
Object-Oriented Simulator of Multi-Agent System for Temporally Rich
Domains

Slobodan Ribarić

Faculty of Electrical Engineering and
Computing

University of Zagreb
10000 Zagreb, Unska 3, Croatia

slobodan.ribaric@fer.hr

Tomislav Hrkać
Faculty of Electrical Engineering and

Computing
University of Zagreb

10000 Zagreb, Unska 3, Croatia
tomislav.hrkac@fer.hr

Abstract. An object-oriented implementation
of a program simulator for a multi-agent
system (MAS) is described. The model of a
MAS is hierarchical model, consisting of
different levels, where each level contains
clusters of agents. A paradigm of a blackboard
is used for communication among agents,
clusters, as well as levels. The Petri Nets with
Time Tokens are used as a basic concept for
this model. An example of the use of the object-
oriented simulator in a dynamic scene analysis
is given.

Keywords. Object-oriented implementation,
Multi-agent system, Petri nets, Temporally rich
domains

1. Introduction

 In recent years, multi-agent systems (MAS)
have become an important issue in many fields
of artificial intelligence, such as image
interpretation and machine vision [13], [18],
[22], distributed systems [10], robotics [14],
and artificial life [15], [21].
 The paper presents an object-oriented
program implementation of a simulator of a
hierarchical MAS for temporally rich domains.
The aim of such simulator is its application in
mobile object behavior analysis in dynamical
computer vision scenes. These moving objects
can be viewed as agents that simultaneously
perform different (cooperative or antagonistic)
tasks in time, and this is a reason that the scene
is considered as temporally rich domain.
According to Pelavin and Allen, temporally
rich domains can be defined as domains which
include concurrent actions that take time, the
simultaneous occurrence of many actions at
once, and domains with external events [16].
 There are some recent works that address
the problems of MAS simulation theory and

simulators. Davila and Tucci introduced a
logic-based multi-agent simulation theory [4].
Horling, Lesser and Vincent described a MAS
simulation framework, the aim of which was
realistic modeling of adaptive behavior in
MASs and evaluation of different multi-agent
coordination strategies [9]. Ferber developed a
language called BRICK for description of
MASs by Petri nets [7]. Klupsch proposed an
object-oriented representation of time-varying
data sequences in MASs [12]. Davila and
Uzcagegui presented an object-oriented multi-
agent simulation platform called GALATEA
[5]. Esmin et al. also used object-oriented
approach for their multi-agent simulation and
educational tool for power system operation
[6]. Object-oriented approach was also
followed by Henoch and Ulrich, who presented
an agent-based simulation platform for
evaluating management concepts [8].

2. A model of hierarchical multi-agent

system

2.1. Definition of a MAS

 In general, a MAS can be defined as n-tuple
[7]:
 MAS=(E, O, A, R, Op, LoU),
where E is an environment, i.e. space which
has a volume. In our experimental
environment, E is a dynamical scene – a space
with defined metrics. By knowing physical
characteristics of objects (velocity,
acceleration), and because of metric space, a
temporal component can be assigned to each
action. O is a set of objects situated in E. The
objects are movable and/or stationary and they
can be perceived by agents. A is an assembly
of agents. Agents may be represented as
specific objects (A⊆O) representing active
entities with or without sensors. R is a set of

temporal and some spatial relations among
objects and agents. Op is a set of operations of
agents, such as: perceiving, transforming and
manipulation of objects. LoU is a set of, so-
called, laws of the universe, which are
common for the environment E.

2.2. Hierarchical organization of a MAS

 It is well known that computer vision
systems are naturally structured and
represented as hierarchical systems [2].
According to above-mentioned principle, the
proposed MAS model has hierarchical
organization. Each level of the MAS model
consists of one or more agent clusters. Agents
with identical or similar tasks are grouped into
clusters. One of reasons for such approach is
emphasized communication among the agents
in the cluster.
 The main communication mechanism in the
model is based on blackboard paradigm [3].
Each component of hierarchical organization
(i.e. an agent, a cluster and a level) has an
instance of a blackboard. At the top of
hierarchical organization, there are global
agent and the global blackboard, which support
a communication among levels. When a
communication between agents is needed (and
that occurs in case that certain relation between
two time intervals has to be evaluated), it is
performed as follows: Initially, an agent writes
a message to its local blackboard. The message
corresponds to one of above mentioned time
intervals. If the agent, according to its meta-
knowledge, concludes that it will have
sufficient information to inference about
certain temporal relation, the message remains
on its local blackboard and the agent waits for
another message. Otherwise, the agent
performs a "forward and delete" action: it
forwards the message to the higher level (i.e.
cluster) and deletes it from its local
blackboard. The same procedure repeats until
the destination level is achieved.

2.3. Knowledge representation and

reasoning

 An agent has partial knowledge about the
scene, meta-knowledge and ability of
reasoning. These properties of agent are
represented by knowledge representation
scheme based on Petri Nets with Time Tokens
(PNTT) [19], [20].

 The PNTT is a 8-tuple (P,T,I,O,τ,M,υ,Ω),
where P,T,I,O are components of a generalized
Petri net [18], τ is mapping from set of places
to set of time delays, M is a set of time tokens,
υ is a mapping called time accumulation
assigned to each token and Ω is a marking of
PNTT. A time token, similarly to a token in
Colored PN [12], has individuality – it carries
information about list of times of its
detainment at all visited places. In PNTT, a
transition is enabled if each of its input places
has at least as many time tokens in it as arcs
from the place to the transition and if the time
of detainment of these tokens in places has
elapsed. Such tokens are called "movable"
time tokens. By firing a transition in the PNTT,
the tokens are distributed to its output places.
However, the firing changes the information of
the corresponding time token, according to the
time accumulation function υ.
 Based on PNTT, a knowledge
representation scheme KRPTT is defined as n-
tuple [19]: KRPTT=(PNTT,TLM,α,β,F),
where PNTT is a Petri net with time tokens,
TLM is temporal logic module, α and β are
bijective functions which assign a concept of
states/actions or events to places and
transitions of the PNTT, respectively. F is a set
of flags. In general, flag fi∈F has the following
structure: (pi, pj, tr, pl,...,pm), where pi and pj
denote places with time tokens that have to be
tested by the TLM, according to the temporal
relation tr, and pl,...,pm are output places, in
which the TLM sets control tokens depending
on the results of evaluation of tr. These tokens
can be treated as time tokens with zero
accumulation time. There are also some types
of degenerated flags [19].

Temporal reasoning is based on time
tokens, and temporal logic module (TLM)
which implements Allen's temporal logic [1].

3. Object-Oriented implementation of a

simulator

Object-oriented design includes the
following elements: abstraction into classes
and objects, encapsulation, modularity and
inheritance with polymorphism.

A MAS structure is built from well-defined
elements, with proper relationships; therefore,
abstraction of these elements into classes is
straightforward. Four main classes are used to
build this structure (Fig. 1): CMAS, CLevel,

CCluster and CAgent, which represent
different components of our MAS model: a
MAS, a level, a cluster and an agent,
respectively. The mentioned hierarchical levels
share a similar structure: each of them contains
a blackboard, a temporal logic module and
either a set of lower level entities (for example,
MAS contains levels, level contains clusters
and cluster contains agents) or a knowledge
base in form of a KRPTT (if the component is
an agent).

Due to this reason, the inheritance
mechanism was used for implementation of the
four above-mentioned classes. All four of them
inherit a base class called CBaseAgent.

CBaseAgent class contains an instance of a
class CBlackboard and an instance of a class
CTLM. Class CBlackboard represents a
blackboard structure, and its main property is a
list of messages. It also includes corresponding
member functions for reading from and writing
to a blackboard, and for locking and unlocking
a blackboard in order to provide exclusive
access to it. Messages are implemented as
instances of a class CMessage.

CMessage reflects a message structure and
it is composed of a time token and a
corresponding flag. CTLM class represents a
temporal logic module, which is responsible
for evaluation of temporal relations.

Besides the instances of a blackboard and
TLM inherited from CBaseAgent, the main
property of the CMAS class is a list of levels
that the MAS contains. It is implemented as a
list of instances of a class CLevel.

Similarly, CLevel contains a group of
clusters, which are represented as a list of
instances of a class CCluster. The organisation
of CCluster is identical to above-mentioned
classes and it contains a list of instances of
CAgent class.

CAgent also inherits CBaseAgent in order
to provide agent's local blackboard and TLM.
But instead of containing a list of lower-level
entities, an agent contains knowledge
represented in form of a KRPTT knowledge
representation scheme [19]. This scheme is in
our object-oriented model represented by
CKRPTT class.
 CKRPTT reflects the structure of KRPTT
knowledge representation scheme. It contains
an instance of Petri net with time tokens, a set
of flags, and functions α and β which give
semantic meaning to places and transitions.

A Petri net with time tokens is also built from
well-defined elements: places and transitions
and therefore its abstraction into class is easy.
In our implementation it is represented by class
CPNTT. Places are represented as instances of
CPlace and transitions as instances of
CTransition class. Class CPlace contains a list
of tokens, which are present in specific place at
given moment of time.

Figure 1. Object-oriented

implementation of the simulator

 Time tokens are represented by
CTimeToken class, which main property is a
list of pairs (identifier (ID) of visited place,
time of detainment of the token in that place).
This class also contains an initial time of
detainment of the token and total accumulated
time.
 The basic property of class CTransition is a
list of pointers to all input places and a list of
pointers to all output places. An important
member function of CTransition is function
fire(), which fires a transition if it is enabled
(i.e. removes time tokens from input places
and puts them into output places of a
transition, adding a new entry into a token's list
of visited places).
 Flags are realized as instances of class
CFlag, which contains IDs of two places for
which a temporal relation has to be evaluated,
an ID of mentioned temporal relation and a list
of IDs of places into which a control token has
to be put if the relation is satisfied.

4. Program Description

 Based on above described hierarchical
structure of the MAS, KRPTT knowledge
representation scheme and underlying PNTT,
the program provides the means for describing
a structure of the MAS, agent's knowledge
base that describes situations from temporally
rich domains and it supports temporal
reasoning. The program is developed in a C++
environment for Windows and Linux
platforms. It has an open architecture and an
user-friendly graphical interface. The main
window of this program is shown in Figure 2.
In its upper part, there are drop-down menus
and toolbar.

Figure 3. Initial position of agents

 The main window area is divided in two
parts. Left part shows a hierarchical structure
of the currently simulated MAS in a tree-like
view. The right part of the main window is a
workspace where windows of different
components of the system (i.e. agents, clusters,
levels etc.) are displayed.
 The user can define hierarchical structure of
the MAS either by loading a file with
definition of the system, or by manual adding
different components via drop-down menus.

5. An example

In this section we give an example of a

laboratory dynamic scene and its simulation.
The initial position of four agents (robot1,
robot2, robot3 and robot arm) is shown in Fig.
3.

Figure 2. The main window of the simulator

Figure 6. The result of the simulation

 Robot1 and robot2 are equipped with
sonars, and robot3 has a CCD camera. Three
movable robots share a common goal: one of
them has to reach the charger (Fig. 3).
 This goal has to be achieved in the shortest
possible time (let us suppose that all three
robots have a same velocity). Figure 4 shows

Figure 4. Five frames taken from dynamic scene

five frames taken from the frame sequence of a
dynamical scene. At a glance, the robot3 is the
nearest to the charger, but due to an obstacle
(obstacle1), its path is the longest. The robot1
is the candidate for achieving the goal in the
shortest possible time. There is also a robot
arm that can drop a box (obstacle2) on a way
of robot1, making its path longer then of the
robot2. Described situation can be represented
as one level of the MAS model and it is shown
in Figure 5.
 The result of the simulation of the above-
described situation is shown in Fig. 6. The
simulation shows that robot2 will reach the
charger.

6. Conclusion

The object-oriented implementation of a
simulator of MAS for temporally rich domains
is described in the paper. The simulator is
designed for hierarchical MAS, which contains
multilevel structure, where each level consists
of clusters and each cluster is built from
agents. The modified Petri Nets called Petri
Nets with Time Tokens are used as basic
building blocks for agent's knowledge
representation and temporal reasoning, as well
as for modelling situations in temporally rich
domains.

CTLM

CBB

CMK

LTLM LBB LMK

p10

p11

p13
p14

p15

t5

t6

t7

Robot3 is
approaching to the
wall

Robot3 finishes
going around an

Robot3 reaches
the charger

Robot3 goes
around an obstacle

Robot3 continues
approaching to
the wall

Robot3 reached
the charger

Control
place

Robot3 detects
an obstacle

p15

p12

Control
place

Control
transition

Robot3
stops

f3

f1

lTLM

lBB lMK

Agent 3

fG3

p7

p8

p9

t4

Robot2 is approaching
to the wall Control

place

Robot2
reached the
charger

Robot2 reaches
the charger

f5

lTLM

lBB lMK

fG2

Robot1 is
approaching
to the wall

p1 p2 p3

p4 p5

p6

t1 t2

t3

Control place Control place

Robot1 stops
Robot1 continues
approaching to the
wall

Robot1 reached
the charger

Robot1 does not
detect an obstacle

Robot1 detects
an obstacle

Robot1
reaches the
charger

f1 f3

f5

f2

lTLM

lBB lMK

fG1

Agent 1

Agent 2

Cluster1

Level

p17

p18

p19

t10

t9

Robot arm
holds the box

Robot arm
releases the box

Brick is in
the air

Brick reaches
the floor

Brick is on
the floor

f1

f2

lTLM

lBB lMK

Agent 4

Cluster2

CTLM

CBB

CMK

f4

t8

f4

Figure 5. A model for described example

7. References

[1] Allen J. F. Maintaining Knowledge about

Temporal Intervals, Communications of
the ACM 1983, Vol.26, No. 11, p. 832-
843.

[2] Barrow H. G, Tenenbaum J. M.
Computational Vision, in Proceedings of
the IEEE, Vol. 69, No. 5, May 1981, p.
572-579.

[3] Carver N, Lesser V. The Evolution of
Blackboard Control Architecture,
CMPSCI Technical Report 92-71, 1992.

 [4] Davila J, Tucci K. Towards a Logic-Based
Multi-Agent Simulation Theory,
International Conference on Modelling,
Simulation and Neural Networks MSNN
2000.

[5] Davila J, Uzcagegui M. GALATEA: A
Multi-Agent Simulation Platform,
International Conference on Modelling,
Simulation and Neural Networks MSNN
2000.

[6] Esmin A, Aoki A, Lopes C, Lambert-
Torres G. Multi-Agent Simulation and
Educational Tool for Power System
Operation, Proceedings of the VII
International Conference on Engineering
and Technology Education INTERCOM
2002.

[7] Ferber J. Multi-Agent Systems: An
introduction to Distributed Artificial
Intelligence, Adison-Wesley, 1999.

[8] Henoch J, Ulrich H. Agent-Based
Simulation Platform for Evaluating
Management Concepts, Proceedings of
EUROSIM 2001.

[9] Horling B, Lesser V, Vincent R. Multi-
Agent System Simulation Framework, In
16th IMACS World Congres 2000 on
Scientific Computation, Applied
Mathematics and Simulation, August
2000.

[10] Jamali N, Thati P, Agha G. A. An Actor-
Based Architecture for Customizing and
Controlling Agent Ensemblies, IEEE
Intelligent Systems, 1999, p. 38-44.

[11] Jensen K. Coloured Petri Nets, Lecture
Notes in Computes Science, No. 254,
Springer-Verlag, Berlin, 1987, p. 248-299.

[12] Klupsch M. Object-oriented
Representation of Time-Varying Data
Sequences in Multi-Agent Systems, in
Nagib C. Callaos, editor, World
Multiconf. on Systemics, Cybernetics and
Informatics – 4th International Conference
on Information Systems, Analysis and
Synthesis, Vol. 2, 1998, p. 33-40.

[13] Liu J, Tang Y. Y. Adaptive Image
Segmentation With Distributed
Behaviour-Based Agents, IEEE Trans. on
PAMI, Vol. 21, No 6, June 1999.

[14] Matarić M. J. Getting Humanoids to Move
and Imitate, IEEE Intelligent Systems,
2000, p. 18-24

[15] Matarić M. J. Learning in Behavior-Based
Multi-Robot Systems: Policies, Models
and Other Agents, Journal of Cognitive
Systems Research 2, 2001, p. 81-93

[16] Pelavin R, Allen J. F. A Formal Logic of
Plans in Temporally Rich Domains, in
Proceedings of the IEEE, Vol. 74, No. 19,
1985, p. 1365-1382.

[17] Peterson J. L. Petri Net Theory and
Modeling of Systems, Prentice-Hall,
Englewood Cliffs, 1981.

[18] Remagnino P, Tan T, Baker K. Multi-
Agent Visual Surveillance of Dynamic
Scenes, Image and Vision Computing, 16
(1998), p. 529-532.

[19] Ribarić S, Dalbelo Bašić B. Temporal
Knowledge Representation and Reasoning
Model Based on Petri Nets with Time
Tokens, in Procedings of Industrial
Applications in Power Systems, Computer
Science and Telecommunications, Vol. 1,
1996, p. 131-135.

[20] Ribarić S, Hrkać T, Pavešić N.
Hierarchical Model of Multi-Agent
System for Spatio-Temporal Rich
Domains, Proceedings of the 6th
International Conference on Intelligent
Ingeneering Systems INES 2002, p. 321-
326.

[21] Rus D. Self-Reconfiguring Robots, IEEE
Intelligent Systems, July/August 1998, p.
2-4.

[22] Stavroulakis S, Callaghan V, Spacek L. A
Multi-Agent Approach to Machine Vision,
EXPO 2000: Shaping the Future, 2000.

