . . . . . . . . . . 83

5.3.1 1-D LSW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.3.2 1-D RLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3.3 2-D LSW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3.4 Robust 2-D LSW . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.3.5 BLUE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.4.1 Lossy Image Reconstruction . . . . . . . . . . . . . . . . . . . . . . 103

6 Conclusion 111
6.1 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Bibliography 113

Curriculum Vitae 117

Abstract 121

viii



Sažetak 123

ix



x



Chapter 1

Introduction

1.1 Motivation

The wavelet theory is widely used in the fields of signal and image processing. Actu-
ally, the list of areas and applications where wavelets are established as a useful tool
is quite long and exceeding by far the signal and image processing applications. The
wavelet theory emerged as a result of concurrent research in different fields such as the
multiresolution analysis and filter banks.

It can be said that the first step towards wavelets was made by French scientist
Joseph Fourier almost two hundred years ago. He proved that any periodic function
can be expressed as a linear combination of sines and cosines of various frequencies.
The well known Fourier transform [Stein 75] was extended to non-periodic functions
but it has one serious disadvantage. It does not contain information about time proper-
ties of the analyzed signal. It only gives information about the frequency characteristics
of the analyzed signal, but it does not say anything about its existence in time.

One step further are the linear transformations that give the information both on
time and frequency properties of the analyzed signal. The two transformations with
such properties are the Short Time Fourier Transform and its discrete version, the Ga-
bor Transform. The segmentation of the time-frequency plane obtained by these trans-
forms is linear. There are equal equidistant steps in both the frequency and time.

1.1.1 Seing the Forest and the Leaves at the Same Time

The main idea behind the wavelet theory is to represent a signal with a linear combi-
nation of a number of elementary functions which are localized in time. Furthermore,
those functions called wavelets are all of a "constant shape" [Grossmann 84]. It means
that all the wavelets are constructed only from one function called mother wavelet as
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it’s scaled and shifted copies. Such a signal expansion is very efficient in representing
signals that can be found in the real world, signals with transients and changes local-
ized in time [Mayer 93]. One such "complicated" signal can be represented with few
coefficients corresponding to wavelets from different scales and positions. The wavelet
decomposition shows very good results in denoising, compression and other areas of
the signal and image processing.

The multiresolution analysis [Mallat 89a] is the fundamental concept hidden be-
hind wavelets. The signal is analyzed in different resolutions using wavelets of differ-
ent scales. It is like looking at the same object from different distances at the same time.
By looking at the object from a large distance, one gets the global picture. By looking
at the same object by standing very close to it, one becomes able to perceive the tiny
details. The wavelet transform provides different views of the signal at the same time,
it gives the tiny details together with the very coarse average information. It is like
being able to see the whole forest and tiny leaves on the trees at the same time!

The fundamental moment for further evolution of the wavelet theory and applica-
tions was when the two different aspects were linked together: wavelets and the filter
bank theory [Mallat 89c]. It was shown that the wavelet transform could be imple-
mented using an iterated filter bank of certain properties. After that, calculating the
Discrete Wavelet Transform (DWT) became as easy as filtering a signal with a discrete-
time filter bank. There were developed very efficient algorithms for calculating the
DWT based on a wavelet filter bank implementation [Beylkin 91].

1.1.2 Second Generation Wavelets and the Lifting Scheme

There has been another filter bank construction called lifting scheme [Sweldens 95b,
Sweldens 95a, Sweldens 96] presented relatively recently. Beside allowing for a nu-
merically very efficient calculation of the wavelet transform, it automatically provides
the perfect reconstruction property of the filter banks. Therefore, it has become an
ideal tool for constructing second generation wavelets, wavelets that are not necessar-
ily translates and dilates of one fixed function but instead they can be adapted to the
properties of the analyzed signal.

In this thesis we give a construction of adaptive two-dimensional filter banks based
on a lifting scheme [Vrankić 02]. The construction is based on a one-dimensional adap-
tive filter bank structure proposed by Seršić [Seršić 99, Seršić 00]. Seršić proposed a
wavelet filter bank structure based on the lifting scheme that adapts to the properties
of the analyzed signal. The obtained filter bank retains good properties of the wavelet
decomposition while allowing for a number of filter parameters to be freely tuned
to the properties of the analyzed signal. In the resulting wavelet decomposition, the
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mother wavelet function is not constant. Rather, it changes in time in accordance with
the properties of the analyzed signal. Such a construction gave superior results to the
fixed wavelets.

Filter banks discussed in this thesis are a two-dimensional generalization of the
filter bank structures previously reported by Seršić.

1.2 Overview of the Thesis

In chapter 2 we give an introduction to the wavelet filter banks and the multiresolu-
tion analysis. There are basic concepts explained for one-dimensional signals since the
extension to the two-dimensional case is pretty straightforward.

In the first part of chapter 3 there are presented the basics of two-dimensional filter
banks. The second part of the chapter presents a construction of the two-dimensional
filter bank based on a lifting scheme with nonseparable quincunx polyphase decom-
position of the analyzed image.

The filter bank analyzed in chapter 3 has been modified to become variable and
therefore adaptable to the local image properties. Chapter 4 gives a construction of
such a filter bank and analyzes the impact of changes in filter parameters upon the
overall filter bank properties. Thus, the framework for later adaptations of the filter
bank properties to the analyzed image is provided. The adaptation of filter param-
eters is analyzed in chapter 5. There are various adaptation methods discussed and
tested on different synthetic and real-world images. Finally, results on the lossy image
reconstruction are presented.
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Chapter 2

Wavelet Filter Banks and
Multiresolution Analysis

In this chapter basic concepts are explained necessary for the understanding of multi-
rate systems and wavelet analysis. These concepts are discussed for one-dimensional
signals since mathematical theory is simpler and still sufficient for further understand-
ing of the corresponding two-dimensional (or even d-dimensional) analysis. In the
next chapter these results will be generalized for two-dimensional signals, i.e. images.

In section 2.1 fundamentals of perfect reconstruction filter banks and multirate sig-
nal processing are presented. In section 2.2 we describe multiresolution analysis and
outline the connection between wavelet transform and discrete filter banks. Finally,
in section 2.3 we describe the lifting scheme, an efficient and very flexible method for
building wavelet filter banks. It is the basis for two-dimensional adaptive filter banks
proposed in subsequent chapters of the thesis.

2.1 Fundamentals of Filter Banks

Basic operations being performed in the multirate signal processing systems are deci-
mation and interpolation. Decimation operators are called decimators while operators
crucial for interpolation are called expanders. They cause the sampling rate alteration,

M
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n
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Figure 2.1: (a) Decimator. (b) Expander.

thus making the corresponding systems time-variant. A decimator as a downsampling
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operator reduces the sampling rate (thins out samples in time) while an expander as
an upsampling operator increases the sampling rate (increases the number of samples
in time by adding zeros).

2.1.1 Downsampling

The M -fold decimator forwards every M -th sample of the input sequence x[n] to its
output as yD[n]. All the other input samples are being discarded.

yD[n] = x[Mn], for every n ∈ Z . (2.1)

Decimation for M = 2 is shown in figure 2.2. As it can be seen, there is two times
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Figure 2.2: Downsampling for M = 2. (a) Input signal. (b) Input signal multiplied by
a comb sequence. (c) Downsampled signal.

smaller amount of samples at the output of the decimator than at its input. The phys-
ical time scale being ignored and a digital signal being perceived as a mere sequence
of numbers, signal at the output of a decimator looks like a contracted copy of the
signal at its input. This contraction of the signal in a discrete time domain results in
its expansion in the frequency domain. The relationship between signal YD(ejω) at the
decimator’s output and signal X(ejω) at the decimator’s input for an arbitrary decima-
tion constant M is

YD(ejω) =
1

M

M−1∑

k=0

X(ej ω−2πk
M ), (2.2)

or expressed it the z-domain

YD(z) =
1

M

M−1∑

k=0

X(z
1

MW k
M), (2.3)

whereWM = e−j 2π
M . To prove these equations we define the sequence xC [n] = cM [n]x[n],

where

cM [n] =







1 if n is a multiple of M ,

0 otherwise.
(2.4)
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is a comb sequence. In this way, the xC [n] contains samples of x[n] only for those n
values which are multiples of M (see figure 2.2). Any other samples equal zero. Let us
express the YD(ejω) in terms of xC [n]. Now,

YD(ejω) =
∞∑

n=−∞

yD[n]e−jωn =
∞∑

n=−∞

x[Mn]e−jωn

=
∞∑

n=−∞

xC [Mn]e−jωn =
∞∑

k=−∞

xC [k]e−jω k
M

(2.5)

which results in
YD(ejω) = XC(ej ω

M ). (2.6)

Knowing that

cM [n] =
1

M

M−1∑

k=0

ej 2π
M

kn =
1

M

M−1∑

k=0

W−kn
M (2.7)

the XC(ejω) can be expressed in terms of X(ejω) as

XC(ejω) =
∞∑

n=−∞

xC [n]e−jωn =
∞∑

n=−∞

cM [n]x[n]e−jωn

=
∞∑

n=−∞

1

M

M−1∑

k=0

W−kn
M x[n]e−jωn =

1

M

M−1∑

k=0

∞∑

n=−∞

x[n](ejωW k
M)−n.

(2.8)

Since
∑∞

n=−∞
x[n](ejωW k

M)−n = X(ejωW k
M)

XC(ejω) =
1

M

M−1∑

k=0

X(ejωW k
M). (2.9)

By using the equation 2.6 now,

YD(ejω) = XC(ej ω
M ) =

1

M

M−1∑

k=0

X(ej ω
MW k

M) =
1

M

M−1∑

k=0

X(ej ω
M e−j 2π

M
k), (2.10)

which results the same as the equation 2.2. Equation 2.2 shows that the frequency
spectrum of a decimated signal YD(ejω) is obtained by adding M copies of the input
signal’s spectrum X(ejω). Prior to the addition, each copy of X(ejω) is M -times ex-
tended in frequency and shifted to the right for ∆ω = 2π more than the preceding
copy. Finally, the resulting summation is divided by M . For M = 2

YD(ejω) =
1

2
[X(ej ω

2 ) +X(ej ω−2π
2 )] =

1

2
[X(ej ω

2 ) +X(−ej ω
2 )], (2.11)

YD(z) =
1

2
[X(z

1

2 ) +X(−z 1

2 )]. (2.12)
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Figure 2.3: Decimation effect in the frequency domain for M = 2.

Figure 2.3 shows the effect of spectrum stretching after a 2-fold decimation. It can be
seen that the final spectrum of the decimated signal consists of two copies of the input
signal’s spectrum: X(ej ω

2 ) and X(ej ω−2π
2 ), the second one being shifted in frequency

by ∆ω = 2π. The spectrum bandwidth of the input signal was restricted to 〈− π
2
, π

2
〉

so no overlapping of X(ej ω
2 ) and X(ej ω−2π

2 ) occurred. If the input signal had not been
bandlimited, the overlapping would have been inevitable. This overlapping effect is
called aliasing. Once the aliasing happens, the reconstruction of the original input
signal from its decimated version becomes impossible. To avoid aliasing caused by
decimation by an arbitrary constant M , the spectrum bandwidth of the input signal
must be restricted to |ω| < π

M
.
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2.1.2 Upsampling

Contrary to the decimator, the expander increases the number of samples in the output
signal yE[n] by adding L− 1 zeros after every sample of the input signal x[n].

yE[n] =







x[n
L
] provided that n is multiple of L,

0 otherwise.
(2.13)

Evidently, this operation does not cause any loss of information. The information con-

0
 2
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 n
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n
]


(a)

0
 3
2
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4


y
E
[
n
]


n


(b)

Figure 2.4: Upsampling for L = 2. (a) Input signal. (b) Upsampled signal.
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)( ωjeX

)( ωj
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Figure 2.5: Upsampling effect in the frequency domain for L = 2.

tained in the input signal will be preserved regardless of the input signal’s spectrum
or the upsampling constant L. The upsampling operation of an expander with L = 2

is shown in figure 2.4. By using the relation 2.13

YE(ejω) =
∞∑

n=−∞

yE[n]e−jωn =
∞∑

k=−∞

yE[kL]e−jωkL =
∞∑

k=−∞

x[k]e−jωkL (2.14)
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we show that

YE(ejω) = X(ejωL), (2.15)

or in the z-domain

YE(z) = X(zL). (2.16)

Equation 2.15 shows that an L-fold upsampling operation causes the input signal’s
spectrum to shrink L times. It looks like some additional images of the original spec-
trum appeared. Figure 2.5 shows this effect for L = 2. There is one additional image in
YE(ejω) between 0 and 2π. Generally, for an L-fold interpolation, L − 1 images would
appear between 0 and 2π.

2.1.3 The Two Noble Identities

The input signal being applied to a typical filter bank (see figure 2.8) is first being
filtered and than decimated. Obviously, this approach is computationally inefficient.
It doesn’t seem reasonable to calculate samples that will be eventually discarded. It
would be much better to perform decimation in the first place and than apply filtering
on the reduced number of samples. In general, it is not possible.

First Noble Identity

Interchanging of decimation and filtering is possible only in one special case: provided
that a filter’s impulse response h[n] has M − 1 zero coefficients after every nonzero
coefficient. In such case the M -fold decimation can be done first and then followed by
filtering with Hnz(z). This filter’s impulse response consists of nonzero coefficients of
the original filter’s impulse response h[n] (see figure 2.6(b)). Expressed in the z-domain
H(z) = Hnz(z

M), where index nz stands for nonzero. The interchange of decimation and
filtering (and swapping of filters), popularly called the First Noble Identity is shown in
figure 2.6(a). It is easy to prove this identity. In a typical filter bank, the signal is first
being filtered with H(z) = Hnz(z

M). The filter’s output Hnz(z
M)X(z) is than being

decimated (equation 2.3), resulting in

Y (z) =
1

M

M−1∑

k=0

Hnz((z
1

MW k
M)M)X(z

1

MW k
M) = Hnz(z)

1

M

M−1∑

k=0

X(z
1

MW k
M). (2.17)

In the second case the input signal is being decimated first. The decimated signal

XD(z) =
1

M

M−1∑

k=0

X(z
1

MW k
M) (2.18)
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Figure 2.6: (a) First Noble Identity: placing a decimator ahead of the filter. (b) Example
of the new filter’s impulse response hnz[n] and the original filter’s impulse response
h[n] for M = 2.

is then being filtered with Hnz(z) giving the same result as equation 2.17.
This interchange of decimation and filtering is the very essence of the polyphase rep-
resentation that is discussed in section 2.1.5. The idea is to break a filter into a set of M
parallel filters (see figure 2.13) that comply with Noble Identity’s requirements, i.e. their
impulse responses have M − 1 zeros after every nonzero coefficient.

Second Noble Identity

It is very useful to place an expander after the filter on the reconstruction side of the
filter bank. That is possible only if the filter G(z) has L − 1 zeros after every nonzero
coefficient in its impulse response g[n]. In that case the interchange of upsampling and
filtering is done as shown in figure 2.7, where G(z) = Gnz(z

L). This is the so called

X(z)

G
(z)


Y(z)

L
G
nz
(z
)


X(z)
 Y(z)

L


Figure 2.7: Second noble identity: placing expander after the filter.

Second Noble Identity. To prove, first consider the standard form of a filter bank where
the input signal is being upsampled first. The upsampled signal X(zL) is then being
filtered with G(z) = Gnz(z

L) which gives

Y (z) = Gnz(z
L)X(zL). (2.19)

In the polyphase case the output of the filterGnz(z)X(z) is being upsampled giving the
same Y as in equation 2.19.
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2.1.4 Perfect Reconstruction

A two-channel filter bank as shown in figure 2.8 consists of two parts: the analysis and
the synthesis bank. Filters H0 and H1 are the analysis filters, while filters G0 and G1 are
the synthesis filters.
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Figure 2.8: Two-channel filter bank.

If the reconstructed sequence at the output of the filter bank x̂[n] is a delayed copy of
the signal at the filter bank’s input x[n], i.e.

x̂[n] = x[n− n0], (2.20)

than it is said that the filter bank has the perfect reconstruction property. In a typical
two-channel filter bank, H0 is a low-pass filter and H1 is a high-pass filter. Thus, the

0

( )ωjeH0

π
2
π ω

( )ωjeH1

Figure 2.9: The analysis bank filters’ frequency responses.

input signal is being split in two bands, a low-frequency and a high-frequency band.
Frequency responses of the two analysis filters H0 and H1 are shown in 2.9. These
filters’ frequency responses overlap because of their final stopband attenuation and
transition bandwidth length. As a consequence, signals x0[n] and x1[n] aren’t properly
bandlimited and after a decimation an aliasing in v0[n] and v1[n] will be inevitable.
Nevertheless, a perfect reconstruction is still possible with suitable selection of G0 and
G1 filters.1 The idea is to choose appropriate synthesis filters so that the aliases from

1Of course, it is possible to make non overlapping frequency responses of the analysis filters (and
therefore avoid aliasing), e.g. by using filters with very short transition bandwidth, but this increases the
cost of filter implementation. Therefore, the use of simpler filters with overlapping frequency responses
and application of alias cancellation afterwards is preferable.
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the two channels cancel each other.
Expressed in the z-domain, signals at the output of analysis filters are given by

X0(z) = H0(z)X(z), (2.21a)

X1(z) = H1(z)X(z). (2.21b)

They are shown in figures 2.10(b) and 2.11(b) respectively. These signals are then being
decimated by a factor of two (equation 2.12) resulting in

V0(z) =
1

2
[X0(z

1

2 ) +X0(−z
1

2 )], (2.22a)

V1(z) =
1

2
[X1(z

1

2 ) +X1(−z
1

2 )]. (2.22b)

The second term (the one with −z 1

2 ) in both equations causes aliasing. In the frequency
domain this alias-term is a copy of the two times extended spectrum of X0 or X1 that
has been shifted by 2π. The outputs of the decimator for both channels are shown in
figures 2.10(c) and 2.11(c) with alias-terms marked gray.
A two-fold downsampling is followed by a two-fold upsampling, with one zero being
inserted after every sample of v0[n] and v1[n]. By using equation 2.16, the upsampled
signals are expressed as

U0(z) = V0(z
2) =

1

2
[X0(z) +X0(−z)], (2.23a)

U1(z) = V1(z
2) =

1

2
[X1(z) +X1(−z)]. (2.23b)

The effects of upsampling are shown in figures 2.10(d) and 2.11(d). It can be seen that in
the frequency domain the upsampling following a downsampling results in two copies
of the original signal (X0 or X1). The second copy is shifted by π and it represents the
alias-term. In the low-pass channel the alias-term 0.5X0(−z) is positioned in the high-
pass frequency region. Therefore, to cancel it, a low-pass synthesis filter G0 should be
used. In the high-pass channel, the alias-term 0.5X1(−z) dominates in the low-pass
frequency region. To cancel it, G1 should be a high-pass filter.
The reconstructed signal is a sum of the synthesis filters’ outputs

X̂(z) = G0(z)U0(z) +G1(z)U1(z) (2.24)

or, by using equations 2.23 and 2.21

X̂(z) = G0(z)
1

2
[H0(z)X(z) +H0(−z)X(−z)]

+G1(z)
1

2
[H1(z)X(z) +H1(−z)X(−z)]

(2.25)
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(a) Input signal and the low-pass filter’s amplitude response (dashed).
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(b) Output of the low-pass filter.
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(c) Output of the two-fold decimator.
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(d) Output of the two-fold expander.
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(e) Unaliased component filtered with a low-pass filter G0.
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(f) Aliased component filtered with a low-pass filter G0.

Figure 2.10: Signals in the low-pass channel.
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(a) Input signal and the high-pass filter’s amplitude response (dashed).
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(b) Output of the high-pass filter.
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(d) Output of the two-fold expander.
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(e) Unaliased component filtered with a high-pass filter G1.
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(f) Aliased component filtered with a high-pass filter G1.

Figure 2.11: Signals in the high-pass channel.
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and than reorganizing

X̂(z) =
1

2
[H0(z)G0(z) +H1(z)G1(z)]X(z)

+
1

2
[H0(−z)G0(z) +H1(−z)G1(z)]X(−z),

X̂(z) = T (z)X(z) + A(z)X(−z).

(2.26)

To obtain the perfect reconstruction property of the given filter bank, i.e. to make
X̂(z) = z−n0X(z), filters should be chosen in such a way that

A(z) =
1

2
[H0(−z)G0(z) +H1(−z)G1(z)] = 0 (2.27a)

T (z) =
1

2
[H0(z)G0(z) +H1(z)G1(z)] = z−n0 . (2.27b)

Equation 2.27a ensures alias cancellation. It states that the aliased part of the output
from G0 (figure 2.10(f)) will have the same absolute value of the Fourier transform but
different sign when compared to the output from G1 (figure 2.11(f)).
Once the aliasing is removed from the output signal, there are still linear shift-invariant
distortions (generally both amplitude and phase distortions) that should be taken care
of. Equation 2.27b ensures that there are no amplitude and phase distortions, making
T (ejω), i.e. the transfer function for an unaliased signal a pure delay. It means that the
addition of the unaliased signal components from low-pass and high-pass channels’
outputs (figures 2.10(f) and 2.11(f)) will result in the same absolute value as |X(ejω)|
and a phase of X(ejω) that is linearly incremented for −n0ω.

Modulation Matrices

Equation 2.26 can be written more compactly as

X̂(z) =
1

2

[

G0(z) G1(z)
]
[

H0(z) H0(−z)
H1(z) H1(−z)

]

︸ ︷︷ ︸

Hm(z)

[

X(z)

X(−z)

]

(2.28)

where matrix Hm(z) is called the analysis modulation matrix because it contains modu-
lated versions of the analysis filters. Perfect reconstruction conditions from equations
2.27a and 2.27b can now be stated in terms of modulation matrix Hm(z):

[

G0(z) G1(z)
]
[

H0(z) H0(−z)
H1(z) H1(−z)

]

︸ ︷︷ ︸

Hm(z)

=
[

2z−n0 0
]

(2.29)
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Equation 2.29 can be rewritten as
[

G0(z) G1(z)

G0(−z) G1(−z)

]

︸ ︷︷ ︸

Gm(z)

[

H0(z) H0(−z)
H1(z) H1(−z)

]

︸ ︷︷ ︸

Hm(z)

=

[

2z−n0 0

0 2(−z)−n0

]

(2.30)

where matrix Gm(z) is called the synthesis modulation matrix. In case that delay n0 = 0,
PR condition can be written as

Gm(z)Hm(z) = 2I. (2.31)

It is important to note that modulation matrices are redundant because every filter
coefficient is included twice.

2.1.5 Polyphase Representation

In order to obtain more efficient filter bank structures and more compact representation
of a given filter bank, the polyphase representation is used.
The basic idea of polyphase is to split a filter into a set of M parallel filters. Figure 2.13
shows how to split a two-fold decimation filter into a more efficient structure by using
polyphase decomposition. It is the so called Type 1 polyphase. The original filter H(z)

is being split into two filters (see figure 2.12):

H(z) = He(z
2) + z−1Ho(z

2). (2.32)

Filter He(z
2) contains the even-numbered impulse response coefficients of H(z) in-
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Figure 2.12: Original filter’s impulse response (a) is split into "even" and "odd" filters
(b). Subfigure (c) shows that H(z) = He(z

2) + z−1Ho(z
2).
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Figure 2.13: Decimation filter (a) can be
implemented more efficiently by using
Type 1 polyphase (b) and then apply-
ing the First Noble Identity (c).
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Figure 2.14: Interpolation filter (a) can
be implemented more efficiently by us-
ing Type 2 polyphase (b) and then ap-
plying the Second Noble Identity (c).

terpolated with zeros, one zero following after every coefficient. Ho(z
2) contains the

odd-numbered impulse response coefficients of H(z) interpolated with zeros. Such
zero-padded filters allow us to interchange decimation and filtering by using the First
Noble Identity (figure 2.6(a)). In this way, decimation will be done first and then fol-
lowed by filtering with He(z) and Ho(z). These filters’ impulse responses are

he[n] = h[2n], (2.33a)

ho[n] = h[2n+ 1]. (2.33b)

This final structure is shown in figure 2.13(c). It can be seen that the input signal is
split in two signals or phases. The first phase xe[n] contains even samples of x[n], while
the second phase xo[n− 1] contains odd samples of x[n] delayed by one time unit. The
first phase is filtered with "even" filterHe(z) and the second one with "odd" filterHo(z).
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The final summation gives

Y (z) = He(z)Xe(z) +Ho(z)z
−1Xo(z). (2.34)

We can see that filtering is done in parallel by using two filters that are two times
shorter than the original filter. With downsampling being done first, no redundant
calculations are to be performed and the input rate for the filters is halved. By using
the same computational power, we are allowed to calculate the output two times faster
than by the direct implementation.
Similar benefits can be obtained for the interpolation filter. An efficient interpolation
structure shown in figure 2.14 is realized by using Type 2 polyphase (now the delay is
put in the first branch) and the Second Noble Identity (figure 2.7).

Polyphase Representation of Filter Banks

Let us show now how these concepts can be applied to filter banks. Firstly, let us
consider the analysis filter bank shown in figure 2.15(a). Both analysis filters can be
split into their polyphase equivalent structures in the way shown in figure 2.13(c). The
outputs from both channels can be expressed now as

V0(z) = H0e(z)Xe(z) +H0o(z)z
−1Xo(z), (2.35a)

V1(z) = H1e(z)Xe(z) +H1o(z)z
−1Xo(z), (2.35b)

or by using a matrix notation
[

V0(z)

V1(z)

]

=

[

H0e(z) H0o(z)

H1e(z) H1o(z)

]

︸ ︷︷ ︸

Hp(z)

[

Xe(z)

z−1Xo(z)

]

, (2.36)

where Hp(z) is the polyphase matrix. The first row of the matrix represents polyphase
components of the filterH0(z), while the second row represents polyphase components
of the filter H1(z). This compact representation is used in a filter bank structure shown
in figure 2.15(c). In general, the M -channel filter bank structure will be represented
with a MxM polyphase component matrix where Hij(z) is the j-th polyphase compo-
nent of the i-th filter.
The synthesis filter bank shown in figure 2.16(a) can also be realized with a more effi-
cient structure. The synthesis filters are going to be split by using a Type 2 polyphase
representation. Now the filter bank’s output can be expressed in terms of the filters’
polyphase components:

X̂(z) = G0(z)V0(z
2) +G1(z)V1(z

2)

= (z−1G0o(z
2) +G0e(z

2))V0(z
2) + (z−1G1o(z

2) +G1e(z
2))V1(z

2).
(2.37)
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Figure 2.15: From direct form to Type 1
polyphase representation of the analy-
sis filter bank.
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Figure 2.16: From direct form to Type
2 polyphase representation of the syn-
thesis filter bank.

This equation can be written in a matrix form as

X̂(z) =
[

z−1 1
]
[

G0o(z
2) G1o(z

2)

G0e(z
2) G1e(z

2)

]

︸ ︷︷ ︸

Gp(z2)

[

V0(z
2)

V1(z
2)

]

, (2.38)

where

Gp(z) =

[

G0o(z) G1o(z)

G0e(z) G1e(z)

]

(2.39)

is the synthesis polyphase component matrix. Now the polyphase components for
each filter are placed in appropriate columns of this matrix (not in rows as for Hp(z)).
Since the delay is put in the first channel, polyphase components in the first row (the
ones corresponding to the first channel) are the odd ones, and polyphase components
in the second row are the even ones. The filter bank structure using Gp(z) is shown
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in figure 2.16(c). X̂ can now be connected to polyphase components of X in terms of
polyphase matrices:

X̂(z) =
[

z−1 1
]

Gp(z
2)Hp(z

2)

[

Xe(z
2)

z−2Xo(z
2)

]

, (2.40)

and the PR condition can be stated as

Gp(z)Hp(z) = I. (2.41)

If the equation 2.41 stands, the reconstructed signal

X̂(z) = z−1Xe(z
2) + z−2Xo(z

2) = z−1X(z) (2.42)

is a delayed version of the input signal X(z).

Relation Between Polyphase and Modulation Matrices

For the first channel analysis filter H0, the following equations stand:

H0e(z
2) =

1

2
(H0(z) +H0(−z)), (2.43a)

z−1H0o(z
2) =

1

2
(H0(z) −H0(−z)). (2.43b)

Same relations can be written for all the other filters. More compact representation of
these equations for the analysis filter bank can be written in a matrix form as

[

H0e(z
2) H0o(z

2)

H1e(z
2) H1o(z

2)

]

︸ ︷︷ ︸

Hp(z2)

[

1 0

0 z−1

]

=
1

2

[

H0(z) H0(−z)
H1(z) H1(−z)

]

︸ ︷︷ ︸

Hm(z)

[

1 1

1 −1

]

. (2.44)

This is the relation between modulation and polyphase matrices of the analysis bank.
The relation between modulation and polyphase matrices for the synthesis bank is

[

z−1 0

0 1

][

G0o(z
2) G1o(z

2)

G0e(z
2) G1e(z

2)

]

︸ ︷︷ ︸

Gp(z2)

=
1

2

[

1 −1

1 1

] [

G0(z) G1(z)

G0(−z) G1(−z)

]

︸ ︷︷ ︸

Gm(z)

. (2.45)
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2.2 Wavelet Filter Banks

The wavelet analysis described in the following sections can be very efficiently imple-
mented by using a filter bank of certain properties [Mallat 89c]. In the following sec-
tions we give an introduction to the wavelet theory and show the connection between
the wavelet theory and filter banks.

2.2.1 Multiresolution Analysis

Multiresolution analysis (MRA) is a powerful concept that is very helpful in analyz-
ing wavelet filter banks. Mathematical theory of multiresolution analysis will help us
analyze the decomposition of a signal into a sequence of coarser approximation and
detail (difference) signals that are mutually orthogonal. This orthogonality ensures
that in these signals there is no redundancy of representation of the original signal.
Every level of decomposition results in one approximation and one detail signal. The
obtained approximation signal is further decomposed in a coarser approximation and
a difference signal. The reconstruction of the original signal is done by successively
adding finer detail signals to the coarsest approximation signal, and every reconstruc-
tion level improves resolution of the signal by a factor of two.
Multiresolution analysis was introduced by [Mallat 89b] and [Meyer 90]. The MRA of
L2(R) (space of square-integrable one-dimensional functions) is based on a sequence
of nested closed subspaces

. . . V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 . . . (2.46)

with properties of completeness, scale invariance, shift invariance and the existence of
a basis. The completeness property states that

⋃

j∈Z

Vj = L2(R) and
⋂

j∈Z

= {0}. (2.47)

The scale invariance ensures that

f(t) ∈ Vj ⇐⇒ f(2t) ∈ Vj−1. (2.48)

In other words, if a function f(t) belongs to the space Vj then its two times shorter
equivalent f(2t) belongs to the space Vj−1. We say that the subspace in level j is coarser,
and the subspace in level j − 1 is finer.
The shift invariance property states that if some function f(t) is an element of a sub-
space V0, then its translates for an integer value will also be elements of V0:

f(t) ∈ V0 ⇐⇒ f(t− n) ∈ V0, for all n ∈ Z. (2.49)
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Finally, the V0 has an orthonormal basis

{ϕ(t− n) | n ∈ Z}. (2.50)

Function ϕ(t) whose translated versions form the basis in the central space V0 is called
the scaling function. The orthonormality states that

∫ ∞

−∞

ϕ∗(t)ϕ(t− n)dt = δ[n], (2.51)

or expressed in the Fourier domain

∞∑

k=−∞

|Φ(ω + 2kπ)|2 = 1. (2.52)

From relations 2.48, 2.49 and 2.50 it follows that a set of functions {
√

2jϕ(2jt− n) | n ∈
Z}, i.e. functions that are 2j times shorter equivalents of the original scaling function
ϕ(t) normalized by

√
2j , form the basis of V−j .

Based on the above mentioned properties of the multiresolution analysis, it can be
written

ϕ(t) =
∞∑

n=−∞

g0[n]
√

2ϕ(2t− n) =
√

2
∞∑

n=−∞

g0[n]ϕ(2t− n). (2.53)

This equation is known as the dilation equation, refinement equation or a two-scale equa-
tion. It states that a scale function (which belongs to V0) can be expressed as a linear
combination of its two times shorter equivalents that form the basis in V−1. Such rela-
tion must be possible because V0 is embedded in V−1, and thence the ϕ(t) belongs not
only to V0 but also to V−1 (relation 2.46). In the Fourier domain the dilation equation
can be expressed as

Φ(ω) =
1√
2
G0(e

j ω
2 )Φ(

ω

2
), (2.54)

where G0(e
jω) is a discrete-time Fourier transform of g0[n]. By perceiving g0[n] as an

impulse response of a digital filter, a connection between the multiresolution analysis
and discrete filter banks has been established.

The Wavelet Representation

Let us now introduce another space Wj . It is called the detail space at level j and it is
an orthogonal complement of Vj . It represents differences of information between ap-
proximation spaces Vj and Vj−1. In other words, by adding the detail signal belonging
to space Wj to the approximation signal belonging to space Vj we obtain a two times
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finer approximation signal that belongs to the space Vj−1. For those subspaces we can
state that

Vj

⊕

Wj = Vj−1, (2.55)

which can be expanded in

Vj

⊕

Wj . . .
⊕

W3

⊕

W2

⊕

W1 = V0. (2.56)

Since
⋃

j∈Z
Vj = L2(R) and

⋂

j∈Z
= {0} we can state that

L2(R) =
⊕

j∈Z

Wj . (2.57)

Function ψ(t) is called the wavelet function if a set of functions {ψ(t − n) | n ∈ Z}
is a basis of W0. Also, family of functions {

√
2jψ(2jt − n) | n ∈ Z} is a basis of W−j .

Furthermore, since the relation 2.57 holds, the family of wavelet functions for all scales
and shifts {

√
2jψ(2jt− n) | (j, n) ∈ Z

2} is an orthonormal basis of L2(R).
It is worth noting that scaling functions are only orthogonal across each scale sepa-
rately. For example, all the functions from the set {ϕ(t − n) | n ∈ Z} belonging to
the space V0 are mutually orthogonal but they are not orthogonal to their two times
shorter equivalents from V−1. Scaling functions cannot be orthogonal across scales be-
cause ϕ(t) belongs to V0 as well as to V−1 and all the other finer subspaces. This impor-
tant property of orthogonality across scales is introduced by using wavelet subspaces.
Wavelet subspaces are mutually orthogonal and therefore all the wavelet functions de-
rived from the original wavelet by shifting (belonging to the same scale) and scaling in
time (belonging to a different scale) are mutually orthogonal.
Orthogonality of W0 and V0 can be expressed in terms of wavelet and scaling functions
as ∫ ∞

−∞

ϕ(t− n)∗ψ(t)dt = 0, (2.58)

or expressed in the Fourier domain

∞∑

k=−∞

Φ∗(ω + 2kπ)Ψ(ω + 2kπ) = 1. (2.59)

Since the wavelet ψ(t) from W0 belongs also to an approximation subspace V−1 it can
be expressed as a linear combination of scaling functions that form a basis in V−1:

ψ(t) =
√

2
∞∑

n=−∞

g1[n]ϕ(2t− n). (2.60)
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This equation is called the wavelet equation. In the Fourier domain it states that

Ψ(ω) =
1√
2
G1(e

j ω
2 )Φ(

ω

2
). (2.61)

By combining equations 2.59, 2.54 and 2.61,G1(e
jω) can be expressed in terms ofG0(e

jω).
To satisfy the orthogonality of W0 and V0, we choose

G1(e
jω) = −e−jωG∗

0(e
j(ω+π)). (2.62)

Now we can substitute the relation 2.62 in 2.61 to express Ψ(ω) in terms of G0(e
jω):

Ψ(ω) = − 1√
2
e−j ω

2G∗
0(e

j ω+2π
2 )Φ(

ω

2
). (2.63)

In the time domain the relation 2.62 becomes

g1[n] = −1ng0[−n+ 1], (2.64)

which gives

ψ(t) =
√

2
∞∑

n=−∞

(−1)ng0[−n+ 1]ϕ(2t− n). (2.65)

2.2.2 Wavelet Series and Iterated Filter Banks

Normally, to find projections of an analyzed continuous-time signal f(t) on a set of ap-
proximation subspaces {V0, V1, V2...} and detail subspaces {W0,W1,W2...} one should
calculate a number of inner products involving continuous-time integration. Luckily,
by using properties of the multiresolution analysis, this won’t be necessary. Complete
calculation can be done by using a discrete-time algorithm based on the appropriate
multiresolution (filter bank) structure. This algorithm is called the Mallat’s algorithm
since it was first introduced by [Mallat 89c].
The first step is to find the projection of f(t) on V0:

f̂(t) =
∞∑

−∞

a(0)[n]ϕ(t− n), where a(0)[n] = 〈ϕ(t− n), f(t)〉. (2.66)

Coefficients of the projection onto V0, a(0)[n] are called the discrete approximation of
f(t) at the resolution 20. This inner product can be interpreted as filtering with a low-
pass filter ϕ(t) and then sampling the obtained signal at integer time values. Since
the integral of ϕ(t) is equal to 1, for a sufficiently fine resolution of V0 comparing to
resolution of f(t), a(0)[n] can be approximated with a sampled version of the input
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Figure 2.17: (a) Filter bank iterated on a low-pass filter branch implementing MRA. (b)
Equivalent structure obtained by using the First Noble Identity.

signal f [n]. By combining the dilation equation 2.53 with equation 2.66 and by taking
h0[n] = g0[−n], we obtain:

a(j)[n] =
∞∑

k=−∞

h0[2n− k]a(j−1)[k]. (2.67)

It states that discrete approximation coefficients a(j)[n] are obtained by filtering a(j−1)[n]

with h0[n] followed by downsampling by two. This is the beauty of the Mallat’s algo-
rithm: higher level (smaller resolution) coefficients are obtained recursively from the
previous level coefficients.
Similarly, by using the wavelet equation 2.60 and equation 2.66, we can find the recur-
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Figure 2.18: (a) Multiresolution reconstruction filter bank structure. (b) Equivalent
structure obtained by using the Second Noble Identity.

sive formula for coefficients of the projection onto the detail space Wj :

d(j)[n] =
∞∑

k=−∞

h1[2n− k]a(j−1)[k]. (2.68)

Thus, the discrete detail signal d(j)[n] is obtained by filtering d(j−1)[n] with h1[n] and
then downsampling by two. The equivalent structure that implements this algorithm
is shown in figure 2.17(a). It is the basis for the fast discrete wavelet transform.
Where the property of orthogonality holds, reconstruction is possible and the connec-
tion among decomposition and reconstruction filters is: g0[n] = h0[−n], g1[n] = h1[−n].
Including h1[n] = (−1)nh0[1 − n], these are the well known CQF (conjugate quadra-
ture filters) relations described by Smith and Barnwell in [Smith 86] and [Mintzer 85].

27



Reconstruction is given with the following equation:

a(j−1)[n] =
∞∑

k=−∞

(g0[n− 2k]a(j)[k] + g1[n− 2k]d(j)[k]). (2.69)

The corresponding reconstruction filter bank structure is shown in figure 2.18(a). If
{ϕ(t − n) | n ∈ Z} is the Riesz basis in V0, then the set of reconstruction functions is
not the same as the set of decomposition functions. Beside ϕ(t) and ψ(t), there are also
dual scaling function ϕ̃(t) and dual wavelet ψ̃(t) and filters h0[n], h1[n] g0[n] and g1[n]

make a biorthogonal filter bank structure.

Derivation of Wavelet and Scale Functions Using Iterated Filter Bank

Let us analyze the reconstruction part of the (orthogonal) filter bank given in figure
2.18(a). Figure 2.18(b) shows the equivalent structure obtained by interchanging up-
sampling and filtering by means of the Second Noble Identity. The equivalent low-pass
filter obtained after N iterations of the basic filter bank structure is

G
(N)
0 (z) =

N−1∏

i=0

G0(z
2N

), (2.70)

and the equivalent high-pass filter is

G
(N)
1 (z) = G1(z

2N−1

)
N−2∏

i=0

G0(z
2N

). (2.71)

Continuous-time functions are associated to these discrete filters’ impulse responses in
the following way:

ϕ(N)(t) = 2
N
2 g

(N)
0 [n],

n

2N
≤ t <

n+ 1

2N
, (2.72)

ψ(N)(t) = 2
N
2 g

(N)
1 [n],

n

2N
≤ t <

n+ 1

2N
. (2.73)

Since with every iteration the total impulse response becomes longer, normalization
of the time scale was necessary to retain a compact support of the resulting functions.
Also, multiplication by 2

N
2 ensures preservation of the energy. With appropriate regu-

larity of g0[n] and g1[n], where N → ∞, these functions converge to the scale function
and wavelet:

ϕ(t) = lim
N→∞

ϕ(N)(t), (2.74)

ψ(t) = lim
N→∞

ψ(N)(t). (2.75)

Necessary (but not sufficient) conditions for the convergence are:

1√
2
G0(1) = 1, and G0(−1) = 0. (2.76)
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2.3 The Lifting Scheme

The lifting scheme [Sweldens 95b, Sweldens 95a, Sweldens 96] enables an easy and ef-
ficient construction of wavelets and wavelet transforms. A very important feature of
the lifting scheme is that every filter bank based on lifting automatically satisfies per-
fect reconstruction properties. The lifting scheme starts with a set of well known filters,
whereafter lifting steps are used in an attempt to improve (lift) the properties of a cor-
responding wavelet decomposition. There are two types of lifting steps: the primal
lifting step (figure 2.21(a)) and the dual lifting step (figure 2.19(a)). A number of such
lifting steps (dual and primal ones being interchanged) can be used in order to obtain
desired properties of a wavelet transform.

2.3.1 Dual Lifting Step

Let us consider the filter bank from figure 2.8 which satisfies the perfect reconstruc-
tion property. Filters H0(z) and H1(z) are complementary since the determinant of the
corresponding polyphase matrix H

new
p (z) equals 1. In this case we can obtain another

filter Hnew
1 (z) complementary to H0(z), by using the dual lifting step (figure 2.19(a)):

Hnew
1 (z) = H1(z) −H0(z)P (z2) (2.77)

With a good choice of P , properties of the new high-pass filter can be improved. It is
said that the high-pass channel is being lifted (improved) with a help of the low-pass
channel. Polyphase components of the new high-pass filter are:

Hnew
1e (z) = H1e(z) −H0e(z)P (z), (2.78a)

Hnew
1o (z) = H1o(z) −H0o(z)P (z). (2.78b)

New polyphase matrix obtained by using the dual lifting step is

H
new
p (z) =

[

H0e(z) H0o(z)

H1e(z) −H0e(z)P (z) H1o(z) −H0o(z)P (z)

]

, (2.79)

and can be derived from the old polyphase matrix as

H
new
p (z) =

[

1 0

−P (z) 1

]

Hp(z). (2.80)

It is evident that this operation does not change the determinant of the polyphase ma-
trix, which still equals 1.
To preserve the perfect reconstruction property of a new filter bank, an inverse dual
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Figure 2.19: (a) Usage of a dual lifting step in improving properties of the high-pass
channel. (b) The resulting equivalent structure.
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Figure 2.20: Polyphase representation of a dual lifting step.

lifting step will be performed on the synthesis side. The inverse is trivial to obtain
since it is the same as the original dual lifting step with the only difference being the
sign. The result is a new polyphase matrix

G
new
p (z) = Gp(z)

[

1 0

P (z) 1

]

, (2.81)

where

G
new
p (z) =

[

G0o(z) +G1o(z)P (z) G1o(z)

G0e(z) +G1e(z)P (z) G1e(z)

]

. (2.82)
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2.3.2 Primal Lifting Step

Similar procedure can be done in order to lift the properties of the low-pass channel. It
is the so called primal lifting step or update step. The new low-pass analysis filter is the
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Figure 2.21: (a) Usage of a lifting step in improving the properties of the low-pass
channel. (b) The resulting equivalent structure.

following:
Hnew

0 (z) = H0(z) +H1(z)U(z2), (2.83)

New polyphase matrices for the analysis and reconstruction sides can be expressed as

H
new
p (z) =

[

1 U(z)

0 1

]

Hp(z), (2.84a)

G
new
p (z) = Gp(z)

[

1 −U(z)

0 1

]

, (2.84b)

where
Gnew

1 (z) = G1(z) −G0(z)U(z2). (2.85)

2.3.3 Alternating Dual and Primal Lifting Step

A good choice of filters to begin lifting is a Lazy wavelet, i.e. a plain polyphase decom-
position with polyphase matrices Hp(z) = I and Gp(z) = I. A structure obtained in
this way by using only two lifting steps is shown in figure 2.22. Appropriate polyphase
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Figure 2.22: Filter bank based on lifting. Dual and primal lifting steps are used to
obtain the filter bank structure with desired properites.

matrices are obtained as:

Hp(z) =

[

1 U(z)

0 1

][

1 0

−P (z) 1

]

, (2.86a)

Gp(z) =

[

1 0

P (z) 1

][

1 −U(z)

0 1

]

. (2.86b)

Predict and Update

The dual lifting step can be observed as a predictor, i.e. a prediction step. It predicts val-
ues of samples in the high-pass channel based on the samples from the low-pass chan-
nel. In this perspective, the resulting coefficients in the high-pass channel are actually
a prediction error. If prediction is good, the respective coefficients will be small, with
values that are more concentrated around zero. To retain some properties of the origi-
nal signal (e.g. mean value), the primal lifting step is used. It can be called the update
step since the samples from the low-pass channel are updated with the prediction-error
coefficients from the high-pass channel.

The Generalization

Daubechies and Sweldens in [Daubechies 96] show that any polyphase matrix repre-
senting a wavelet transform with FIR filters can be factored into a finite number of
lifting steps starting with the Lazy wavelet. The factorization can be done by using
Euclidean algorithm. By using the proposed factorization, the analysis and synthesis
polyphase matrices can be expressed as:

Hp(z) =

[

K1 0

0 K2

]

{
m∏

i=1

[

1 Ui(z)

0 1

][

1 0

−Pi(z) 1

]

}, (2.87a)

Gp(z) =

[

1/K1 0

0 1/K2

]

{
m∏

i=1

[

1 0

Pi(z) 1

][

1 −Ui(z)

0 1

]

}. (2.87b)
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Chapter 3

Two-Dimensional Nonseparable
Wavelet Filter Banks Using Lifting
Scheme

In this chapter we present a 2-D filter bank that is the basis for the adaptive structure
proposed in this thesis and explained in detail in chapter 5. It is a nonseparable fil-
ter bank based on a lifting scheme. It’s implementation was presented by Kovačević
and Sweldens in [Kovačević 00]. They have shown how to build discrete compactly
supported biorthogonal wavelets and PR filter banks for any lattice, in any dimen-
sion, and with any number of primal and dual vanishing moments. Two lifting steps
are used: the predict and the update, forming an interpolating filter bank structure.
Prior to explaining the filter bank construction, an introduction to the basics of the
two-dimensional sampling will be given.

3.1 Multidimensional Signals and Notation

Although this chapter and the rest of the thesis deal with two-dimensional signals,
most of the equations given in the following sections hold not only for a 2-D case, but
for a general multidimensional case as well. With a view to expressing equations that
are independent of the number of dimensions of the analyzed signal, we use vectors
instead of scalars for indexing purposes. These vectors are denoted with boldface low-
ercase letters (while boldface uppercase letters are used to denote matrices). Here are
some vectors that will be frequently used in denoting the "time" index, the frequency
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index and the z-domain index respectively:

n =
[

n1 n2 . . . nd

]T

, (3.1a)

ω =
[

ω1 ω2 . . . ωd

]T

, (3.1b)

z =
[

z1 z2 . . . zd

]T

. (3.1c)

Now, the discrete d-dimensional signal x[n1, n2, . . . , nd] can be indexed as x[n]. Also,

z
k = zk1

1 z
k2

2 . . . zkd

d . (3.2)

Raising a d-dimensional vector z to a matrix M with d rows and d columns yields

z
M =

[

z
m1 z

m2 . . . z
md

]T

, (3.3)

where mi denotes i-th column of the matrix M. For the sake of an example, let us
consider one two-dimensional case:

z






1 3

2 4






=






[

z1

z2

]






1

2






[

z1

z2

]






3

4











T

=

[

z1
1z

2
2

z3
1z

4
2

]

. (3.4)

3.2 Nonseparable Versus Separable

A straightforward way of implementing two-dimensional wavelet decomposition is
using a pyramidal algorithm described in [Mallat 89c]. It uses the well known one-
dimensional wavelet decomposition applied separately along rows and columns of
the analyzed image. The corresponding 2-D filters are separable, i.e. they can be ex-
pressed as products of 1-D filters. Definitively, this is the "easy" way to implement a
2-D wavelet transform. Still, because of its horizontal and vertical bias, this scheme is
not the best choice in the image processing. Since the human visual system is most sen-
sitive in horizontal and vertical directions, this bias will introduce perceptually greater
distortions after applying nonlinear operations on wavelet coefficients (such as thresh-
olding and quantization). It seems logical that in dealing with images a true 2-D pro-
cessing should be used. True 2-D transforms are using nonseparable sampling and
nonseparable filters. Although computationally more demanding, they bring some
additional benefits. Nonseparable sampling can be chosen to treat all directions in the
picture similarly. In this way, the wavelet decomposition will be better tuned to the
human visual system. Also, there is more freedom in the design of nonseparable filters
than in the design of separable filters.
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3.3 Two-Dimensional Sampling

The first task of anm-channel critically sampled filter bank is to split the input image in
m equally large distinct sets of pixels. This is a more sophisticated task than that in the
1-D case and there are many ways to subsample an image in a number of subsets. One
example of splitting an image in two subsets is shown in figure 3.1. The original lattice
is split in two sublattices in a checkerboard-like way. Gray circles represent samples on
the first sublattice and white circles represent samples on the second sublattice. This
type of lattice is called quincunx lattice.

(1,-1)


(1,1)


n
2


n
1


(a)

(1,0)


(0,1)


n
2


n
1


(b)

Figure 3.1: Quincunx subsampling. The fundamental parallelepiped is marked gray.
Samples belonging to the FPD are marked with bold circles. (a) Samples of the orig-
inal image. Gray circles represent samples belonging to the first coset. White circles
represent the second coset. (b) First coset in the subsampled domain. Samples are
renumbered in such a way that the overall effect is their 45◦ counterclockwise rotation.

3.3.1 Lattices and Dilation Matrix

There are other types of lattices [Dubois 85] that enable splitting of images in many
different ways. Figure 3.2(a) shows one separable lattice, and figure 3.2(b) shows a
hexagonal lattice. Every lattice is defined with a corresponding dilation matrix D. In
general, for a d-dimensional sampling this matrix will have d rows and d columns.
Columns of matrix D are vectors that form a basis of a given lattice. For a 2-D case the
lattice is defined as a set of all vectors obtained as a linear combination of the two basis
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(a) Separable sampling.
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(b) Hexagonal sampling.

Figure 3.2: Two different sampling schemes: separable (a) and nonseparable (b).
The fundamental parallelepiped is marked gray. Samples belonging to the FPD are
marked with bold circles.

vectors:

LAT (D) = Dn, n =

[

n1

n2

]

∈ Z2. (3.5)

2-D dilation matrices corresponding to quincunx, separable and hexagonal lattices in
figures 3.1(a), 3.2(a) and 3.2(b) are:

Dq =

[

1 1

−1 1

]

, Ds =

[

2 0

0 2

]

, Dh =

[

1 1

−2 2

]

. (3.6)

It should be noted that the separable lattice is represented with a diagonal matrix. It is
worth pointing out that there can be found a number of dilation matrices forming the
same lattice. For example, all of the following dilation matrices

Dq =

[

1 1

−1 1

]

, Dq2 =

[

1 −1

1 1

]

, Dq3 =

[

1 2

−1 0

]

, (3.7)

form the same quincunx lattice.

Determinant of the Dilation Matrix

A unit cell of a lattice defined by vectors of the matrix D is called fundamental paral-
lelepiped (FPD). The area of the fundamental parallelepiped can be calculated by using
a dilation matrix as | detD|. Since only one point (point (0, 0)) of the lattice LAT (D) be-
longs to FPD(D), it follows that the sampling density, i.e. the number of samples per
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unit area is 1/| detD|. Similarly, the number of points n ∈ Z 2 belonging to the funda-
mental parallelepiped (FPD) can be expressed as reciprocal of the sampling densitiy:

M = | detD|. (3.8)

By shifting the lattice origin onto each member of FPD(D), a corresponding coset of
image samples is obtained. The total number of cosets equals M . Considering the
critically sampled filter banks, every coset will represent one polyphase component
and the total number of filter bank channels will equal M . It means that the quincunx
sampling scheme will require a 2-channel filter bank since | detDq| = 2, the separable
sampling from figure 3.2(a) will require 4 channels since | detDs| = 4, and the hexago-
nal sampling from figure 3.2(b) will also require 4 channels since | detDh| = 4.

3.3.2 Downsampling

By using the vector notation, downsampling can be expressed as:

yD[n] = x[Dn], for every n =

[

n1

n2

]

∈ Z2. (3.9)

This equation is very similar to 1-D decimation expressed in equation 2.1. For a d-
dimensional case the relation 3.9 also holds with the only difference concerning the
size of vector n and matrix D. The downsampling operation stated in the equation 3.9
can be perceived as a sequence of the following three steps:

Lattice points are defined with a choice of a dilation matrix D (see equation 3.5).

Keep only image samples that lie on a given lattice, i.e. the first coset. All the other
samples are being discarded. In the FPD(D), it is only the sample at (0, 0) that
is retained. The decimation ratio is M = | detD|, i.e. one sample out of M is
retained.

Renumber the retained samples to fill all the integer points n ∈ Z 2 of the output im-
age. An example of renumbering of samples caused by quincunx downsampling
is shown in figure 3.1(b).

In the frequency domain the following relationship stands:

YD(ω) =
1

| detD|
∑

k∈N (DT )

X(D−T (ω − 2πk)), (3.10)
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where N (DT ) is a set of integer vectors in the FPD(DT ), D
−T = (D−1)T and ω =

[

ω1 ω2

]T

. The effect is similar to the effect of one-dimensional decimation. A spec-

trum of the decimated signal is obtained by adding M = | detD| copies of X(D−T
ω),

i.e. a stretched input signal’s spectrum. Each stretched copy is shifted for the corre-
sponding 2πk.
For a quincunx decimation with dilation matrix as defined in 3.6 there will be two
copies of the input signal’s spectrum. The fundamental parallelepiped FPD(DT ) con-
tains two integer vectors, namely (0, 0) and (0, 1). Therefore, equation 3.10 can be writ-
ten as

YD(ω) =
1

2
[X(

[

0.5 0.5

−0.5 0.5

][

ω1

ω2

]

) +X(

[

0.5 0.5

−0.5 0.5

][

ω1

ω2 − 2π

]

)]. (3.11)

ω2

ω1π 2π

π

2π

(a)

ω2

ω1π 2π

π

2π

(b)

Figure 3.3: The effect of a quincunx decimation in the frequency domain. (a) Support
ofX(ω). (b) Support ofX(D−T

ω) is marked dark gray. Support of its shifted version is
represented with the light gray areas. The original signal’s spectrum was bandlimited
to the Vornoi cell of the scaled reciprocal lattice LAT (2πD−T ) (see figure 3.4(b)) so that
no aliasing occurred.

Reciprocal Lattice and the Vornoi Cell

In equation 3.10, the D
−T is responsible for stretching the original signal’s spectrum.

Lattice LAT (D−T ) is called the reciprocal lattice to the original lattice LAT (D). Further-
more, a scaled reciprocal lattice is LAT (2πD−T ). Another type of unit cell is the Vornoi
cell. It consists of points that are closer to the origin than to any other point of a given
lattice. If the spectrum of a signal (image) is bandlimited to the Vornoi cell of a fre-
quency domain (scaled reciprocal) lattice, then no overlapping after decimation will
occur (see figure 3.3).
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Figure 3.4: (a) Vornoi cell of the quincunx lattice LAT (Dq). (b) Vornoi cell of the quin-
cunx scaled reciprocal lattice LAT (2πD−T

q ).

3.3.3 Upsampling

The upsampling operation can be expressed by the following equation:

yE[n] =







x[D−1
n] if n ∈ LAT (D),

0 otherwise.
(3.12)

Equation 3.12 states that samples from the input image are placed on the points of the
output images that belong to the lattice LAT (D). All the other points of the output
image are filled with zeros. In the frequency domain the upsampling operation gives:

YE(ω) = X(DT
ω), (3.13)

or expressed in the z-domain:
YE(z) = X(zD). (3.14)

Given a quincunx dilation matrix, equation 3.14 becomes

YE(z1, z2) = X(

[

z1

z2

]






1 1

−1 1






) = X(

[

z1

z2

]






1

−1






,

[

z1

z2

]






1

1






) = X(z1z
−1
2 , z1z2) (3.15)

The effect of quincunx upsampling is shown in figure 3.5. The obtained imaging effect
is similar as in the 1-D case discussed in section 2.1.2. The original image spectrum
has been shrunk so that | detD| = 2 copies of the basic spectrum fit into the frequency
square from (0, 0) to (2π, 2π). In that area, there are | detD|−1 images. In the quincunx
case, there is only one image. Figure 3.6 show the effect of iterative upsampling of
the diamond shaped low-pass filter using a quincunx sampling scheme. After every
iterated upsampling step the basic spectrum rotates by 45◦ and shrinks. It should be
noted that for every second step, the same shape is obtained.
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Figure 3.5: The frequency domain imaging effect caused by a quincunx upsampling.
(a) Support of X(ω). (b) Support of X(DT

ω). Lighter gray areas represent images.
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Figure 3.6: Frequency support of the iterated quincunx low-pass filter. (a) Support
of the original quincunx low-pass filter. (b) Support of the filter obtained after first
quincunx upsampling of the basic filter. (c) Support of the filter obtained after second
quincunx upsampling of the basic filter.

3.3.4 Simplest Nonseparable Choice: Quincunx Sampling

Filter banks that are presented in the following sections are based on a quincunx sam-
pling. Quincunx sampling is chosen as the simplest nonseparable sampling scheme.
Since the determinant of the quincunx dilation matrix equals 2, the corresponding crit-
ically sampled filter bank will have two channels. Considering the frequency domain,
the quincunx sampling shows better results than the separable sampling. The reason
lies in the fact that the human visual system is more sensitive to higher frequencies in
horizontal and vertical directions than to the frequencies in diagonal directions. The
ideal quincunx low-pass filter based on a reciprocal Vornoi cell (see figure 3.4(b)) has a
diagonal cutoff. It means that the horizontal and vertical frequencies will be preserved,
while the diagonal ones will be limited bounded to one half of their original range, and
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it fits the human eye pretty good.
For a quincunx downsampling relation 3.9 becomes

yD[n1, n2] = x[n2 + n1, n2 − n1], (3.16)

while the upsampling relation 3.12 can be expressed as

yE[n1, n2] =







x[1
2
(n1 − n2),

1
2
(n1 + n2)] if n ∈ LAT (D),

0 otherwise.
(3.17)

The effect of a quincunx subsampling is shown in figure 3.1. The original image is
split in two cosets as shown in figure 3.1(a). The first phase (shown in figure 3.1(b))
is obtained by shifting the first coset by 45◦ in the counterclockwise direction. This
procedure can also be perceived as mapping of samples in the coordinate system de-
fined by unit vectors (see rotated axes marked in figure 3.1(a)). A quincunx polyphase
decomposition of one simple image is shown in figure 3.7. Notice the effect of the
counterclockwise rotation1 by 45◦. It is interesting to note that the one pixel wide di-
agonal line is completely transferred in the first phase while it completely disappeared
in the second phase.

(a) (b) (c)

Figure 3.7: Quincunx polyphase decomposition: the original image (a) is split in two
phases (b) and (c).

1Practical note. In further sections results of wavelet image analysis will be shown by using the
MATLAB program. Since MATLAB loads the image in a ij coordinate system, rather than a xy, the
polyphase components will seem to be rotated in a clockwise direction.
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3.4 Quincunx Interpolating Filter Banks

In this section we present a method to design filter banks based on a lifting scheme
as proposed by Kovačević and Sweldens in [Kovačević 00]. This is a very powerful
method allowing one to custom design wavelet filter banks and wavelets in any di-
mension, for any kind of sampling schemes and any number of dual and primal van-
ishing moments. Being based on lifting, it brings along additional benefits inherent in
the lifting scheme (see section 2.3). For purposes of the thesis, just one special family
of filter banks will be considered: the two-dimensional two-channel filter banks based
on a quincunx sampling scheme.

3.4.1 Interpolating Filters

For a filter to be interpolating with a given sampling scheme its impulse response must
be zero valued for all the samples of the 0th coset except in the origin. In the case of
the sampling scheme that yields only two phases, the interpolating filter is expressed
as:

H(z) = 1 + z
tHo(z), (3.18)

where t is the shift between the two cosets.

3.4.2 Neville Filters

Filters built by Kovačević and Sweldens in [Kovačević 00] are based on a polynomial
interpolation. They call them the Neville filters. To explain the purpose of a Neville
filter let us consider a polynomial of order N − 1 sampled on some d-dimensional
lattice. It will be denoted as π(Zd). By applying a Neville filter P of order N or higher
on the sampled polynomial, the result obtained will be samples of the very polynomial,
yet sampled on a given lattice shifted by τ :

Pπ(Zd) = π(Zd + τ ) (3.19)

where τ ∈ Rd.

3.4.3 Construction of Quincunx Neville Filters

Building of Neville filters in one dimension is simple and straightforward. It relies on
a very well known Lagrangian interpolation. The efficient algorithm for calculating
the interpolating value is called the Neville algorithm (thence the name Neville filters).
In two or more dimensions the interpolation problem becomes more complicated as
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not only the function of the number of given points the interpolation is based on, but
also as the function of their mutual positions. The solution to this problem has been
dealt with in the study by de Boor and Ron [de Boor 90, de Boor 92]. These authors
have provided an algorithm that, based on a given set of points, gives a polynomial
space for which the interpolation to arbitrary data given at these points is possible and
unique.

Figure 3.8 shows a quincunx interpolation scheme. Samples of the original image
are split in two cosets by using quincunx sampling. The first coset is represented with
gray circles and the second coset is represented with white circles. As shown in fig-
ure 3.8(a), one sample from the second coset is being predicted by using interpolation
to its surrounding samples from the first coset. Figure 3.8(b) represents the same in-
terpolation now in the sampled domain. We interpolate at a number of points that are
grouped in rings. For higher interpolation orders more rings are being included. Rings
are chosen in the way shown in figure 3.8(b).
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Figure 3.8: Quincunx interpolation. (a) The original rectangular lattice is split in two
quincunx lattices. The bold white circle represents the sample from the second coset
whose value is being predicted based on a number of neighboring samples from the
first coset. Samples are marked with the numbers of rings they belong to. Samples
of the first two rings are connected with a dashed line. (b) Interpolating rings in the
sampled domain. The small white circle represents the interpolation point.
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Order ring 1 ring 2 ring 3 ring 4 ring 5 ring 6 ring 7
2 1 ×2−2

4 10 -1 ×2−5

6 174 -27 2 3 ×2−9

8 23300 -4470 625 850 -78 9 -80 ×2−16

Table 3.1: Filter coefficients. Filter of a given order consists of one or more rings. Each
ring includes a number of filter coefficients. The ring numbering scheme is as shown
in figure 3.8.

In the sampled domain, the prediction of a sample from the second coset is obtained
by filtering the first coset with a Neville filter of shift

τ = D
−1

t =

[

0.5 −0.5

0.5 0.5

][

1

0

]

=

[

0.5

0.5

]

, (3.20)

where t is a shift of the second coset with respect to the first coset. Coefficients of a
Neville filter obtained by using the de Boor-Ron algorithm are given in table 3.1. For a
higher interpolation order more interpolation rings are included and the correspond-
ing Neville filter has more taps.

3.4.4 Predict and Update

In building a filter bank with desired properties, only two lifting steps will suffice: the
predict and the update. The purpose of the predict step is to predict values of the
second coset (even samples) based on the values from the first coset (odd samples).
Wavelet (highpass) coefficients will be calculated as a prediction error, i.e. even sam-
ples minus the prediction of even samples (see figure 3.9). Neville filters described
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Figure 3.9: Quincunx interpolating filter bank. Downsampling and upsampling oper-
ators are defined by using a quincunx dilation matrix, D = Dq from equation 3.6.

earlier will be used as the predict filters (section 3.4.5). In this way, if the input is a
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(a) P2 (b) P4 (c) P6 (d) P8

Figure 3.10: Support of the impulse response of the predict filters P of different orders
in the domain of the original image. Black squares represent pixels that have nonzero
values. Support of P4 shown in (b) is defined by the first two rings as shown in figure
3.8(a).
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Figure 3.11: Magnitude frequency responses for the predict filters of different orders.
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polynomial of an order smaller than the order of a predict filter P , prediction will be
perfect and wavelet coefficients will all be set to zero. After a predict step, the update
step is used to update even samples based on the previously calculated detail (wavelet)
coefficients. The update filter U is designed to make the average value of the output of
the low-pass channel the same as the average values of the input signal (image).
The analysis polyphase matrix of the filter bank shown in figure 3.9 is:

Hp(z) =

[

H0e(z) H0o(z)

H1e(z) H1o(z)

]

=

[

1 U(z)

0 1

][

1 0

−P (z) 1

]

=

[

1 − U(z)P (z) U(z)

−P (z) 1

]

, (3.21)

which can be written as

H0(z) = 1 − P (zD)U(zD) + z
−tU(zD), (3.22a)

H1(z) = −P (zD) + z
−t. (3.22b)

The synthesis polyphase matrix follows directly from analysis polyphase matrix:

Gp(z) =

[

G0e(z) G0o(z)

G1e(z) G1o(z)

]

= H
∗−1
p (z) =

[

1 P ∗(z)

−U ∗(z) 1 − U ∗(z)P ∗(z)

]

. (3.23)

Therefore,

G0(z) = 1 + z
tP ∗(zD), (3.24a)

G1(z) = −U ∗(zD) + z
t(1 − P ∗(zD)U ∗(zD)). (3.24b)

3.4.5 Vanishing Moments

A filter bank has Ñ dual vanishing moments (DM) if the analysis high-pass channel
annihilates the polynomial sequences of order lower than Ñ . Also, a filter bank is
said to have N vanishing moments (PM) if the synthesis high-pass channel annihilates
polynomial sequences of the order lower than N . The following equations stand:

(↓ D)H1π = 0 for π ∈ ΠÑ , (3.25a)

G1(↑ D)π = 0 for π ∈ ΠN , (3.25b)

where ΠÑ and ΠN denote the spaces of all the polynomial sequences of the total degree
less than Ñ and N respectively. To permit the perfect reconstruction, the polynomial
sequences annihilated in the high-pass channel have to be preserved in the low-pass
channel. In terms of wavelet and scaling functions, if the dual (analysis) wavelet has
Ñ vanishing moments, then the primal (synthesis) scaling function has to be able to
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reproduce polynomials up to the degree Ñ . Also, if the primal wavelet has N vanish-
ing moments, then the dual scaling function has to reproduce polynomials up to the
degree N .
Firstly we will consider the condition for obtaining Ñ dual vanishing moments using
the lifting scheme. Downsampled output of the analysis high pass filter can be ex-
pressed in terms of the polyphase components, each polyphase component affecting
one sublattice. Therefore, the DM condition becomes:

(↓ D)H1π(Z2) = H1eπ(DZ2) +H1oπ(DZ2 + t) = 0 for π ∈ ΠÑ . (3.26)

Combining equations 3.26 and 3.21 we get:

−Pπ(DZ2) + π(DZ2 + t) = 0 for π ∈ ΠÑ , (3.27)

which yields
Pπ(DZ2) = π(DZ2 + t) for π ∈ ΠÑ . (3.28)

Equation 3.28 can be expressed in the downsampled domain as

Pπ(Z2) = π(Z2 + D
−1

t) for π ∈ ΠÑ . (3.29)

Equation 3.29 reveals the DM condition. In order to have Ñ dual vanishing moments,
P has to be a Neville filter of the order Ñ and shift τ = D

−1
t! In that case the predict

filter will be able to give values of the polynomial sampled on the odd lattice (odd
phase) based on the values of that polynomial sampled on the even lattice (even phase).
Prediction will be perfect, and the resulting high-pass output, which is calculated as a
difference of the odd phase and a prediction of the odd phase, will be equal to zero.
With the P filter satisfying the DM condition, U filter will be defined to satisfy the PM
condition:

G1(↑ D)π(Z2) = G1eπ(DZ2) +G1oπ(DZ2 + t)

= −U ∗π(DZ2) + (1 − U ∗P ∗)π(DZ2 + t)

= −U ∗π(DZ2) + π(DZ2 + t) − U ∗P ∗π(DZ2 + t) = 0 for π ∈ ΠN .

(3.30)

For N ≤ Ñ , equation 3.29 stands and 3.30 becomes

2U∗π(DZ2) = π(DZ2 + t) for π ∈ ΠN . (3.31)

Equation 3.31 states that in order to obtain N primal vanishing moments, with P being
a Neville filter of the order Ñ and shift τ = D

−1
t, 2U ∗ has to be a Neville filter of the
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order N and shift τ . Consequently, 2U has to be a Neville filter of the order N and shift
−τ . The simplest choice is to make

U = UN =
1

2
P ∗

N , (3.32)

where PN is a Neville filter of the order N and shift τ while UN per se in not a Neville
filter.
For example, the filter bank with 4 dual vanishing moments and 2 primal vanishing
moments will be constructed using the prediction filter P4 and the update filter U =

1/2P ∗
2 (see table 3.1):

P4(z1, z2) =
10

32
(1 + z−1

1 + z−1
2 + z−1

1 z−1
2 )

− 1

32
(z−2

1 + z−2
2 + z−2

1 z−1
2 + z−1

1 z−2
2 + z1 + z2 + z1z

−1
2 + z−1

1 z2),
(3.33)

U2(z1, z2) =
1

2
P ∗

2 (z1, z2) =
1

8
(1 + z1 + z2 + z1z2). (3.34)

Magnitude frequency responses of the resulting analysis and synthesis filters are shown
in figure 3.12. Since the analysis wavelet function has 4 vanishing moments and the
synthesis wavelet function has 2 vanishing moments, the magnitude frequency re-
sponse for the analysis high-pass filter is much more flat around the DC than for the
synthesis low-pass filter. Analysis high-pass filter has 4th order zero and the synthesis
high-pass filter has 2nd order zero at the DC frequency. The synthesis low-pass filter
is interpolating (see equation 3.24), enabling the reconstruction of the polynomial se-
quences up to the 4th order. The duality between the primal (synthesis) low-pass filter
and the dual (analysis) high-pass filter is obvious when comparing their magnitude
frequency responses. Considering the frequency domain from 0 to π, the magnitude
frequency response of the G0 filter is a mirrored magnitude frequency response of the
H1 obtained by reversing the frequency scale (compare figures 3.12(b) and 3.12(c)). The
same duality holds for the analysis low-pass filter H0 and the synthesis high-pass filter
G1.

3.4.6 Interchange of Dual and Primal Functions

In most image processing applications the constraint N ≤ Ñ (number of primal van-
ishing moments must be less or equal to the number of dual vanishing moments) is not
a problem. Actually, it is convenient to have smooth reconstruction functions (see fig-
ure 3.15) resulting from an interpolating synthesis low-pass filter. Also, higher number
of dual vanishing moments gives better polynomial cancellation.
Yet, if one needs N ≥ Ñ , it can be obtained by a simple alteration of signs in the filter
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Figure 3.12: Magnitude frequency responses of the filters obtained by using prediction
filter P4 and update filter U2.

bank, as shown in figure 3.13. In such a filter bank roles of dual and primal functions
are interchanged. The following equations stand:

H0(z) = P (zD) + z
−t, (3.35a)

H1(z) = 1 − P (zD)U(zD) − z
−tU(zD), (3.35b)

G0(z) = U ∗(zD) + z
t(1 − P ∗(zD)U ∗(zD)), (3.36a)

G1(z) = 1 − z
tP ∗(zD). (3.36b)

Now, the analysis low-pass filterH0 is interpolating. Also, the resulting analysis wavelet
and scale functions have higher regularity than the synthesis wavelet and scale func-
tions.
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Figure 3.13: Reversed filter bank structure obtained by changing signs in the quincunx
interpolating filter bank shown in 3.9. The first channel becomes high-pass, and the
second one becomes low-pass.

3.4.7 Iterated Filter Banks

By iterating a synthesis filter bank on a low-pass channel the following low-pass and
high-pass filters are obtained:

G
(N)
0 (z) =

N−1∏

i=0

G0(z
DN

), (3.37)

G
(N)
1 (z) = G1(z

DN−1

)
N−2∏

i=0

G0(z
DN

). (3.38)

The similar relations hold for the analysis filter bank:

H
(N)
0 (z) =

N−1∏

i=0

H0(z
DN

), (3.39)

H
(N)
1 (z) = H1(z

DN−1

)
N−2∏

i=0

H0(z
DN

). (3.40)

The results on iterating analysis filters from figure 3.12 are shown in figure 3.14. Com-
pare the diamond-shaped frequency decomposition of the iterated quincunx scheme
with figure 3.6.
Resulting impulse responses of the analysis and synthesis filters after seven iterations,
corresponding to the limit scale and wavelet functions, are shown in figure 3.15. As ex-
pected, the synthesis functions are smooth, as a consequence of the synthesis low-pass
filter being interpolating. Analysis functions are far less regular.
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Figure 3.14: Support of the magnitude frequency responses of the synthesis filters.
White areas represent smallest values and darker areas represent higher values. (a)
Original synthesis low-pass filter from figure 3.12(c), upsampled with Dq (b) and D2

q

(c). Product of these three filters is shown in (d) and (i). (e) Original synthesis high-pass
filter from figure 3.12(d), upsampled with Dq (f) and D2

q (g). Corresponding high-pass
filter shown in (h) and (j) is obtained as a product of low-pass filters from (a) and (b)
and a last-level high-pass from (g).
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(a) (b)

(c) (d)

Figure 3.15: Impulse responses obtained after seven iterations on the low-pass channel.
First row: dual (analysis) limit scale (a) and wavelet (b) functions. Second row: primal
(synthesis) limit scale (c) and wavelet (d) functions.
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Chapter 4

Filter Banks With Variable Parameters

The quincunx interpolating filter banks presented in section 3.4 have a number of good
properties that can be exploited in various fields of image processing. Yet, for a given
image, these filter banks are still not optimal. It is logical to expect that the modifica-
tion of these filter banks that is tunable in accordance with specific image properties
could outperform the fixed filter banks.
In this chapter we discuss the modification of a quincunx interpolating filter bank pre-
sented in section 3.4. The modified filter bank structure allows for a number of filter
parameters to be tuned based on image properties, while still preserving good prop-
erties of the wavelet filter bank. The filter bank consists of two parts: the fixed part
and the variable variable. The basic number of primal and dual vanishing moments
is provided by the fixed part of the filter bank. The variable part of the filter bank can
be independently adapted to the analyzed signal (image). The adaptation criteria and
adaptation algorithms used are discussed in chapter 5.

4.1 Bad Way To Change Filter Parameters

Let us consider a variable analysis filter bank structure as shown in figure 4.1. There
are the simplest predict and update filters used (see table 3.1):

P2(z1, z2) =
1

4
(1 + z−1

1 + z−1
2 + z−1

1 z−1
2 ), (4.1a)

U2(z1, z2) =
1

2
P ∗

2 (z1, z2) =
1

8
(1 + z1 + z2 + z1z2). (4.1b)

The output of the prediction filter P2 is multiplied by the weight parameter p1 and out-
put of the update U2 filter is multiplied by the weight parameter u1. In this way, there
are new predict and update filters obtained. By changing those weight parameters, one
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can influence the properties of the corresponding analysis high-pass and low-pass fil-
ters. Of course, to satisfy the perfect reconstruction requirement, the same parameters
should be used on the synthesis side making corresponding synthesis filters change in
a fashion similar to the analysis filters.
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Figure 4.1: Analysis filter bank with one variable parameter in the predict stage and
one variable parameter in the update stage.

4.1.1 Predict Step

Let us first change only the prediction parameter p1, while the u1 = 1 (plain U2 update
filter), as shown in figure 4.2. Figure 4.4 shows the magnitude frequency responses of
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Figure 4.2: Analysis filter bank with one variable parameter in the predict stage.

the corresponding analysis high-pass filter for different values of the parameter p1. It
is obvious that basic property of the high-pass filter, i.e. zero for the DC frequency,
is lost for all values of p1 except for p1 = 1. Negative values of p1 cause the filter’s
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magnitude frequency response to become a low-pass mirror image of the magnitude
frequency response obtained with the same, yet positive value of p1. Figure 4.3 shows
the magnitude frequency responses for all four corresponding filters (analysis and syn-
thesis) obtained with p1 = 1.25. Take note of the biorthogonality property: the analysis
low-pass as a mirrored synthesis high-pass and the analysis high-pass as a mirrored
synthesis low-pass. The impulse responses corresponding to the limit analysis and
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Figure 4.3: Magnitude frequency responses obtained by using a weighted prediction
filter 1.25P2 and update filter U2.

synthesis wavelet functions (after seven iterations) obtained by using different p1 pa-
rameters are shown in figure 4.5. It is evident that the convergence and regularity
problems appear for p1 6= 1.
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Figure 4.4: Magnitude frequency responses of the analysis high-pass filter obtained by
using a weighted prediction filter p1P2 and update filter U2.
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Figure 4.5: Analysis (left column) and synthesis (right column) limit wavelets obtained
by using a weighted prediction filter p1P2 and update filter U2.
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4.1.2 Update Step

Now let us examine the effects caused by changing the properties of the update branch.
The predict filter is fixed to P2 (p1 = 1) and the parameter u1 is being changed (figure
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Figure 4.6: Analysis filter bank with one variable parameter in the update stage.

4.6). As it can be seen in figure 4.7, the low-pass filter loses zero at (ω1, ω2) = (π, π) for
u1 6= 1. For positive values of u1 greater than 1, a "ditch" of zeros is introduced, turning
the low-pass filter into a kind of band-stop filter. These variations of the update filter
produce an inopportune effect on the properties of the iterated filter bank.
As shown in figure 4.8(c), the analysis wavelet obtained with fixed P2 and U2 has an
irregular structure already. Its irregularity is being increased by further increasing the
parameter u1. On the reconstruction side, the change in the update filter affects only
the high-pass filter (see figure 2.21), while the synthesis low-pass filter remains the
same. This makes the corresponding limit scale function the same and invariant with
regard to changes in the u1 parameter. Therefore, the regularity of the limit wavelet
functions is kept (see figures 4.8(b), 4.8(d) and 4.8(f)).
However, for u1 6= 1 these are not true wavelet functions because

∫ ∫
ψ(N)(t1, t2) 6= 0.

In order to enable that, it is necessary that the synthesis high-pass filter has zero at
(ω1, ω2) = (0, 0) which is equivalent to the necessity of the zero of the low-pass analysis
filter at the aliasing frequency (ω1, ω2) = (π, π) [Kovačević 92].
It is obvious that the variable filter bank structure shown in figure 4.1 is not a good
choice, since some properties of wavelet filter banks are degraded or even lost and
therefore a decomposition of a signal using this kind of a filter bank iterated on a low-
pass channel does not give a wavelet decomposition.
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Figure 4.7: Magnitude frequency responses of the analysis low-pass filter H0 obtained
by using the prediction filter P4 and an update filter u1U2.
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Figure 4.8: Analysis (left column) and synthesis (right column) wavelets obtained by
using the prediction filter P4 and a weighted update filter u1U2.
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4.2 Good Way To Change Filter Parameters

We will show now that it is possible to have a certain degree of freedom in changing
filter bank parameters while still preserving good properties of the wavelet decompo-
sition.

4.2.1 Predict Step

Instead of directly applying the predictor of a desired order, we create a structure that
enables us to split the prediction filter in the fixed and variable part. The fixed part
will provide a desired number of dual vanishing moments while the variable part will
be used to fine-tune the desired properties of the wavelet decomposition in accordance
with the analyzed image. As shown in figure 4.9, the prediction filter is constructed as
a weighted sum of additive components:

P = p1P2 + p2(P4 − P2) + p3(P6 − P4) + p4(P8 − P6). (4.2)

If multiplying parameters {p1, p2, p3, p4} are chosen from sets {1, 0, 0, 0}, {1, 1, 0, 0},
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Figure 4.9: Dual lifting structure with four variable parameters: p1, p2, p3 and p4.

{1, 1, 1, 0} and {1, 1, 1, 1}, then the prediction filters P2, P4, P6 and P8 respectively are
obtained. The prediction structure with desired properties is obtained as follows:

Fix the desired number of dual vanishing moments by setting first n prediction pa-
rameters to 1: p1 = . . . = pn = 1. In this way, 2n dual vanishing moments are
guaranteed and cannot be lost, no matter what values the remaining free param-
eters may take.

Vary the remaining free parameters to additionally improve the properties of the filter
bank.
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In the case of fixing p2 = 1, the two vanishing moments are guaranteed and the overall
prediction filter can be expressed as:

P = P2 + p2(P4 − P2) + p3(P6 − P4) + p4(P8 − P6). (4.3)

In the prediction structure, there are three parameters left which can be varied. We will
show now that these parameters can be freely changed without affecting the number
of dual vanishing moments. The dual vanishing moments condition has already been
expressed in the relation 3.29 as

Pπ(Z2) = π(Z2 + D
−1

t) for π ∈ ΠÑ . (4.4)

By combining equations 4.3 and 4.4 the DM condition can be expressed as

(P2 + p2(P4 − P2) + p3(P6 − P4) + p4(P8 − P6))π(Z2) = π(Z2 + D
−1

t),

P2π(Z2) + p2(P4 − P2)π(Z2) + p3(P6 − P4)π(Z2) + p4(P8 − P6)π(Z2) = π(Z2 + D
−1

t).

(4.5)

Since P2 is a Neville filter of order 2 and shift τ = D
−1

t, the relation 4.4 can be applied
to it, yielding

π(Z2 +D
−1

t)+p2(P4−P2)π(Z2)+p3(P6−P4)π(Z2)+p4(P8−P6)π(Z2) = π(Z2 +D
−1

t),
(4.6)

which further simplifies the DM condition to

p2(P4 − P2)π(Z2) + p3(P6 − P4)π(Z2) + p4(P8 − P6)π(Z2) = 0 for π ∈ Π2. (4.7)

To prove that the DM condition stands for the given filter bank structure, let us con-
sider a filter section p(PM̃ − PÑ), where p is a parameter that can take any positive or
negative value. PM̃ and PÑ are Neville filters of shift τ = D

−1
t and order M̃ ≥ 2 and

Ñ ≥ 2 respectively. Applying this filter section to a polynomial sequence π ∈ Π2 and
using the relation 4.4

p(PM̃ − PÑ)π(Z2) = p(π(Z2 + D
−1

t) − π(Z2 + D
−1

t)) = 0 for π ∈ Π2. (4.8)

Therefore,

p2(P4 − P2)π(Z2)
︸ ︷︷ ︸

=0

+ p3(P6 − P4)π(Z2)
︸ ︷︷ ︸

=0

+ p4(P8 − P6)π(Z2)
︸ ︷︷ ︸

=0

= 0 for π ∈ Π2, (4.9)

which concludes the proof that 2 dual vanishing moments are guaranteed no matter
what values the remaining free parameters p2, p3 and p4 may take!
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In the case of a structure with two filter parameters being fixed to 1, i.e. p1 = p2 = 1 the
overall prediction structure can be expressed as

P = P4 + p3(P6 − P4) + p4(P8 − P6). (4.10)

The similar procedure shown above can be used in order to prove that 4 dual vanishing
moments are guaranteed no matter what values the remaining free parameters p3 and
p4 may take. To simplify the generalization, let us define the predict filter PÑ+ that is
obtained by using a structure from figure 4.9 where the first Ñ/2 prediction parameters
are set to 1, i.e. p1 = . . . = pÑ/2 = 1 and the remaining parameters are free to change.
Therefore,

P2+ = P2 + p2(P4 − P2) + p3(P6 − P4) + p4(P8 − P6), (4.11a)

P4+ = P4 + p3(P6 − P4) + p4(P8 − P6), (4.11b)

P6+ = P6 + p4(P8 − P6). (4.11c)

The generalization follows:

If there is the filter PÑ+ chosen for the predict step of the filter bank shown
in the figure 3.9, then Ñ dual vanishing moments are guaranteed no matter
what values the remaining free parameters may take.

Changing the p2 Parameter

Let us analyze the filter bank structure which uses just two prediction branches: first
one is fixed (p1 = 1) and the second branch parameter p2 is being varied. Therefore,
the complete prediction filter is obtained as P = P2 + p2(P4 − P2). For the update step,
a fixed filter U2 is used.
Since p1 = 1, we get a double zero at a DC frequency of the corresponding analy-
sis high-pass filter, which guarantees two vanishing moments of the analysis (dual)
wavelet function. That double zero automatically corresponds to the double zero at
the aliasing frequency of the interpolating analysis low-pass filter.
Figure 4.10 shows the magnitude frequency responses for the corresponding analysis
and synthesis filters obtained by using P = P2 + 3(P4 − P2). We see that necessity of
zeros at the aliasing frequency for both synthesis and analysis low-pass filters is satis-
fied. Figures 4.11 and 4.12 show the magnitude frequency responses of the high-pass
analysis filter H1 obtained with different values of the p2 parameter. As expected, zero
at the DC frequency is preserved for all values of the p2 parameter. For positive values
of p2 higher than 1, there appear additional zeros forming a "ditch" around the DC fre-
quency (see figure 4.13). As the p2 increases, the zero ditch widens and grows into a
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Figure 4.10: Magnitude frequency responses obtained by using weighted prediction
filter P = P2 + 3(P4 − P2) and update filter U2.

diamond shape with the limit |ω1 ± ω2| = π. The zero ditch can be moved by changing
the p2 parameter and it can be adjusted to cancel the undesired frequency components
of the analyzed image. In chapter 5 we show how this property can be used to mini-
mize the detail signal.
For larger negative values of p2, zero ditches appear in the high frequency areas out-
side |ω1 ± ω2| = π as shown in figure 4.13. The analysis high-pass filter turns into a
kind of band-pass and there appears a problem with convergence.
In figure 4.14, there are examples of too big p2 parameter values causing convergence
and regularity problems. It is evident that not all p2 parameters result in good wavelet
filter banks. "Good" p2 parameters are the ones of small positive and negative values.
The analysis and synthesis limit wavelet functions with p2 parameters from an accept-
able range are shown in figures 4.15 and 4.16 respectively.
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Figure 4.11: Magnitude frequency responses of the analysis high-pass filter obtained
by using weighted prediction filter P2 + p2(P4 −P2) (with a range of negative values of
p2) and update filter U2.
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Figure 4.12: Magnitude frequency responses of the analysis high-pass filter obtained
by using weighted prediction filter P2 + p2(P4 − P2) (with a range of positive values of
p2) and update filter U2.
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Figure 4.13: Zero locations of the magnitude frequency responses of the analysis high-
pass filter obtained by using weighted prediction filter P2 + p2(P4 − P2) and update
filter U2 (see figures 4.11 and 4.12).
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Figure 4.14: Analysis (left column) and synthesis (right column) limit wavelet func-
tions obtained by using weighted prediction filter P2 +p2(P4−P2) and update filter U2.
Values of p2 parameters used in these examples are too big, causing convergence and
regularity problems.
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Figure 4.15: Analysis limit wavelet functions obtained by using weighted prediction
filter P2 + p2(P4 − P2) and update filter U2.
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Figure 4.16: Synthesis limit wavelet functions obtained by using weighted prediction
filter P2 + p2(P4 − P2) and update filter U2.

70



4.2.2 Update Step

The update lifting step is split in a number of branches (figure 4.17) in a way similar to
the predict step:

U = u1U2 + u2(U4 − U2) + u3(U6 − U4) + u4(U8 − U6), (4.12)

where UN = 1/2P ∗
N . Let us now prove that if the predict step guarantees two or more
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Figure 4.17: Filter bank with 2 fixed primal and 2 fixed dual vanishing moments and 3

parameters in both the predict stage and the update stage.

dual vanishing moments (it is the PÑ+ filter with Ñ ≥ 2), the update structure having
u1 = 1, i.e.

U = U2 + u2(U4 − U2) + u3(U6 − U4) + u4(U8 − U6), (4.13)

provides 2 vanishing moments of the primal wavelet. By using the relation 3.30 the
PM condition can be stated as

U∗π(DZ2) + π(DZ2 + t) − U ∗P ∗
2+π(DZ2 + t) = 0 for π ∈ Π2, (4.14)

where

P ∗
2+π(DZ2 + t) = (P ∗

2 + p2(P
∗
4 − P ∗

2 ) + p3(P
∗
6 − P ∗

4 ) + p4(P
∗
8 − P ∗

6 ))π(DZ2 + t)

= P ∗
2 π(DZ2 + t) + p2(P

∗
4 − P ∗

2 )π(DZ2 + t)
︸ ︷︷ ︸

=0

+ p3(P
∗
6 − P ∗

4 )π(DZ2 + t)
︸ ︷︷ ︸

=0

+ p4(P
∗
8 − P ∗

6 )π(DZ2 + t)
︸ ︷︷ ︸

=0

,

= π(DZ2),

(4.15)

since P ∗
2 is a Neville filter of order 2 and shift −τ = −D

−1
t. Therefore, the PM condi-

tion becomes
2U∗π(DZ2) = π(DZ2 + t) for π ∈ Π2, (4.16)
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and by using the relation 4.13,

2(U ∗
2 + u2(U

∗
4 − U ∗

2 ) + u3(U
∗
6 − U ∗

4 ) + u4(U
∗
8 − U ∗

6 ))π(DZ2) = π(DZ2 + t). (4.17)

By using the fact that 2U ∗
N = PN , the relation 4.17 becomes

u2(P4 − P2)π(Z2) + u3(P6 − P4)π(Z2) + u4(P8 − P6)π(Z2) = 0 for π ∈ Π2, (4.18)

which is always true (see equations 4.8 and 4.9), no matter what values the parameters
u2, u3 and u4 may take.
Let us define the update filter UN+ that is obtained by using a structure from figure
4.17 where the first N/2 prediction parameters are set to 1, i.e. u1 = . . . = uN/2 = 1 and
the remaining parameters are free to change. Therefore,

U2+ = U2 + u2(U4 − U2) + u3(U6 − U4) + u4(U8 − U6), (4.19a)

U4+ = U4 + u3(U6 − U4) + u4(U8 − U6), (4.19b)

U6+ = U6 + u4(U8 − U6). (4.19c)

The former result can be generalized:

If the predict step is a PÑ+ filter (which guarantees Ñ dual vanishing mo-
ments), and if the update step is a UN+ filter with N ≤ Ñ then N primal
vanishing moments are guaranteed no matter what values the remaining
free parameters may take.

Predict and Update Steps Can Be Altered Independently

It is important to note that if the number of fixed parameters in the update structure
does not exceed the number of fixed parameters in the predict structure, the remaining
free update parameters can be changed independently of the free predict parameters!
The number of primal (and dual vanishing moments) defined by the fixed filter section
will be preserved!

Changing the u2 Parameter

Figure 4.18 shows the magnitude frequency responses of the analysis low-pass filter
H0 obtained by using prediction filter P4 and update filter U2 + u2(U4 − U2). It can be
seen that zero at the aliasing frequency is always guaranteed, no matter what the value
of u2. This is a good start to obtaining the convergence of the limit scale (and wavelet)
functions (see figure 4.19).
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Figure 4.18: Magnitude frequency responses of the analysis low-pass filterH0 obtained
by using prediction filter P4 and update filter U2 + u2(U4 − U2).
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Figure 4.19: Analysis (left column) and synthesis (right column) limit wavelet func-
tions obtained by using prediction filter P4 and weighted update filter U2 +u2(U4−U2).
Continued...
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Figure 4.19: Continuation: Analysis (left column) and synthesis (right column) limit
wavelet functions obtained by using prediction filter P4 and weighted update filter
U2 + u2(U4 − U2).
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4.3 Importance of Lower Prediction Sections

The prediction structure from figure 4.9 is split into four prediction sections allowing
a maximum of three free filter parameters. In case of the maximum number of free
parameters, p2, p3 and p4 can be changed to tune the desired filter properties, while
p1 is being set to 1 to guarantee two dual vanishing moments no matter what values
the other three parameters may take. The magnitude frequency responses of all pre-
diction sections are shown in figure 4.20 (compare with figure 3.11). The second, third
and fourth filter are combinations of prediction filters and as such they have band-pass
properties.
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Figure 4.20: Magnitude frequency responses for all prediction sections.

The example of decomposition of a real image is given in figure 4.22. The first section
contributes mostly to the overall prediction. The contribution of the second section (fil-
ter P4 − P2) is much smaller but still important for fine-tuning of the filter properties.
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The contribution of the third and fourth sections to the overall prediction is almost in-
significant. An example is shown in figure 4.22 where the energy of the signal from the
second prediction section is 0.017% as compared to the energy of the signal from the
first prediction section, while the third and fourth prediction sections contain 0.0026%

and 0.0009% of the amount of energy of the first section.
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Figure 4.21: The input signal (a) is composed out of two polynomials of 1st and 8th
order. Central parts of the outputs from all prediction sections are shown in (b), (c), (d)
and (e). Higher order prediction is paid with wider transition effects.

(a) XeP2 (b) Xe(P4 − P2) (c) Xe(P6 − P4) (d) Xe(P8 − P6)

Figure 4.22: Outputs from all the prediction sections for image Lena (magnified central
parts are shown).

Other than giving insignificant contribution to the overall prediction, the higher order
prediction sections introduce higher boundary and transition effects. One example of
this behavior is shown in figure 4.21. The input signal (figure 4.21(a)) is composed of
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two polynomial sequences of different orders. As the prediction order increases, the
transition area (caused by the boundary of the two polynomials) in the output of the
prediction section widens.
Considering the effects mentioned above, it is obvious that a selection of an optimal
number of prediction sections is a matter of compromise. Higher prediction sections
lead to the further minimizing prediction error but they also introduce wider transi-
tion effects. In this case, an optimal solution would be only two prediction sections
used, one of them being fixed, and the second one being variable. The first section is
a second-order predictor P2 (multiplied by p1 = 1). The second section contains filter
P4 − P2 whose output is multiplied by parameter p2 in order to tune filter properties.
Similar reasoning holds for the update step. Therefore, an optimal filter bank structure
based on the above conclusions has two sections in the predict step and two sections in
the update step, each of the predict and update steps having one free parameter. Such
a structure is shown in figure 4.23.
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Figure 4.23: Filter bank with one free parameter in the predict stage and one free pa-
rameter in the update stage.
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Chapter 5

Proposed Adaptive Structure

The purpose of the filter banks proposed in this thesis is to provide an adaptive wavelet
decomposition of an input image that will be superior to the fixed decomposition
scheme. The proposed filter bank will change its properties for every pixel of the ana-
lyzed image in every decomposition level. There are various adaptation schemes based
on the minimal squared error criterion presented in this chapter.

5.1 Adaptive Filter Bank Structure

In chapter 4, the influence of filter parameters’ variations on overall filter bank prop-
erties was analyzed. Those were static analyses, considering that the given values of
the filter parameters are the same across the whole image. In this chapter, we deal
with a filter bank that can change it’s parameters according to the local image proper-
ties. Therefore, the properties of this filter bank can change in respect of every pixel in
the image. In general, for such space-varying filter banks analytical solutions are not
known. In this thesis we will assume that filter parameters are varying slowly enough
so that the static analysis from chapter 4 can be applicable.
The construction of the adaptive analysis filter bank starts with the predict step shown
in figure 4.9. Firstly, the n filter parameters p1 to pn are fixed to 1 to provide the desired
number of zero moments, while the remaining parameters are free to change according
to the image properties. Those free filter parameters will be changed for every pixel
of the downsampled image in order to minimize the prediction error measure. Similar
procedure is followed by the update step resulting in the general adaptive filter bank
structure shown in figure 5.1.
For the sake of simplicity of the adaptation algorithm, and because of the fact that the
higher prediction sections introduce bigger transition artifacts while having insignif-
icant contribution to the overall prediction (see section 4.3), the structure shown in
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Figure 5.1: Adaptive filter bank with three free parameters in the predict stage and
three free parameters in the update stage.

figure 5.2 will be preferred. This structure has only two sections in the predict step and
only two sections in the update step. The predict step has one free parameter that will
be varied in order to adjust the properties of the output detail signal. The update step
has also only one free parameter that is adapted based on the properties of the average
signal. This filter bank structure and it’s modifications will be discussed in the sequel.
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Figure 5.2: Adaptive filter bank with one free parameter in the predict stage and one
free parameter in the update stage.

5.2 Adaptation Criteria

Regarding the shape of the adaptation area, the adaptation algorithms used in this
thesis can be divided in two distinct groups:
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One-dimensional adaptation algorithms. Pixels are mapped into a one-dimensional
sequence. There are two kinds of snake-like collections of pixels used: the vertical
and diagonal ones (see figure 5.3). Therefore, the adaptation area lies either in the
vertical or the diagonal line, depending on the pixel collection scheme.

Two-dimensional adaptation algorithms. The adaptation area is a window contain-
ing N ×N pixels.

n
2


n
1


(a)

n
2


n
1


(b)

Figure 5.3: Mapping pixels of an image into one-dimensional sequence: (a) vertical
pixel collection and (b) diagonal pixel collection.

There is the squared prediction error chosen as an error measure because it leads to
the well known least squares adaptation methods. The advantage of the least squares
adaptation methods is that they are relatively simple, well explored and very efficiently
implementable. Of course, there are other adaptation criteria that can be used. One of
them is the entropy of the prediction error, i.e. the entropy of the wavelet coefficients.
Although the entropy based adaptation criteria should give better results for most im-
age processing applications (e.g. image compression), they lead to numerically very
demanding optimization procedures and therefore are not the subject of this thesis.
For 1-D adaptation algorithms the total squared prediction error is expressed as:

ξ[n] =

n+N2∑

k=n−N1

w[k]ε2[k]

=

n+N2∑

k=n−N1

w[k]|xo[k] − x̂o[k]|2 =

n+N2∑

k=n−N1

w[k]|d[k]|2,

(5.1)

where xo[k] is a sample from the odd phase and x̂o[k] is the prediction of that sample
based on the number of samples from the even phase. The weight function w[k] is
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an additional parameter which gives different weights to prediction errors in different
positions of the adaptation area. Since detail coefficients are obtained as an error of
predicting the even phase samples from the odd phase samples, the minimization of
the squared prediction error actually leads to the minimization of the energy of the
detail coefficients on a given adaptation area.
The equation similar to 5.1 stands for the squared prediction error calculated on a true
2-D adaptation area:

ξ[n1, n2] =

n1+N∑

k1=n1−N

n2+N∑

k2=n2−N

w[k1, k2]|d[k1, k2]|2. (5.2)

For the sake of simplicity, the prediction error is calculated on a square window con-
taining pixels that symmetrically surround the pixel the adaptation is being performed
for. Typical values for N are 0, 1, and 2 giving adaptation areas of 1, 3 × 3, and 5 × 5

pixels in size.
The consequence of minimizing the prediction error on an area is the change of one
fundamental predictor property: instead of staying interpolating, predictor becomes
approximating. It means that the values of the predicted samples from the odd phase
are not the ones that would be obtained by the interpolation of a given order from even
samples, but rather their variations that minimize the prediction error.

5.2.1 Adapted Filter Parameters and Perfect Reconstruction

The lifting scheme automatically provides a perfect reconstruction property if the fil-
ters on both the analysis and synthesis sides are the same. Therefore, in order to obtain
perfect reconstruction of the analyzed image, on the reconstruction side there are not
only the detail and approximation coefficients required, but also the values of the filter
parameters corresponding to each detail coefficient. To obtain an additional informa-
tion about filter parameters, there are two possibilities available:

Transfer the information about the filter parameters from the analysis side to the re-
construction side, or

Reconstruct the adapted values of the filter parameters on the reconstruction side.

The latter possibility seems appealing because it saves bandwidth/memory resources
required for the transfer of the information about the filter parameters on the recon-
struction side, yet imposing some severe constraints at the same time. In order to be
self-reproducible on the reconstruction side, the adaptation algorithm has to be strictly
causal. It means that the filter parameters have to be computed based on a set of points
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"before" the point adaptation is calculated for. This makes the adaptation area strictly
asymmetric, which is generally considered a bad choice in image processing. Likewise,
such a filter bank is very sensitive to errors in the transmission of wavelet coefficients.
The reason is that an error in transmitting one wavelet coefficient affects all further
reconstructions of filter parameters and the original image samples. For these reasons,
the transmission of filter parameters rather then their reconstruction will be used in
this thesis.

One Part of the Information is Contained in the Adapted Filter Parameters

After the adaptation, the energy of the detail coefficients is minimized. The values of
the detail coefficients will be more grouped around zero. Since their entropy became
smaller, they will be coded more effectively. One part of the information that originally
should have been contained in the detail coefficients was stored in the filter parame-
ters p1, p2, p3 and p4. The information that originally belongs to the detail coefficients
is split among the detail coefficients and the (adapted) filter parameters. As already
mentioned, in order to make reconstruction possible, the filter parameters will also
have to be coded and transmitted to the reconstruction side. If the adaptation area is
large enough, the filter parameters will vary relatively slowly and should be coded
very effectively, thus adding insignificant burden to the overall coding performance.
As an adaptation area decreases, the spatial variations of the filter parameters become
faster and more information content enters the filter parameters while minimizing the
entropy of the detail coefficients. The extreme case occurs when the adaptation area
becomes only one pixel wide. In that case, the detail coefficients will be completely
set to zero and all the information will be contained in the filter parameters. The opti-
mal choice of the adaptation area is somewhere in between and depends on the spatial
properties of the given image.

5.3 Least Squares Adaptation Methods

In this section, we introduce the notation that will simplify the subsequent mathemat-
ical relations. As shown in figure 5.4, y is the signal obtained by subtracting the output
of the fixed prediction section from the odd phase of the input signal. The signal at
the input of the variable multiplier p2 is marked as x. The signal at the output of p2 is
marked as ŷ since it represents the prediction of the y signal. The prediction error can
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Figure 5.4: The adaptive predict structure from figure 5.2. The x and y signals are in-
puts to the least squares adaptation algorithm. The results of the adaptation algorithm
are the p2 parameter and the ŷ signal.

be expressed as:

ε[n] = y[n] − ŷ[n]

ε[n] = y[n] −XT
N [n]WN [n],

(5.3)

where XN [n] is the input vector for the position n and WN [n] is the filter parameters’
vector such that XT

N [n]WN [n] in a convolution of the input signal XN with the filter’s
impulse response for the position n. For the case of the prediction structure shown in
figure 5.4, the relation 5.3 becomes

ε[n] = y[n] − x[n]p2[n]. (5.4)

The parameters that minimize the sum of squares of the prediction error can be ob-
tained as:

W ∗
N = (XT

KNAKKXKN)−1
X

T
KNAKKYN , (5.5)

where XKN is a matrix that contains the delayed copies of the input samples:

XKN = [XN [0], XN [1], . . . , XN [k]]T . (5.6)

For the filter bank structure with only one adaptable parameter shown in the figure
5.2, W ∗

N is a scalar representing the p2 parameter. In that case XKN will contain only
one column. Vector YN contains the output samples:

YN = [y[0], y[1], . . . , y[k]]T . (5.7)
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The AKK matrix is the weight matrix. In case AKK is the identity matrix, the relation
5.5 becomes:

W ∗
N = (XT

KNXKN)−1
X

T
KNYN . (5.8)

Figure 5.5(a) shows a synthetic image that will be used for testing the adaptation al-
gorithms. It is composed of two spatial sine waves of different frequencies and orien-
tations. When processed with a filter bank with fixed P2, the detail image with pretty
large values is obtained (see figures 5.5(b) and 5.5(e)). When P4 is used, the resulting
detail coefficients (see figures 5.5(c) and 5.5(f)) are smaller yet still of significant values.
It is our goal to completely cancel the two sine waves in the detail image. The adapta-
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Figure 5.5: Input to the wavelet filter bank is a synthetic image (a) composed of two
spatial sine waves of different frequencies (ω1 = 2π/6, ω2 = 2π/12), different orienta-
tions (ϕ1 = −π/3, ϕ2 = π/5) and amplitude 100. Firstly fixed P2 and U2 have been used
resulting in approximation image (d) and detail image (b) whose central part values
are shown in (e). Fixed filters P4 and U2 were used next, resulting in smaller yet still
significant detail coefficients: (c) and (f).

tion algorithm should find the optimal p2 parameters which would position the zeros
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of the resulting high-pass filter on the frequencies of the two sine waves. As shown in
figure 4.13, when the p2 parameter grows, the zero ditch widens and tends to cancel
the higher frequencies. Therefore, we expect our adaptation algorithm to set the p2

parameter to one value for the first part of the image containing the first sine wave,
and to another value in the second part of the image containing the second sine wave.
Since the first sine wave has a higher frequency than the second one, the value of the
p2 parameter should be higher for the first part of the image.

5.3.1 1-D LSW
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Figure 5.6: Results of the p2 parameter adaptation obtained by using 1-D LSW on a
window of 6 samples. First column represents values of p2. Second and third column
represent values of adapted detail coefficients. First row represents 1-D LSW with
vertical collection of pixels (adaptation line intersects the boundary of the two sine
waves). Second row represents 1-D LSW with diagonal collection of pixels (adaptation
line is parallel with the boundary). There are central parts of the images shown. Detail
coefficients are completely set to zero except those on the boundary of the two sine
waves.
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The one-dimensional least squares method calculates the least squares solution on
a given block of data as given in equation 5.8. Firstly, the image elements are mapped
using vertical or horizontal collection of pixels into a one-dimensional data sequence
(see figure 5.3). There were windows with 3, 6, 9 or 12 pixels used in the calculations.
Figure 5.6 shows the results of the 1-D LSW algorithm applied to the test image from
figure 5.5. As expected, the adaptation algorithm found the two values of p2 that com-
pletely cancel the two sine waves. The adaptation algorithm decided to set p2 = 1.4981

for the first sine wave and p2 = 1.1065 for the second sine wave having a smaller fre-
quency. The detail coefficients are completely set to zero in the areas of the two sine
waves and there is a transition area in between. Figure 5.6(b) shows the central part of
the detail coefficients after using 1-D LSW with the vertical collection of pixels. There
are the directional artifacts near the boundary clearly visible. When the diagonally
oriented adaptation is used, the transition area is minimal as shown in figure 5.6(e).

5.3.2 1-D RLS

The recursive least squares algorithm [Haykin 86] uses the values obtained in the pre-
vious step to calculate the filter parameters for the current step. This method in nu-
merically more efficient. The total squared prediction error is calculated as

ξ[n] =
n∑

i=0

αk−iε2[n], (5.9)

where α is called the forgetting factor with 0 < α < 1. The weight matrix from equation
5.5 equals

AKK =









αk 0 . . . 0

0 αk−1 . . . 0
...

... . . . ...
0 0 . . . 1









. (5.10)

The figure 5.7 shows results obtained by using the 1-D recursive least squares algo-
rithm (RLS) with the vertical collection of pixels. This algorithm bases the calculation
of the least squares problem on the number of "previous" samples that are taken into
account with exponentially decaying weights. The stationary values of p2 are the same
as before, but the transition area is somewhat wider, clearly demonstrating slowly de-
caying vertical artifacts.
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Figure 5.7: Results of the p2 parameter adaptation obtained by using 1-D RLS algorithm
with vertical collection of pixels and forgetting factor λ = 0.82. There are central parts
of adapted p2 parameters (a) and resulting detail coefficients (b) and (c) shown.

5.3.3 2-D LSW

It is evident that one-dimensional adaptation algorithms cannot give best results for
images. True two-dimensional algorithms are a more natural choice. The 2-D LSW
adaptation algorithm takes a number of pixels that form a square around a pixel which
is being adapted and solves the least squares problem for that window. The results
obtained by using 2-D LSW algorithm on a window of 3× 3 and 5× 5 pixels are shown
in figure 5.8. The use of the 2-D LSW reduced the variance of the p2 parameters around
the boundary, which is good. By comparing figures 5.8(a) and 5.8(d), we see that the
greater the adaptation window, the smaller the variances of the p2 parameters.

5.3.4 Robust 2-D LSW

We are close to obtaining a representation of a synthetic image 5.5(a) that will have
almost all the detail coefficients set to zero and practically two-valued p2 parameters.
Such a representation is much more compact than the one obtained with fixed filters.
In order to further improve the transition behavior of the adaptation algorithm, we
will try to make it more robust. The idea is to trace the prevalent image features by
excluding those equations that result in a largest quadratic prediction error on a given
window. The procedure goes as follows and is repeated iteratively 3 times:

Calculate the value of p2 that gives the least squares solution for a given window.

Apply that value of p2 on all points in a given window and calculate the corresponding
quadratic prediction errors.
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Figure 5.8: Results of the p2 parameter adaptation obtained by using 2-D LSW. First
column represents values of p2. Second and third column represent values of adapted
detail coefficients. There are central parts of the images shown. First row: window size
of 3 × 3 pixels. Second row: window size of 5 × 5 pixels.

Discard N−M points that give highest prediction errors and calculate the least squares
solution based on the remaining M points.

The results shown in figure 5.9 refer to the two different values of M . The results are
almost optimal. The transition from the "left" value to the "right" value of p2 is almost
abrupt.

5.3.5 BLUE

Minimizing the squared value of the detail coefficients seems to be a good choice. But,
in the update step, such a minimization would destroy the the DC component of the
average coefficients. Of course, we do not want to do that since the average value
should remain unaffected. Therefore, it is necessary to use some kind of spectrally cor-
rected criterion which would leave the DC component unaltered.
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Figure 5.9: Results of the p2 parameter adaptation obtained by using robust 2-D LSW
on a 5 × 5 window. First column represents values of p2. Second and third column
represent values of adapted detail coefficients. Central parts of the images are shown.
First row: M = 10. Second row: M = 20. Robust algorithm gives shorter transition
area.

Although at first it may not seem so, such a criterion would also serve good in the pre-
diction step. Let us consider an input signal that contains a component at the aliasing
frequency. After a polyphase decomposition, that component will become a DC fre-
quency and the prediction step will try to cancel it. We do not want that to happen, so
the spectrally corrected adaptation criterion mentioned before will help us preserving
the aliasing frequency component from being cancelled from the detail coefficients.
It is known that the Best Linear Unbiased Estimate (BLUE) [Haykin 86] is given by the
relation:

W ∗
N = (XT

KNV
−1
KKXKN)−1

X
T
KNV

−1
KKYN , (5.11)

where VKK is an autocorrelation matrix of the noise signal. Therefore, we will treat the
DC signal in the average and detail coefficients as a noise signal. The adaptation will
be done solving the equation 5.11 on a rectangular window of 3 × 3 or 5 × 5 pixels in
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size.
Since the autocorrelation matrix of the DC signal is singular, it is not possible to find it’s
inverse. A proposal to the solution to this problem is given in [Seršić 99]. It proposes
modelling of the DC component v[n] as:

v[n] = (1 − ε)n, (5.12)

where ε tends to go to zero. The final result is a tri-diagonal inverse autocorrelation
matrix

V
−1
KK(ε) =











1 −1 + ε 0 . . . 0

−1 + ε 2 − 2ε+ ε2 −1 + ε · · · 0

0 −1 + ε 2 − 2ε+ ε2 . . . 0
...

...
... . . . ...

0 0 0 . . . 1











, (5.13)

with the limit

V
−1
KK = lim

ε→0
V

−1
KK(ε) =












1 −1 0 . . . 0

−1 2 −1 . . .
...

0 −1
. . . . . . 0

...
...

... 2 −1

0 . . . 0 −1 1












. (5.14)

One good example that needs spectrally corrected adaptation criterion in the predict
branch is shown in figure 5.10. The primal image consists of two parts which con-
tain two spatial sine waves of different frequencies and amplitude 100 (figure 5.10(a)).
An image which contains a checkered pattern with values −20 and 20 (figure 5.10(b))
is superimposed to the primal image. This checkered pattern represents an aliasing
frequency component in the final image. When the analyzed image is being divided
in the two polyphase components using the quincunx sampling scheme, the aliasing
components turns into DC components. Figures 5.10(e) and 5.10(g) respectively show
that the first polyphase component signal gained a DC value of −20 and the second
polyphase signal gained a DC value of 20.
Figure 5.11(d) shows the obtained p2 predict filter parameters for the image from 5.10(c).
The 2-D LSW adaptation method has been used on a 5× 5 window. Because of the DC
component in the polyphase signals, filter parameters fluctuate. There are not two sta-
tionary values corresponding to the two sine waves like in case of analyzing the signal
without the superimposed aliasing component (see figure 5.11(a)). Such fluctuating fil-
ter parameters cause big values of detail coefficients being additionally offset for −40

(figures 5.11(f) and 5.11(e)). It is obvious that in this case a plain least squares criterion
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Figure 5.10: Analyzed image (c) is obtained as a superposition of an aliasing frequency
component (b) to an image composed of two spatial sine waves with amplitude 100

whose central part is shown in (a). Aliasing frequency component is a checker-board
pattern with values of −20 and 20. (d) and (e) show that the aliasing frequency is
transformed into a DC component of value 20 in the even image phase. Figures (f) and
(g) show the DC offset of −20 in the odd image phase.

gave results that are much worse than the ones obtained for the fixed prediction filter,
without the adaptation of filter parameters.
This problem is surpassed by using the BLUE adaptation method that makes the adap-
tation criterion ignore the DC component. Figure 5.11(g) shows the obtained filter pa-
rameters after using the BLUE method. The resulting filter parameters are two-valued
again: p2 = 1.3333 for the left sine wave, p2 = 1.0718 for the right sine wave and some
transitory fluctuations in between. These are exactly the same filter parameters as the
ones obtained by using a plain 2-D LSW for the two-sine image without the aliasing
component (see figure 5.11(a)). As shown in figure 5.11(i) the two sine waves are per-
fectly cancelled from the detail coefficients (except for the transition area) and the DC
component (aliasing frequency of the original image) has been preserved!
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Figure 5.11: First row: plain 2-D LSW on a 5 × 5 window for a two-sine image from
5.10(a). Second row: plain 2-D LSW for a two-sine image with added checkered pat-
tern (figure 5.10(c)). Third row: BLUE 2-D LSW adaptation for the same image. First
column: adapted p2 filter parameters. Second and third columns: corresponding detail
coefficients.
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5.4 Results

We will now compare the properties of the above mentioned adaptation algorithms
on a set of real-world images. The four typical test images are used (see figure 5.12):
Barbara, Mandrill, Lena and Goldhill. Image Barbara is especially interesting since it
combines low-frequency (e.g. Barbara’s face) and high-frequency areas (striped robe).

(a) Barbara (b) Mandrill

(c) Lena (d) Goldhill

Figure 5.12: Four 8-bit images of size 512 × 512 used for testing the adaptation algo-
rithms.

Figure 5.13 shows detail coefficients obtained for one part of the Barbara image (Bar-
bara’s knee) after using fixed prediction filters (P2 and P4 respectively) and the adapted
prediction filters. The prediction filters were adapted by using the 1-D LSW algorithm
with different window sizes. As seen in appropriate histograms, the adaptation turned
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detail coefficients’ values closer to zero. Therefore, the adapted detail coefficients are
expected to be coded more efficiently by using an entropy based coder than the detail
coefficients that are obtained with the fixed prediction filters.

(a) Fixed P2 (b) Fixed P4 (c) N = 3 (d) N = 12
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(h) N = 12

Figure 5.13: Detail coefficients (and their histograms) obtained for one part of image
Barbara (Barbara’s knee) using fixed predict filters and predict filters adapted with
1D-LSW algorithm of different window lengths.

This adaptation was performed along a diagonal line. Figure 5.14 shows the filter pa-
rameters p2 obtained for different window sizes (N equals 3, 6, 9 and 12 pixels). The
diagonal artifacts are clearly visible. The range of filter parameters’ values is pretty
wide, it also covers the values of p2 for which the convergence and regularity prob-
lems are inevitable. It is worth noting that as adaptation window increases, the range
of filter parameters tightens.
As expected, the 2-D adaptation methods give better results. When comparing 1-D
LSW and 2-D LSW computed on the same number of pixels (1-D LSW with N = 9 in
figure 5.15(b) and 2-D LSW withN = 3×3 in figure 5.15(c)), detail coefficients are more
turned to zero when using the 2-D algorithm. Additionally, filter parameters tend to
be more correlated and slowly varying in all directions. As the window size increases,
the smoothness of p2 parameters increases as well. At the same time, the value range of
p2 narrows around zero, bringing most filter parameters in the range of well-behaved
values.
Figure 5.17 shows the p2 predict parameters for central parts of different test images.
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Figure 5.14: Adapted p2 parameters (and their histograms) obtained for one part of
image Barbara (Barbara’s knee) using fixed predict filters and predict filters adapted
with 1D-LSW algorithm of different window lengths.

The adaptation was done by using 2-D LSW algorithm on a 3× 3 and 5× 5 pixels wide
window. It can be seen that images which are more low-pass give filter parameters that
are more concentrated around zero and therefore more favored. For a wider adapta-
tion window the range of p2 values tightens even more. Figure 5.18 gives a comparison
of robust adaptation methods. Adaptation results are shown for a part of image Lena
shown in 5.17(g). The adaptation was performed on a 5 × 5 window, with M = 8 and
M = 16 retained samples. While additionally decreasing the entropy of the detail co-
efficients (as M decreases), the robust adaptation methods introduce noise in the filter
parameters, making them more high-pass. Although robust methods give excellent
results for synthetic images, in real-world images they introduce additional variations
of the filter parameters.
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(a) Fixed P4 (b) 1-D LSW, N = 9 (c) 2-D LSW, N = 3 × 3 (d) 2-D LSW, N = 5 × 5
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(h) 2-D LSW, N = 5× 5

Figure 5.15: Detail coefficients (and corresponding histograms) obtained for one part
of image Barbara (Barbara’s knee) using fixed prediction filter, 1D-LSW algorithm and
2D-LSW algorithm.
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Figure 5.16: Adapted p2 parameters (and corresponding histograms) obtained for one
part of image Barbara (Barbara’s knee) using 2D-LSW algorithm with different win-
dow sizes.
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Figure 5.17: Histograms of adapted p2 parameters for different test images. Second
column: 2-D LSW on a 3×3 window. Third column: 2-D LSW on a 5×5 window. First
column: average images that correspond to the areas the filter parameters’ histograms
are shown for.
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Figure 5.18: Plain 2-D LSW on the 5 × 5 window (first column), and it’s robust modifi-
cations with M = 8 (second column) and M = 16 (third column). First row: adapted p2

parameters for central part of image Lena (see figure 5.17(g)). Second row: histograms
of p2 parameters. Third row: histograms of the resulting detail coefficients.
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Entropy of Detail Coefficients and Spectrum Bandwidth of Filter Parameters

In order to compare different adaptation methods, we will use some numerical mea-
sures for the obtained detail coefficients and filter parameters. Since the detail coeffi-
cients are highly uncorrelated, the entropy-based measure would be appropriate.
On the other hand, we want filter parameters to vary as slowly as possible. Therefore,
we provide a spectrum bandwidth measure that tells us how much the filter parame-
ters are low-pass.

ωLP =

√∫ π

−π

∫ π

−π
(ω2

1 + ω2
2)|X(ejω1 , ejω2)|2

∫ π

−π

∫ π

−π
|X(ejω1 , ejω2)|2 (5.15)

Values of these measures for different adaptation algorithms are given in tables 5.1, 5.2
and 5.3.

Adaptation method Entropy of D Spectrum bandwidth of p2

No adaptation
p2 = 0 (fixed P2) 6.06 -
p2 = 1 (fixed P4) 5.98 -
1-D LSW
N = 3 1.89 2.36
N = 6 4.42 2.26
N = 9 4.87 2.32
N = 12 5.15 2.42
2-D LSW
N = 3 × 3 5.37 0.85
N = 5 × 5 5.36 0.51
Robust 2-D LSW
N = 3 × 3, M = 3 4.91 1.24
N = 3 × 3, M = 6 4.97 1.19
N = 5 × 5, M = 8 5.24 0.79
N = 5 × 5, M = 16 5.09 0.83
BLUE 2-D LSW
N = 3 × 3 5.31 0.98
N = 5 × 5 5.38 0.57

Table 5.1: Entropy of the detail coefficients and the spectrum bandwidth of p2 parame-
ters for different adaptation methods used on the central part of image Barbara.

These tables show that the smaller the adaptation area, the smaller the entropy of the
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Barbara Mandrill Lena Goldhill
Fixed P2 5.98 5.99 5.32 5.98
1-D LSW, N = 9 4.87 5.61 4.70 5.67
2-D LSW, N = 3 × 3 5.37 5.84 5.14 5.85
Robust, N = 3 × 3, M = 6 4.97 5.16 4.94 5.57
BLUE, N = 3 × 3 5.31 5.80 5.19 5.88

Table 5.2: Entropy of the detail coefficients for different adaptation methods calculated
on the central parts of different test images.

Barbara Mandrill Lena Goldhill
Fixed P2 - - - -
1-D LSW, N = 9 2.32 2.19 2.27 2.14
2-D LSW, N = 3 × 3 0.85 1.27 1.50 1.15
Robust, N = 3 × 3, M = 6 1.19 1.58 1.57 1.45
BLUE, N = 3 × 3 0.98 1.41 1.46 1.40

Table 5.3: Spectrum bandwidth of p2 parameters for different adaptation methods cal-
culated on the central parts of different test images.

detail coefficients. On the other hand, as the adaptation area increases, the spectrum
bandwidth of the filter parameters decreases thus making the filter parameters more
low-pass.

Adaptation of the Update Filter

In order to improve the resulting approximation image, the update filter section should
be adapted. To preserve its average value, the BLUE adaptation method should be
used rather than the plain 2-D LSW adaptation algorithm. The BLUE method pre-
serves the DC component of the approximation image while trying to cancel its higher
frequency components. Therefore, the approximation image obtained by using the
adapted update filter should be more low-pass than the one obtained with the fixed
update filter.
The results obtained by using the adapted update filter are shown in figure 5.19. The
BLUE method has been used on a window 3×3 pixels wide. For the sake of simplicity,
the fixed P4 predict filter has been used (i.e. p2 has been fixed to one). As it can be seen
in figure 5.19(d) and 5.19(e), approximation image obtained by using the adapted up-
date step became more low-pass. Originally smooth areas (e.g. Barbara’s face) became
even more smooth. Yet, sharp edges have been degraded and blurred.
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(a) (b) (c)

(d) (e) (f)

Figure 5.19: Adaptation of the update filter. First column: the average image obtained
by using fixed P4 and U4 filters. Second column: the average image obtained by using
fixed P4 and the adapted update filter U2 +u2(U4 −U2). The adaptation was performed
by using the BLUE method on a 3× 3 window. Third column: corresponding values of
the u2 parameter. Second row: central parts of the images from the first row.

It is important to note that the update step cannot cancel the frequency components
of the average image if those frequency components don’t exist in the detail image. In
case that both the predict and the update step are being adapted, frequency compo-
nents that are cancelled in the detail coefficients will remain untouched in the average
image. Therefore, the gain of adapting the update step will be smaller when the pre-
dict step is being adapted simultaneously.
Also, the adaptation algorithm will unsuccessfully try to cancel those frequency com-
ponents already cancelled in the detail image by using big values of the update filter
parameters. To avoid such a behavior the update filter parameters should be confined
by the adaptation algorithm inside an acceptable range.
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5.4.1 Lossy Image Reconstruction

The advantages of the adapted filter bank schemes over the fixed filter banks can be
shown for lossy image reconstruction. The input image is decomposed in a number
of decomposition levels. A certain percentage of less significant, i.e. lower wavelet
coefficients (values under a certain threshold) is then turned to zero using hard thresh-
olding. The reconstruction is performed using the thresholded wavelet coefficients.
Since the adaptation tends to lower the values of the wavelet coefficients making them
contain less information, it is logically expected that such a lossy reconstruction will
show better results. There is just one problem here. If the adaptation algorithm chooses
very big values of the filter parameters, there will appear the high-valued artifacts in
the reconstructed image. The reason is in the divergence of the filters obtained for high
positive or negative values of the filter parameters.
An example of lossy reconstruction using fixed filters is shown in figure 5.20. The
synthetic image composed of two spatial sine waves has been decomposed in five de-
composition levels and then 95% of the detail coefficients have been turned to zero.
The artifacts caused by the lossy reconstruction are clearly visible in the output image.

(a) (b)

Figure 5.20: (a) Analyzed image. (b) Reconstructed image after 5 decomposition levels
using fixed prediction filter P4 and fixed update filter U2. Reconstruction was done
after 95% detail coefficients have been turned to zero.

Figure 5.21(f) shows the results of the lossy reconstruction of the same image yet with
the adaptation of the predict filter parameters. There has been used the robust adapta-
tion method on a 3× 3 window with M = 6. There is no visible difference between the
original image and the reconstructed image!
Figure 5.22 shows the results for a lossy reconstruction of the image Barbara. The
reconstruction was performed after five decomposition levels with 85% of the detail
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Figure 5.21: Reconstructed image (f) after 5 decomposition levels for adapted predict
filter parameter using robust 2-D LSW adaptation. N = 3×3 andM = 6. Adapted filter
parameters for all five decomposition levels are shown in (a), (b), (c), (d) and (e). Fixed
update filter U2 has been used. Reconstruction was done after 95% detail coefficients
have been turned to zero.

coefficients being set to zero. The decomposition was firstly performed by using the
fixed wavelet filter bank with the P4 predict filter and the U2 update filter. Blurring
artifacts caused by the lossy reconstruction are clearly visible in the magnified images
5.22(e) and 5.22(f). Secondly, the filter parameters have been adapted by using the ro-
bust 2-D LSW adaptation with N = 3 × 3 and M = 6. The resulting reconstructed
image looks perceptually better. Those blurring artifacts have diminished. Yet, there
is a strong ringing artifact on Barbara’s leg (figure 5.22(i)) caused by high values of the
adapted filter parameters in that high-frequency region. Filter parameters that are so
big cause the divergence of the corresponding limit wavelet functions. Therefore, there
was an error introduced by the thresholding of detail coefficients that was augmented
across all the five decomposition levels to a greater extent than it would be augmented
with fixed, "well-behaved" filters.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.22: First row: original image. Following rows: lossy reconstruction after 5
decomposition levels and with 85% of detail coefficient being set to zero in every de-
composition level. Second row: fixed P4 and U2 filters have been used. Third row: p2

predict filter parameters have been adapted by using robust adaptation (N = 3 × 3,
M = 6).

Saturation of Filter Parameters

Another improvement in the lossy reconstruction is introduced by using saturation of
the adapted filter parameters. The range of the allowed filter parameters is tightened
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around zero to avoid too big positive or negative values of filter parameters. Therefore,
all the values of p2 parameters that have been set too big by the adaptation algorithm
are replaced by appropriate maximum allowed values. The results of such an adap-
tation for different allowed ranges of filter parameters are shown in figure 5.23. The
results obtained are perceptually better than the ones without the saturation used.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.23: Lossy reconstruction same as in 5.22 with saturation of adapted filter pa-
rameters. Filter parameters p2 have been limited to ranges [−20, 20] (first row), [−10, 10]

(second row) and [−5, 5] (third row).
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Quantization of Filter Parameters

For the sake of a more compact representation of the filter parameters, their quanti-
zation has been additionally introduced (with recalculation of the detail coefficients).
Figures 5.25(a), 5.25(b) and 5.25(c) show the reconstructed image after the quantization
of the adapted filter parameters. Because of the ill-posed quanta, the results are per-
ceptually very poor.
In order to make the quanta better fit into the true distribution of filter parameters’
values we have used a simple CDF-based algorithm. Firstly, the cumulative distribu-
tion function of filter parameters has been calculated. Secondly, the algorithm finds N
quantization values that are equidistant in terms of CDF values and N − 1 boundary
values among the chosen quanta that make the quantizing partitions. All the values
that fit into one given partition (between two boundary values) will be coded as the
quantization value that lies in that partition. The final result is that the quantized filter
parameters’ values are equally distributed among N quanta. Figure 5.24 shows CDFs
for p2 in all the decomposition levels. There are four quanta chosen in every decompo-
sition level. Their values are given in table 5.4.
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Figure 5.24: Cumulative distribution function for p2 parameters in all five decomposi-
tion levels of image Barbara. Chosen equidistant quanta are marked.

1. lev. 2. lev. 3. lev. 4. lev. 5. lev.
-4.2 -9 -7.9 -5.3 -3.7
0.1 -3 -2 -0.39 0.01
2.2 0.06 0.37 0.95 1.1
4.5 3.1 2.1 2.7 2.5

Table 5.4: Values of the four CDF-based quanta chosen for all five decomposition levels
shown in figure 5.24.

The results obtained with such a quantization of the filter parameters are comparable
with those obtained without any quantization (see figure 5.25(d) and 5.25(g)). Per-
ceptually, there is almost no difference between the images obtained by using such a
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quantization and the ones obtained without any quantization and plain saturation of
filter parameters. Very good results are even obtained with just four quanta!

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.25: First row: previously adapted p2 parameters have been additionally quan-
tized with the ill-posed quanta: [-20 -15 -10 -5 5 10 15 20]. Second row: quantization
of p2 is done by using 4 CDF-based quanta. Third row: quantization of p2 is done by
using 8 CDF-based quanta.
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Lossy Reconstruction Quality Measure

To quantitatively express the reconstruction error, we will use the peak signal to noise
ratio. PSNR in decibels (dB) is computed as

PSNR = 20 log10

255

RMSE
(5.16)

where 255 is the highest pixel value (pixel values range from 0 to 255) and RMSE is
the root mean squared error. Therefore, the PSNR measures the ratio of the peak value
and the difference between the original and the reconstructed image. The root mean
squared error is obtained by using

RMSE =
√
MSE =

√
∑N1−1

n1=0

∑N2−1
n2=0 (x[n1, n2] − x̂[n1, n2])2

N
(5.17)

where N is the total number of pixels (N = N1N2), x[n1, n2] is the original image and
x̂[n1, n2] is the reconstructed image.
Table 5.5 gives the values of PSNR for different lossy reconstruction types performed
on the four test images. It is obvious that the adaptation gives better PSNR as com-

Fixed P4 No qnt. Saturation Bad qnt. CDF4 qnt. CDF8 qnt.
Barbara 26.34 37.33 33.08 28.63 32.25 32.22
Mandrill 22.56 26.65 26.67 25.96 26.74 26.25
Lena 31.87 38.86 38.65 31.82 38.34 38.58
Goldhill 28.6 33.76 33.6 28.63 33.39 33.66

Table 5.5: PSNR calculated for reconstructed images after 5 decomposition levels and
with 85% of detail coefficient being set to zero in every decomposition level. First
column: fixed P4 and U2 filters have been used. Following columns: p2 predict filter
parameters have been adapted by using the robust adaptation (N = 3 × 3, M = 6).
Second column: neither saturation nor quantization of the p2 filter parameters has been
performed. Third column: values of p2 are limited to a range from -10 to 10. Fourth
column: values of p2 have been quantized with the ill-posed quanta: [-20 -15 -10 -5
5 10 15 20]. Fifth and sixth column: values of p2 have been quantized with 4 and 8
CDF-based quanta respectively.

pared to the fixed wavelets. The additional CDF-based quantization degrades the re-
constructed image insignificantly while improving the compactness of the representa-
tion of the filter parameters.
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Chapter 6

Conclusion

In this thesis there are presented the adaptive wavelet filter banks for subband image
analysis. These filter banks are a kind of two-dimensional generalization of the one-
dimensional filter banks previously reported by Seršić [Seršić 00].

These filter banks perform a wavelet analysis of a given image by adapting to its
local properties. These are the second generation wavelets since the prototype wavelet
function can change for every pixel of the image at all decomposition levels in order to
obtain a wavelet representation that is as close to the optimal one as possible.

The filter bank structure is based on a lifting scheme introduced by Sweldens (sec-
tion 2.3). The analysis and synthesis filter banks consist of two parts: the predict step
and the update step. The proposed predict step is divided into a number of prediction
branches. The first part of the prediction section is fixed, and the second part of the
filter bank is variable, with one free prediction parameter in every prediction branch.
The update step is realized by using a similar structure.

Although a number of filter parameters can be changed, some basic good properties
of the wavelet decomposition are retained, such as the number of vanishing moments
of the wavelet functions. They are guaranteed by the fixed part of the filter bank.
A number of free parameters in the variable part of the filter bank can be changed
without affecting the basic properties guaranteed by the fixed part of the filter bank
(section 4.2).

Furthermore, if the number of fixed parameters of the update step (guaranteeing
zeros of the corresponding low-pass filter) does not exceed the number of fixed pa-
rameters of the predict step (guaranteeing zeros of the corresponding high-pass filter),
the update step can be varied independently of the predict step [Seršić 02a]!

The adaptation of the filter bank parameters has been performed by using vari-
ous one-dimensional and two-dimensional least squares algorithms [Vrankić 02]. As
expected, it has been demonstrated that the two-dimensional window-based adap-

111



tation algorithms show better results as compared to their one-dimensional counter-
parts. Spectrally corrected algorithms have been developed to further improve the
adaptation properties. The BLUE method has been presented in section (section 5.3.5).
In addition, a modification of the adaptation algorithm has been used to improve the
robustness of adaptation to the transient image components (section 5.3.4).

The superiority of such an adaptive decomposition over a fixed wavelet decom-
position is demonstrated on a lossy reconstruction of synthetic and real-world images
(section 5.4.1). There have been the effects of quantization of the filter parameters dis-
cussed as well. A simple CDF-based algorithm has been used to choose the desired
number of quanta. It has been shown that the quantization of filter parameters with
as only as four quanta gives satisfying results that still outperform the results obtained
with fixed filter banks.

6.1 Future Research

The adaptive filter banks proposed in this thesis show very good properties of the
multiresolution image decomposition. Therefore, there is a wide range of applications
which can utilize these filter banks such as the image compression, denoising and fea-
ture extraction. Future researches will be mostly concentrated towards applications
based on these filter banks.

The primal goal is to implement algorithms for the lossy image compression. Since
the proposed filter bank provides a transform that is tailored for the analyzed image
while at the same time it retains good convergence and regularity properties of the
limit wavelet functions, we expect to obtain very good compression ratios.
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[Vrankić 02] M. Vrankić & D. Seršić. Adaptation Methods Of 2-D Nonseparable Wavelet
Filter Bank. In Proc. of the Second International Workshop on Spectral
Methods and Multirate Signal Processing, pages 235–242, Toulouse,
France, September 2002.

115



116



Curriculum Vitae

Basic Information

Name: Miroslav Vrankić
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Abstract

More efficient coding, modelling and image analysis generate the need for search for
better methods of the multiresolution image analysis, i.e. for more efficient wavelet
filter bank structures. This thesis is based on a previous research of one-dimensional
filter bank structures that had the possibility to adapt filter parameters to the properties
of the analyzed signal.

In this thesis we present the construction of a two-dimensional adaptive wavelet
filter bank that is based on a lifting scheme. The filter bank is nonseparable, based on
a quincunx polyphase decomposition and nonseparable filters. The lifting scheme has
been chosen since it allows for an easy construction of space varying filter banks with a
perfect reconstruction property. The proposed filter bank adapts to the analyzed image
for every pixel in all decomposition levels while still preserving the good properties of
the wavelet decomposition. A number of vanishing moments is guaranteed by the
fixed part of the filter bank. Without degrading the overall filter bank properties, the
variable part can be changed in order to adapt to the analyzed image. The paper ex-
plores various one-dimensional and two-dimensional adaptation methods based on
the least squares criterion.

Adaptation results have been shown for a number of synthetic and real-world im-
ages. Effects of lossy image reconstruction and impact of filter coefficients’ quantiza-
tion to the efficiency of the image decomposition have been presented.

Keywords: wavelet filter banks, second generation wavelets, multiresolution analy-
sis, adaptive lifting scheme, quincunx polyphase decomposition, nonseparable filters,
interpolating filters, lossy image reconstruction.
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Sažetak

Učinkovitije kodiranje, modeliranje i analiza slika stvaraju potrebu za traženjem boljih
metoda višerezolucijskog razlaganja slika odnosno potrebu za učinkovitijim struktu-
rama dvodimenzionalnih wavelet filtarskih slogova. Rad se temelji na prethodnom
istraživanju struktura jednodimenzionalnih filtarskih slogova koji su imali mogućnost
adaptacije filtarskih parametara svojstvima signala.

U ovom radu prikazujemo izvedbu dvodimenzionalnog adaptivnog wavelet fil-
tarskog sloga koji se temelji na shemi podizanja. Filtarski slog je neseparabilan, temelji
se na quincunx polifaznom razlaganju i neseparabilnim filtrima. Shema podizanja je
odabrana jer omogućava jednostavnu izvedbu prostorno promjenjivih filtarskih slo-
gova sa svojstvima savršene rekonstrukcije. Predloženi filtarski slog se prilagod̄uje
analiziranoj slici u svakom slikovnom elementu u svim razinama razlaganja u isto vri-
jeme zadržavajući dobra svojstva wavelet razlaganja. Dovoljan broj nul-momenata
pridruženih wavelet funkcija zagarantiran je nepromjenjivim dijelom filtarskog sloga.
Promjenjivi dio filtarskog sloga može se prilagod̄ivati svojstvima slike bez narušavanja
cjelokupnih svojstava filtarskog sloga. Istražene su razne jednodimenzionalne i dvodi-
menzionalne metode adaptacije zasnovane na kriteriju najmanjih kvadrata.

Rezultati adaptacije prikazani su za razne sintetske i realne slike. Prezentirati su
rezultati rekonstrukcije slike s gubicima i utjecaj kvantizacije filtarskih koeficijenata na
učinkovitost adaptivnog razlaganja slike.

Ključne riječi: wavelet filtarski slogovi, waveleti druge generacije, multirezolucijska
analiza, adaptivna shema podizanja, quincunx polifazno razlaganje, neseparabilni fil-
tri, interpolacijski filtri, rekonstrukcija slike s gubicima.
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