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Abstract – In this paper two methods are presented. The 

first is a kinematic evaluation method for two different 
hexapod structures: standard Stewart platform manipulator 
with extensible struts and second structure with fixed strut 
lengths but sliding guideways on fixed platform. The second 
method addresses the forward kinematic problem where 
different mathematical representations are combined with 
various optimization algorithms to find a suitable 
combination that may be utilized in real-time environment. 
Additionally, we note the existence of equivalent trajectories 
of the mobile platform and suggest an adaptation to the 
solving method that, having satisfied certain assumptions, is 
able to successfully solve the forward kinematic problem in 
real-time conditions with very high precision. 

I. INTRODUCTION 
Parallel kinematic manipulators (PKM) have been 

rediscovered in the last decade as microprocessor’s power 
finally satisfies computing force required for their control. 
Its great payload capacity, stiffness and accuracy 
characteristic as result of their parallel structure make them 
superior to serial manipulators in many fields. 

One of the most accepted PKM is Stewart platform 
based manipulator, also known as hexapod or Gough 
platform. Hexapod, originally, consists of two platforms, 
one fixed on the floor or ceiling and one mobile, connected 
together via six extensible struts by spherical or other types 
of joints. That construction gives mobile platform 6-DOF 
(degree of freedom). Hexapod movement and control is 
achieved only through strut lengths changes. One variation 
to this structure, also observed here, is when struts are 
fixed in length but one of their ends is placed on guideway. 
Control is then obtained only by moving those joints on 
guideways. Although in this model the forces acting on 
struts aren’t just along the axis of the struts, like with the 
original Stewart’s design, practically attainable sliding 
characteristics of guideways make it very considerable 
structure for manipulators. 

One of the qualities we want from a manipulator is its 
good kinematic characteristics. Those characteristics have 
direct impact on manipulability and working speed of a 
manipulator. One part of this paper presents a method for 
calculating several kinematic parameters. The method can 
be used to optimize hexapod structure for better kinematic 
characteris tics or combined with other methods were 
kinematic can be just one measure in optimization process.  

Second part of this paper deals with forward kinematics. 
The forward kinematic [7] of a parallel manipulator is the 
problem of finding the position and orientation of the 
mobile platform when the strut lengths are known. This 
problem has no known closed form solution for the most 
general 6-6 form of hexapod manipulator (with six joints 
on the base and six on the mobile platform). In this work 
several mathematical representations of the forward 

kinematic problem, in the form of optimization functions, 
are combined with various optimization algorithms and 
adaptation methods in order to find an efficient procedure 
that would allow for precise forward kinematic solving in 
real-time conditions. 

II. KINEMATIC EQUATIONS 

Standard Stewart Platform based manipulator as shown 
in Fig. 1 can be defined in many ways but most common 
set of parameters are: minimal and maximal struts length 
(lmin, lmax), radii of fixed and mobile platforms (r1, r2), joint 
placement defined with angle between closest joints for 
both platforms (α, β) and joint moving area (assuming 
cone with angle γ). 
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Fig. 1. Stewart Platform manipulator 
For kinematic evaluation we need relation between 

actuators speed and end effector speed. Observing one 
vector chain through ith strut (Fig. 1), the following 
equation can be deducted: 
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effector velocities. 
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Eq. (2) can be easily transformed in form of eq. (3) and 
then finally in matrix form as on eq. (4). We have a 
kinematic equation, where relation between end effector 
velocity and actuator velocity (strut lengths changes) is 
given. 
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The second observed hexapod model, shown in Fig. 2,  
differs from standard Stewart manipulator at base platform 
and struts. Strut lengths are constant and same for all struts 
but their joints on one side are placed on sliding guideways 
where actuators are placed. Parameters which describe this 
model differ only for base platform: ikB ,

r
 and ipB ,

r
 define 

ith guide way and ti as value between [0, 1] identify actual 
joint position. If we observe models like on Fig. 2, those 
vectors can be defined using four parameters: d as distance 
between closer parallel guide ways, r11 and r12 as radii of 
circles where guide ways ends are placed with height 
difference h, as shown on Fig. 3. 
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Fig. 2. Hexapod with fixed strut lengths 
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Fig. 3. Parameters that define hexapod structure 

Inverse kinematic for this model is slightly more 
complex than standard hexapod and can be computed 
using equations: 
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si is calculated from quadratic equation and therefore 
can give two possible joint position on same guide way. 
This problem must be solved in control procedures. 

From Fig. 2, for one vector chain through ith strut, the 
following equation can be deducted: 
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Derivation of eq. (6) yields eq. (7), and with little more 
mathematical operations we get kinematic equation (8) 
very similar to first hexapod model. 
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End effector (tool) is placed on mobile platform with 
height ltool. Therefore, origin of local coordinate system of 
mobile platform is put in that point. 

Using inverse kinematic for any point and tool 
orientation, it is possible to compute mobile platform 
position and orientation. Struts lengths for first, or joint 
positions for second model can then be calculated. If strut 
lengths are within given ranges, or joints can be placed on 
guideways for 2nd model, and other constraints are 
fulfilled, as joint angle constraint and no collision between 
struts, than hexapod is capable of putting its end effector in 
given point with given orientation. In this way area 
reachable with given orientation – the working area, can be 
found by finding all points which satisfies all constraints . 

Assuming that manipulator is used for machining free 
surface pieces, working area can be better defined as area 
were manipulator can work for not just one but any 
required orientation. Required orientations which give 
optimal surface characteristics can usually be defined with 
vectors within a cone with defined angle as in Fig. 4. 
Working area calculated using this definition gives 
superior visual and numeric description of manipulator.  
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Fig. 4. Orientations used in calculations 



When dealing with 6-DOF hexapod manipulators, which 
on its end effector have tool on spindle, inverse kinematic 
can’t generally give unique result. This gives freedom to 
apriori choose rotation angle of moving platform as the 6th 
DOF. For simplicity, no rotation angle was used whenever 
such orientation was feasible. 

III. KINEMATIC PARAMETERS 
As equations (4) and (8) show, relation between end 

effector velocities and strut changes is given by a matrix 
commonly called jacobian. Kinematic characteristics must 
therefore be extracted from that matrix. Commonly used 
values for kinematic evaluation of manipulator are singular 
values of jacobian [1], [6]. Singular values of matrix A are 
calculated by formula shown in eq. (9), where ?i is i-th 
eigenvalue of A. 
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Geometrical meaning of singular values can be viewed 
trough equations (10) and (11). 
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If x
r

 is unity vector then xA
r

⋅  is a hyperellipsoid with 
singular values as axis  length values. If A is jacobian 
matrix and x

r
 is velocity, hyperellipsoid represent ability 

to generate end effector’s velocities in given directions. 
Hyperellipsoid volume is proportional to determinant of a 
jacobian. Ratio between maximum and minimum singular 
value is measure for homogeneity. The sma ller that ratio is , 
the ability of generating speed is less dependent of 
direction. 

Practically, the greater the singular value is , the greater 
strut change is needed for achieving same end effector 
movement for that particular direction, and vice versa, the 
smaller singular value means less actuator activity is 
needed for end effector movement. Very small singular 
values can cause big problems. If very small actuator 
movement is enough to move end effector, than even 
errors as a result of imperfect material, temperature and 
pressure dilatation, can have big influence on end effector 
path. In other words, end effector can’t be controlled well 
enough. 

Three parameters based on singular values  are usually 
called for kinematic evaluation:  
1. condition number: κ=σmax /σmin –better smaller values 
2. minimal singular value: σmin–better larger values 
3. manipulability: |det(J)|=? σi –better larger values. 

The method we propose to evaluate manipulator from a 
kinematic aspect is to calculate those three parameters 
trough whole workspace of the manipulator or just on 
some part of it. For every point where calculations are to 
be performed, those three parameters are calculated not 
only for one end effector orientation but for all orientations 
as shown on Fig. 4. The value for particular kinematic 
parameter is then calculated as average value. 

It is sometimes appropriate to calculate those values on 
entire volume or just in cross-section with vertical or 

horizontal plane to find a spot where kinematic 
characteristics are better. One such example is on Fig. 5. 

 
Fig. 5 Conditional number (left) and minimal singular number (right) 

Two hexapod models, first as on Fig. 1 and second as on 
Fig. 2, with parameters shown in TABLE I are evaluated. 

TABLE I 
Hexapod model parameters 

1st model 2nd model 

parametar value parameter value 

lmax 85 l 70 

lmin 45 r1 75 

r1 50 r2 10 

r2 25 h 20 

lalat 0 d 3.5 

a 0° rb2 30 

ß 0° ß 0° 

φmax 45° lalat 0 

  φmax 45° 

Working Area Volume 16919  16677 

Kinematic parameters are calculated over working area 
and average values are presented in TABLE II. 

TABLE II 
Average kinematic parameter values 

 1st model 2nd model 

κ 1.835 2.655 

σmin 1.022 1.225 

|det(J)| 5.842 51.177 

For comparison only, models proposed in [1], [3] and 
[4] are evaluated also and presented in [5]. Some of models 
have better parameters than 1st model shown in TABLE II, 
but with at least halved working area volume .  

IV.  THE FORWARD KINEMATIC PROBLEM 
The forward kinematic relations for a hexapod machine 

can be mathematically formulated in several ways. Every  
representation of the problem can have its advantages and 
disadvantages which become emphasized when a different 
optimization algorithm is applied. 

A. The position and orientation of the mobile platform 

In order to define a forward kinematic problem we have 
to represent the actual hexapod configuration, i.e. the 
actual position and orientation of the mobile platform. The 
most common approach utilizes the three positional 
coordinates of the center of the mobile platform and three 



angles that define its orientation. The coordinates are 
represented by vector t

r
: 
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and the three rotational angles are here defined as roll-
pitch-yaw angles α , β  and γ . The angle values represent 
the consecutive rotation about the x, y and z axis, 
respectively [8]. The hexapod geometry is defined with six 
vectors for base and six vectors for mobile platform, which 
define the six joint coordinates on each platform: 
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The above vectors are represented in local coordinate 
systems of the base and mobile platform and are of 
constant value. The base and mobile platform are 
presumed to be planar, which can be perceived from the z 
coordinate of the joint vectors. The strut vectors il

r
 can 

then be expressed as  
6,..,1, =⋅++−= ipRtbl iii

rrrr
, (14) 

where R  is the rotational matrix, calculated from three 
rotational angles. If the position and orientation of the 
mobile platform is known, the length of each strut is  

( ) 6,..,1,, =⋅+= ipRtbDq iii
rrr

, (15) 

where D represents the Euclidean distance between the 
vector pairs. For an arbitrary solution to a forward 
kinematic problem, i.e. arbitrary position and orientation of 
the mobile, the error can be expressed as the sum of 
squares of differences between the calculated and actual 
length values. Having stated the above relations, we can 
define the first optimization function and the related 
unknowns as  
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B. The canonical formulation of the forward kinematics 

The idea behind this approach [6] is to use the elements 
of the rotation matrix, rather than the angle values, to 
represent orientation: 
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Without loss of generality we can position the origins of 
the local coordinate systems of the base and mobile 
platform at the strut joints with index one, as shown in Fig. 
6, which gives us the following parameter values: 

0221111 ====== yyyxyx pbppbb . (18) 

 
Zp  

Xp  

Yp  

Xb 

Yb 

Zb  

p1  

p2  

p3  

p 4 
p 5 

p6  

b1  
b 2  

b3  

b
b 5  

b6  

 

Fig. 6 Positioning of coordinate systems for base and mobile platform 

After extensive simplifications, the forward kinematic 
can be expressed as a system of 9 equations with 9 
unknowns. Three of those 9 equations are of linear form, 
which can be used to reduce the number of variables 
without introducing additional complexity in the system. 
Three of the six variables tx, nx, ox, ty, ny and oy can be 
replaced with linear combinations of the other three, which 
leaves us with only six unknowns. We used that approach 
to define another target function as  
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and the constants' values can be found in [6] or [12]. 
In the scope of this work some other problem 

formulations have been used. Those formulations did not, 
however, show any advantages over the previous defined 
two, so they are omitted here. More information can be 
found in [12]. 

V. EXPERIMENTAL RESULTS 
The forward kinematic problem is presented as five (two 

of which are shown here) optimization functions for which 
the optimization algorithm has to find the minimum, the 
value of the functions being the error of the estimated 
solution. Several optimization methods have been applied 
to each of the functions in order to find an effective 
combination which would allow for real-time application. 
The algorithms applied in this work are Powell's method, 
Hooke-Jeeves', steepest descent search, Newton-Raphson's 
(NR) method, NR method with constant Jacobian and 
Fletcher-Powell algorithm.  

Solving of forward kinematic was simulated in static 
and dynamic conditions. The goal was to find the 
combination which would yield the best results considering 
the convergence, speed and accuracy. The most promising 
combinations were tested in dynamic conditions, where the 



algorithm had to track a preset trajectory of the mobile 
platform with as small error and as large sampling 
frequency as possible. Those combinations include Hooke-
Jeeves' and Fletcher-Powell algorithm with function F1, 
but the most successful optimization method was Newton-
Raphson's algorithm applied to function F2.  

In dynamic simulation, the starting hexapod 
configuration is known and serves as an initial solution. 
During the sampling period T the algorithm has to find the 
new solution, which will become the initial solution in the 
next cycle. Several hexapod movements were defined as 
time dependant functions of the position and orientation of 
mobile platform. One of those trajectories, hereafter 
denoted as A, is defined with 
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The results of the dynamic simulation are presented in 
the form of a graph where errors in the three rotation 
angles and three position coordinates of the mobile are 
pictured. The sampling period T was set to 1 ms, which 
equals to a 1000 Hz sampling frequency. The errors shown 
represent the absolute difference between the calculated 
and the actual hexapod configuration. Due to the large 
number of cycles, the error is defined as the biggest 
absolute error value in the last 100 ms, so the graphs in 
each point show the worst case in the last 100 ms of 
simulation. The errors are presented separately for angles, 
in degrees, and position coordinates. The errors for 
movement A and Newton-Raphson algorithm with function 
F2 are shown in Fig. 2 and Fig. 3. 
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Fig. 7 Absolute angle error (α = , β = , γ = ),  
NR algorithm with F2, movement A 
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Fig. 8 Absolute coordinate error (x = , y = , z = ),  
NR algorithm with F2, movement A 

The achieved level of accuracy is very high as the 
absolute error does not exceed 10-12 both for angles and 
coordinates. Another trajectory is derived from the 
described one by enlarging some of the amplitudes in (20), 
which is denoted as movement B (the altered values are in 
boldface): 
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The movement B errors are shown in Fig. 4. While still 
low, the error for movement B has two distinctive peaks at 
certain points in simulated motion. What is the cause of 
those peaks? Mathematical analysis has shown ([9], [10], 
[11]) that there may exist up to 40 distinctive solutions for 
forward kinematic problem for Stewart platform with 
planar base and mobile platform for the same set of strut 
lengths. 
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Fig. 9 Absolute angle error (α = , β = , γ = ),  
NR algorithm with F2, movement B 

Let us suppose that in one hexapod configuration there 
exists no other forward kinematic solution for actual set of 
strut lengths, but that in some other configuration there 
exist several of them. If hexapod in its movement passes 
through those two configurations, then at a certain point in 
between there has  to be a division point where the number 
of solutions increases. In those division points the solving 
algorithm may, unfortunately, begin to follow any of the 
possible paths, because any of them represents a valid 
forward kinematic solution! That is exactly the problem 
that occurs in movement B: the algorithm may or may not 
follow the correct trajectory. If the latter is the case, than 
the absolute error looks like in Fig. 5. 
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Fig. 10 Absolute angle error (α = , β  = , γ = ),  
NR algorithm with F2, movement B - division 

The algorithm will randomly follow either the correct 
trajectory or the equivalent one. It is important to note that 
in both cases the optimization function remains very low 
(app. 10-30 to 10-20) during the whole process because both 
trajectories depict a valid solution to the forward kinematic 
problem. The problem is, only one of them represents the 
actual hexapod configuration in each point of time. 

Without any additional information about the hexapod 
configuration, such as may be obtained from extra 
transitional displacement sensors, there is unfortunately no 
way to determine which of the existent solutions to the 
forward kinematic problem for the same set of strut lengths 
describes the actual hexapod configuration. Nevertheless, 
with some assumptions we may devise a strategy that 



should keep the solving method on the right track. If the 
change of the direction of movement is relatively small 
during a single period, which is in this case only 1 ms, then 
we can try to predict the position of the mobile platform in 
the next cycle. We can use the solutions from the past 
cycles to construct a straight line and estimate the initial 
solution in the next iteration. Let the solution in the current 
iteration be 0P

r
 and the solutions from the last two cycles 

1P
r

 and 2P
r

. Then we can calculate the new initial solution 
using one of the following methods: 
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The above methods were tested in conjunction with NR 
algorithm and function F2 for all the simulated trajectories. 
The results are very good: the solving method was now 
able to track the correct solution during the whole 
simulation process for all three estimation methods. The 
number of conducted experiments was several hundred and 
every time the algorithm's error margin was below 10-11 
both for angles and coordinates. However, the described 
algorithm adaptation will only be successful if the 
assumption of a small direction change during a few 
iterations is valid. To test the algorithm's behaviour, 
simulated movement B  was accelerated by factor 2, 4 and 
8, while maintaining the same cycle duration of 1 ms. Only 
by reaching the 8-fold acceleration, when the total 
movement time equals a very unrealistic half a second, did 
the algorithm produce significant errors, while still holding 
to the correct solution. 

VI. CONCLUSION 
Proposed kinematic evaluation method is pure 

computational and heavy time consuming. Model must be 
first defined and than evaluated. However, in regard to 
most other methods this method gives mo re realistic 
kinematic parameter values, because it use not just one end 
effector orientation but most orientations that can be asked 
for in manufacturing. Method can be easily combined with 
others hexapod evaluations such as working area or/and 
error analysis giving more powerful hexapod design tool. 

Combining several representations of the forward 
kinematic problem with optimization techniques, an 
efficient method for solving the forward kinematic was 
found. The solving method was able to determine the exact 
position and orientation of the mobile platform within 
insignificant error margins (less than 10 to the power of –
12 of the minimum hexapod dimension) and with 1000 Hz 
sampling frequency. 

The problem of equivalent trajectories was noted: 
because of the existence of multiple solutions to forward 
kinematics, there may exist more than one path that mobile 
platform can follow while having exactly the same strut 
lengths in every point of the way. It has to be said that 
every such path represents an equal correct solution of the 
forward kinematics, but only one of them represents the 

true mobile platform trajectory. An empirical algorithm 
was devised which can increase the probability of finding 
the right solution, and it proved itself successful in every 
test case. Unfortunately, it cannot be proven that it will do 
so in every imaginable movement of the mobile platform. 
However, the solving method will always find the right 
solution if the change in the position or moving direction 
of the mobile platform is re latively small during a few 
sampling periods. 
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