1. INTRODUCTION

Dynamic numerical modeling of refrigeration systems and components can give clear answers about the system behavior in transient operation. Building the numerical model is faster and cheaper approach than experimentation on prototypes if decisions about design are necessary during the refrigeration machine design process. Development of such models is a demanding task, and it has been proven that complex dynamic models, which are based on physical laws and include detailed description of system geometry, are suitable for that task. Several authors (Chi & Didion, 1982), (Yasuda et. al., 1983), (MacArthur & Grald, 1989),  (Ney, 1990) developed such complex refrigeration machine models. The present paper describes a dynamic model of a condenser developed as the part of the dynamic heat pump model (Pavkovic, 1999),  (Pavkovic et al., 2000) , (Pavkovic, 2002). 

Condensers for refrigeration systems can be of different constructive types. For water chillers and heat pumps, the most common types of condensers are coaxial condensers, brazed plate condensers and shell and tube type condensers. Coaxial condensers, with water flow through internal tube or tube bundle which are placed in an external tube formed as a coil, with condensing refrigerant in a space between internal and external tube have usually been used for lower capacity water chillers and heat pumps. Plate condensers are built with brazed thin metal corrugated plates which separate flow paths of refrigerant and water. They are widely used for construction of water chillers and heat pumps recently. The most important disadvantage of both above mentioned condenser types is the lack of possibility to clean the water flow channels mechanically. That contributes to fowling when contaminated cooling water is used and thus decreases the heat transfer. Construction of shell and tube condensers enables the mechanical cleaning of water flow channels, which is the reason for the wide application of that condenser type whenever the cooling water quality cannot be guaranteed.

Different authors developed several models of condensers. Models of coaxial condensers, with counter flow of refrigerant and water, limited to consideration of one-dimensional flow inside tubes and channels have a simple structure. Models with parameter distribution along the considered axis can be used, and it is easy to predict variations of pressure, temperature, enthalpy, mass flow rate, density, vapor and liquid velocities at each point, by using the simplified finite volume method for formation and solving the system of differential equations, utilizing well known correlations for void fraction and heat transfer coefficients (MacArthur & Grald, 1989),  (Ney, 1990),  (Conde, 1992).

Plate condensers can be considered through very simple models with concentrated parameters, using overall heat transfer and void fraction correlations, but if any analysis is aimed to a constructive optimization of such a condenser, methods with distributed parameters have to be used. Considering of the coupled differential equations system for energy, mass and momentum conservation for a refrigerant and water flow inside a channel formed by two adjacent corrugated plates is necessary. That leads to very extensive models, using long calculation times, and this kind of model is not common, especially if the intention is to use the condenser model as a part of a refrigeration machine model. When consideration of shell and tube condenser is performed, the geometry of a refrigerant flow path is even much more complex, and models with distributed parameters become more complex. Therefore, most authors (Yasuda et. al., 1983), (Gruhle, 1987), neglect the spatial distribution of refrigerant properties, and use models with concentrated parameters. 

The problem appears when the differential equations of energy conservation for a vapor space are solved in an explicit manner using the model with concentrated parameters. That approach can often lead to wrong results like artificial temperature increase, caused numerically. That can be avoided by using the implicit method, or by using models with distributed parameters, both times consuming. The present paper describes one of the possibilities to solve such a problem and remain on utilizing a concentrated parameters model in an explicit manner of solution.

2. MODEL DESCRIPTION

Shell and tube condenser is cooled with water. Superheated vapor entering the shell from the compressor is cooled, condensed and subcooled on tubes with water flow inside.  Additional subcooling of liquid refrigerant can occur in the case when lowest water tubes are flooded with liquid refrigerant.

Pressure drop of the refrigerant in condenser can be neglected, due to low vapor velocity inside the shell as it has been done by some authors (Yasuda et. al., 1983), (Gruhle, 1987). 
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Fig. 1.  Shell and tube water-cooled condenser

Refrigerant vapor temperature and vapor mass inside a condenser shell are 
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 respectively. Tube wall temperatures are denoted with 
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 for condenser with two water passages. For a single component refrigerant, saturation temperature 
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 is coupled with shell side pressure 
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. Mass flow of refrigerant, which is condensing on tubes, is 
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. Condensate mass flow from tubes to a liquid refrigerant bulk at the shell bottom is 
[image: image8.wmf]Rco

M

&

. Some amount 
[image: image9.wmf]Rlc

M

 of condensed liquid refrigerant is present on tube walls, and that refrigerant enters the refrigerant bulk at the shell bottom when the compressor stops running. Mass of that refrigerant at the condenser bottom is 
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. Inlet refrigerant mass flow 
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 depends on condenser pressure and it is calculated in the compressor model (Pavkovic, 2002). The mass flow of subcooled liquid 
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 depends on pressure difference between the condenser and evaporator inlet, and the action of the thermoexpansion valve which controls the refrigerant flow from condenser to the evaporator.

2.1 Conservation of mass and energy 
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Fig. 2.  Mass and energy exchange paths for a shell and tube water-cooled condenser 

Discretized mass and energy conservation equations for the condenser have been determined from mass and energy conservation balances for control volumes shown on figure 2. Those control volumes are refrigerant vapor (1.1 and 1.2), refrigerant liquid on tubes (2.1), subcooled liquid refrigerant on the shell bottom (2.2), water in tubes (6.1 and 6.2) and water in deviating chambers (7.1, 7.2 and 7.3), tube walls (3.1 and 3.2), tube plates (4.1, 4.2 and 4.3), shell in contact with refrigerant liquid (5.1) and shell in contact with refrigerant vapor (5.2).

Mass flow of water through the condenser is 
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, which represents the outlet water temperature 
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.  Condenser shell is divided in two parts, one with mass 
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, in contact with refrigerant vapor, and another with mass 
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, in contact with refrigerant liquid. Masses of tubes are 
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. Tube plates are divided in parts with masses 
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, each in contact with water in inlet, flow deviation, and outlet chamber for water. Volumes of vapor and liquid in condenser are varying with time, and depend on the level 
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 of liquid refrigerant in the condenser. Vapor control volume is divided in two parts (1-1 and 1-2). It is assumed that heat transfer takes place in a part (1-2) between vapor and liquid on tubes. 

Mass energy balance for a refrigerant vapor in a control volume 1-1 is: 
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where 
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is a volume occupied by vapor, and 
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 is time. Mass flow of superheated vapor from compressor 
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 depends on condenser shell side pressure and compressor discharge pressure (which varies with time). 

Mass flow of condensing refrigerant 
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, can be calculated using the energy conservation equation for the control volume 1-2. Energy balance for the vapor region (control volumes 1-1 and 1-2) gives:
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is the internal energy of refrigerant vapor and 
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denotes heat exchange due to the condensation on tubes, shell, and tube plates in contact with vapor.
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Assumption has been made for the vapor control volume 1-2 that it contains no mass. That means 
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. With equation (2) for a control volume 1-2 and with 
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 a condensate mass flow can be evaluated:
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where 
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 represents the enthalpy of saturated refrigerant liquid with pressure
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. Now, it is possible to solve mass conservation equation for the control volume  1-1:
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Equations for calculation of the compressor mass flow are solved in COMPRESSOR, subroutine (Pavkovic, 2002). Refrigerant mass flow between control volumes is driven by pressure difference and can assume positive or negative value, depending on flow direction. The cross flow area between condenser and compressor cylinders depends on the valve position. Mass flow from a single cylinder to a discharge tube, which is connected with condenser vapor space, can be evaluated from the equation:  
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where  
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 is the compressor rotation speed, and 
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 flow cross section, ψ is the flow function calculated separately for subcritical and supercritical pressure ratio   and 
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 is the crankshaft angle, closely coupled with variable time step in the compressor model. The compressor model is used to solve equation (6) to evaluate refrigerant flow from compressor cylinder to the discharge plenum (and condenser vapor space) and that enables high accuracy of flow calculation (Pavkovic, 2002). In that way it is possible to avoid the problem of numerically caused fictive temperature rise, which appears for longer time steps and explicit manner of solution. Compressor subroutine calculates also a discharge plenum pressure 
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, which is assumed to be the same as the shell side pressure in condenser. As it is earlier mentioned, pressure 
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 are coupled, and saturation temperature can be determined with known pressure. Condenser space filled with refrigerant liquid can be divided in two parts: first one is the liquid film on tubes and walls (2-1) and the second is the refrigerant bulk at the condenser bottom (2-2).  Mass balance for the refrigerant at the condenser bottom (control volume 2-2) gives:
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Subcooled refrigerant flow at condenser outlet 
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 is controlled by the thermoexpansion valve, and depends on the evaporator outlet pressure 
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 established in a valve's bulb attached to the evaporator refrigerant outlet tube, and adjustment of static superheat. Static superheat is influenced by position 
[image: image55.wmf]o

 of an adjustment screw. Subroutine TEVENT has been developed for the simulation of the thermoexpansion valve behavior. Valve needle displacement 
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 can be correlated to the experimentally achieved data for any combination of the evaporator outlet pressure 
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Needle displacement 
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 and flow area 
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 are connected. The refrigerant mass flow is:
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Temperature 
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 of the valve bulb attached to evaporator outlet pipe changes with refrigerant temperature at evaporator outlet 
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. The transient has been taken into account with:
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where 
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being the bulb time constant, which can be determined experimentally.

Mass balance for a refrigerant liquid film on condenser tubes gives:
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 is determined assuming the empirical value for the thickness of the liquid film on tubes. This thickness changes during the startup and shutdown of the refrigeration machine. The area of condenser in contact with vapor 
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is determined as the sum of areas of tubes, tube plates and shell exposed to vapor. Maximum liquid mass on tubes, shell and tube plates is:
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where
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is the maximum expected film thickness.

At startup the mass of that liquid is 
[image: image76.wmf]0

=

Rlc

M

. Change of the retained mass in a time step 
[image: image77.wmf]t

D

 is determined with (13), with assumed 
[image: image78.wmf]0

=

Rco

M

 during the period where  
[image: image79.wmf]mx

Rlc

Rlc

M

M

,

<

.  In the case when 
[image: image80.wmf]mx

Rlc

Rlc

M

M

,

=

 it is assumed that refrigerant liquid flow leaving tubes and shell is equal to refrigerant flow into the liquid film:
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After the compressor shutdown, remaining vapor in a shell is condensed and refrigerant flow towards pipes becomes 
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. Without incoming liquid, liquid film drains within some time and that case has been taken into account in the model. 

Mass conservation equation for a cooling water gives:
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Energy balance for a refrigerant bulk at the condenser bottom is:
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Sum 
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denotes heat exchanged between refrigerant liquid and submerged tubes, shell and tube plates, as well as heat exchange between refrigerant vapor and liquid at the boundary:


[image: image86.wmf]1

1

2

2

3

Scp

Rls

Sc

Rls

Scp

Rls

Sc

Rls

Scp

Rls

Spl

Rls

i

Q

Q

Q

Q

Q

Q

Q

-

-

-

-

-

-

+

+

+

+

+

=

å

&

&

&

&

&

&

&

.                (16)

Liquid refrigerant, which enters from tubes to the refrigerant bulk at the condenser bottom, can be subcooled. Estimation has been made that the temperature of that subcooled refrigerant is somewhere between inlet water temperature and condensing temperature. Temperature difference between the condensing temperature and a falling film temperature is assumed, using the factor 
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Enthalpy of that falling refrigerant is:
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where 
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 is the saturated liquid enthalpy for saturation temperature 
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 is a sspecific heat capacity for liquid refrigerant. Temperature of the subcooled liquid 
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 can be achieved from equation (15).

Tube wall energy balances are:
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Energy balances of condenser tube plates result with expressions: 
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Water energy balances:
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Heat exchanged between condensing refrigerant and condenser tubes, shell and tube plates exposed to refrigerant vapor (
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), can be calculated with expression:
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Heat (
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) exchanged between refrigerant liquid at the condenser bottom and condenser tubes, shell and plates exposed to refrigerant liquid can be found as:
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Heat transfer coefficients have been calculated using common heat transfer correlations. The Beatty & Katz correlation for a condensation heat transfer on a low fin tubes has been used, taking into account influence of shear stress as well, and for a single phase heat transfer correlation of Gnielinski has been used. Fowling has been taken into account as well (VDI, 1994).

The level of the refrigerant liquid at condenser bottom 
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 is variable. Flooding of lowest water tubes can occur, which decreases the condensing surface, and the exchanged heat: Additional refrigerant subcooling appears in that case. Volume of condenser filled with vapor and liquid refrigerant, as well as surfaces of tubes, shell and tube plates in contact with vapor or liquid refrigerant are calculated in a separate subroutine called POVKO.  Refrigerant liquid level 
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Fig. 3. Nondimensional vapor exposed area 
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Computer subroutine COND

Condenser computer subroutine COND has a simple structure, shown in figure 4. 
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Fig. 4. Flow diagram of the COND subroutine

Initial conditions are refrigerant pressure and temperature as well as water and wall temperatures for all control volumes. Those values can be obtained from subroutines STARTH and STARTC, which are used for establishment of initial refrigerant distribution in a refrigeration machine after the still stand period or after the previous time step. Boundary conditions are cooling water mass flow 
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 and inlet temperature 
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, compressor discharge flow 
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 calculated in COMPRESSOR subroutine, condenser pressure in previous time step, temperature of superheated vapor entering the condenser 
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, and the refrigerant mass flow through the thermoexpansion valve
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 (condenser outlet).

Main program HEATPI

Models of components: evaporator, condenser, compressor and thermoexpansion valve, have been merged into a refrigeration machine model. Boundary conditions are water mass flow through the evaporator 
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and condenser 
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, evaporator inlet water temperature 
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 and condenser inlet water temperature 
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. The action of a control system is also a boundary condition. It can be cylinder unloading (
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is the number of unloaded cylinders by holding the suction valve plate in open position) or variable speed control (
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 is the rotation speed). A structure description of components and a refrigeration machine, such as constructive data on compressor, evaporator, condenser and thermoexpansion valve are stored in a data file, which can be changed in order to simulate different refrigeration machines or heat pumps. Data on refrigerant type and charge are also stored in that file. The same data file contains the control of temporal change of boundary conditions as well. 

At the calculation start, initial distribution of refrigerant in the entire machine is established. The dynamic calculation follows. The compressor time step is variable, depending on valve dynamics, while the time step for condenser, evaporator and thermoexpansion valve is one degree of the compressor crankshaft angle. Compressor subroutine gives suction and discharge pressures 
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 and 
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 as well as compressor inlet and outlet mass flows of refrigerant 
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and 
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, which are boundary conditions for evaporator and condenser. Evaporator and thermoexpansion valve subroutines have the same boundary conditions for 
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. For the refrigerant leaving the thermoexpansion valve and entering the evaporator, pressure and mass flow are determined, taking into account the pressure drop. This means that the evaporator and thermoexpansion valve are solved simultaneously, and iterations proceed until a total pressure drop across thermoexpansion valve and evaporator becomes equal to the pressure difference between 
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. In that case, the conservation equations are satisfied for the entire refrigeratin machine model. 

The results of the calculation are dynamic changes of pressures, temperatures and densities in the evaporator, compressor cylinders and condenser. Distribution of all properties is known for the entire evaporator. Refrigerant distribution throughout the entire machine is calculated as well, which also facilitates transient analysis of refrigerant loss. Compressor motor consumed power 
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 is calculated, while condenser and evaporator heat rates 
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are evaluated with known water mass flows 
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, water inlet boundary temperatures 
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 and 
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 and calculated values for outlet water temperatures 
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Fig. 5. Data flow for a refrigeration machine or a heat pump model
3. SIMULATION RESULTS

The above described numerical dynamic model of the refrigeration machine was adjusted for simulation of a 140 kW water-to-water heat pump with R22 as a refrigerant. Boundary conditions, such as evaporator and condenser water flows and inlet temperatures, as well as times of control actions start can be achieved from measurements or from dynamic model of a heating /cooling system (Pavkovic, 1999). Measurement and simulation results for transient runs with variations of water mass flow and cylinder unloading are shown in figures 6 and 7.   

Figure 6 represents the change of the condenser water outlet temperature as the result of the change of condenser water mass flow 
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. Heat pump was used for heating and cooling two storage tanks, each with volume 3 m3. Simulation begins with the full capacity heat pump compressor operation, with condenser water mass flow 
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kg/s. At the beginning of measurement, (
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s) condenser water temperature difference is 8,3oC, and after the mass flow change of the condenser cooling water from 
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kg/s to 
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kg/s which was sudden and started at 
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s, that temperature difference increased to 10,8oC. That caused the condensing temperature rise, as well as decrease of the condenser heat output. Constant rise of the inlet water temperature is due to the heat accumulation in a storage tank.
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Fig. 6. Measured values and simulation results for condenser water temperature change with the change of condenser water mass flow.

Another heat pump transient and condenser response is presented in figure 7. The heat pump starts to operate with full capacity at 
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s. At 
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s one of four compressor cylinders is turned off (by holding the suction valve open), and at 
[image: image156.wmf]617

=

t

s the compressor is completely turned off. As earlier, boundary conditions were achieved from measurements. Those are condenser water flow and inlet temperature, as well as times of starting control actions. Small difference between simulated and measured values for condenser inlet temperature 
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are consequence of the pollynomial approximation of measured values. Simulated and measured values correspond well for condenser water outlet temperatures 
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. Suitable matching between simulated and measured values for condenser heating capacity 
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 is obvious. Simulated values for the refrigerant pressure on discharge side of a compressor do not fit closely with measured data, which does not significantly influence the general data necessary for a heat pump analysis, such as heating and cooling output and water temperatures. A comprehensive analysis is intended to be performed in order to avoid the above mentioned inaccuracy in model results. Future development of a condenser model with distributed parameters, and intended improvements in a compressor model will be helpful in solving that problem. 

The entire refrigeration machine model is capable of predicting the performance for a compressor variable speed operation as well. Simulations and experimentation for a variable compressor speed operation of the refrigeration machine or a heat pump have not been performed, but compressor model which was developed during previous  investigations (Pavkovic, 2002) makes such simulations possible.
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Fig. 7. Measured values and simulation results for water temperatures, heating load, and refrigerant pressures of a heat pump run with startup, capacity control and shutdown transients.

4. CONCLUSION

The numerical model with concentrated parameters for simulation of water cooled shell and tube refrigerant condenser is developed. It is used as a part of a refrigeration machine dynamic model, with purpose to analyze and optimize the refrigeration machine in dynamic operating conditions. Simulation results achieved by model have been compared with results of the performance measurements performed on a 140 kW water-to-water heat pump in dynamic operating conditions. Suitable matching between measured and simulated values has been found for most variables. It has been found that the model can be used for the constructive optimization of heat exchangers only if it is built using the distributed parameters approach. Future work will be aimed to the development of a refrigeration machine model containing a condenser model with distributed parameters, and an improved variable speed compressor model. Comparison of experimental and simulated values will be done.
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