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Abstract: In the paper the free convection heat looses inside closed air container with
isothermal non-uniform boundary condition has been analysed numerically. The
mathematical model based on Oberbeck mathematical model of boundary layer has been
defined. This model has been used to solve the two-dimensional transient heat transfer
problem. Fields of relevant thermodynamic dimensions’ characteristics, such as velocity
vectors, stream function and temperature gradient have been calculated using finite volume
numerical method. A computer solver for transient two-dimensional heat transfer has been
developed. The influence of Rayleigh number on different flow and heat convection regimes
has been analysed for different inclination angles. An impact of different flow regimes on heat
convection has been also analysed using local and average Nusselt numbers. Results have
been applied to prediction of free convection heat losses in an approximated model of solar
collector for different inclination angles.

Key words: free convection heat looses, solar collector, finite volume method, heat losses,
Rayleigh number, local and average Nusselt number

1. INTRODUCTION

Many research activities in a field of free convection inside of an enclosed container deal with
so-called Rayleigh-Benard problem due to its wide application in engineering practice.
Characteristic boundary conditions for this kind of free-convection problem are: the bottom
surface of the container is held at relatively high temperature (“hot surface”), the top surface
is held at relatively low temperature (“cold surface”) while the side walls are adiabatic (figure
1). Under this conditions the flow undergoes through different types of regimes depending on
Rayleigh number. Pure conduction is a primary state, then, by increasing of Ra number, the
flow changes from steady cellular flows, transient periodical flows, quasi-periodical flows to
unpredictable transient flows. This phenomena appears due to instability of flow under
described boundary conditions. The situation becomes more complex when some inclination
angles or different aspect ratio are applied to the domain. Many authors have examined flow
and heat transfer under these various types of boundary conditions. In this research, the  “hot
surface” is substituted with linear distribution of temperature on the wall. Other boundary
conditions are like these used to simulate Rayleigh-Benard problem. Applied boundary
conditions are shown on figure 2.
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Figure 1. Typical boundary conditions of Rayleigh-Benard free convection problem

Figure 2.  Domain with boundary condition of linear temperature distribution applied on one
boundary

2. NUMERICAL AND MATHEMATICAL MODELS

Mathematical model is defined using equations of conservation for two-dimensional transient
fluid flow and heat transfer. The analysed container is fulfilled with air, Pr=0,73. Air has been
considered as viscous, non-compressible Newtonian fluid. In the analysed case fluid flow and
heat transfer are driven by buoyancy effect so the additional equation must be used.
Concerning these conditions, a Boussinesq approximation that describes linear relation
between density and temperature, has also been added to complete mathematical model. So,
fluid density has been considered constant in all circumstances except for description of
gravity forces in momentum equations where the mentioned approximation has been used.
Considering constant density and two-dimensional fluid flow the continuity equation may be
written as:
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Using (1) the momentum equations are:
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Energy equation can be written as:
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Boussinesq approximation is defined as follows:
( )[ ]00 1 TT −β−ρ=ρ (5)

where ρ is density and T temperature of fluid. ρ0 denotes density of fluid at the temperature T0
and β is the thermal expansion coefficient.

Using (5) equations (2) and (3) become:
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where p* denotes pressure value not including gravity influence (hydrostatic component):
ghpp 0ρ−=∗ (8)

Equations of conservation have been translated in dimensionless form in order to simplify the
calculation, comparison and application of numerical results. Several dimensionless variables
have been defined as follows:
- dimensionless coordinates:
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- dimensionless time:
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- and dimensionless temperature:
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Rayleigh and Prandtl numbers are defined as:

ν⋅
∆β=
a

TLgRa
3

0 , (16)

a
Pr ν= (17)

Concerning (9)-(17), momentum equations in dimensionless form become:
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Energy equation in dimensionless form is:
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Only two types of boundary conditions have been used. Adiabatic boundary condition has
been applied on two opposite walls and can be defined with following settings: 0=xu ,

0=yu  and 0=
∂
∂

x
T  or 0=

∂
∂

y
T  depending on wall orientation.

Geometrical boundary condition is applied to walls with pre-set temperature value. The pre-
set wall temperature can be constant or linearly distributed along the wall length. Settings,
which describe this boundary condition, are: 0=xu , 0=yu  and )(xTT preset= or

)( yTT preset=  depending on wall orientation.

Heat transfer intensity can be analysed by average and local values of Nusselt number. Local
Nusselt number is defined as:

Sn
TNu 







∂
∂= . (21)

Average intensity of heat transfer through boundary can be described with average Nusselt
number, which is defined as:
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This mathematical model has been solved numerically using finite volume method. To
interpolate values of dependent variables between grid nodes a power-law scheme has been
assumed. For the numerical calculation a computer solver for transient two-dimensional heat
and fluid flow has been developed. The algorithm of computer software bases on revised
Semi-Implicit Method of Pressure-Linked Equations (revised SIMPLE = SIMPLER).
Calculation of temperature and velocity fields as well as local Nusselt numbers on “hot” wall
has been carried out for domain aspect ratio 1:20 and for inclination angles of 0, 30, 45, 60
and 90°. For the numerical calculation the structured rectangular grid with 10x200 finite
volumes has been generated and solved for different Rayleigh numbers, Ra =105, 106, 2,5·106

and 5·106.

3. RESULTS OF NUMERICAL ANALYSIS

Applying boundary conditions presented on figure 2 as results of numerical simulations the
velocity vectors, streamlines and isotherms have been obtained as well as local and average
Nusselt numbers on a heated boundary.

Figure 3. Streamlines for Ra =105, 106, 2,5·106 and 5·106 – inclination angle 45°.
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Figure 4. Isotherms for Ra =105, 106, 2,5·106 and 5·106 – inclination angle 45°

The numerical calculation has been carried out for all mentioned ranges of inclination angles
and Rayleigh numbers. The streamlines and the isotherms have been shown only for
inclination angle of 45°. Streamlinnes and isotherms for Ra =105, 106, 2,5·106 and 5·106 and
for inclination angle of 45°  are shown on figures 3 and 4 respectively. Local Nusselt numbers
on a heated wall for different regimes and inclination angles are sown on figures 5-8.
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Figure 5. Local Nusselt numbers on a heated boundary for different regimes of free
convection (different Ra numbers), aspect ratio a/b = 20 and inclination angle α = 45°

Minimal and maximal local and average Nusselt numbers on a heated boundary for different
inclination angles and for different regimes of free convection (different Ra numbers) are
presented in tables 1-4.



Energy and the Environment (2002) 101-114  107

Table 1. Minimal and maximal local and average Nusselt numbers on a heated boundary for
45° inclination angle and for different regimes of free convection (different Ra numbers).

Ra =105 Ra =106 Ra =2,5·106 Ra =5·106

Numax 2,61 2,63 4,83 17,00
Nu min 0,04 0,05 0,01 0,09

Nu 0,86 1,53 2,87 9,03
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Figure 6. Local Nusselt numbers on a heated boundary for different regimes of free
convection (different Ra numbers), aspect ratio a/b = 20 and inclination angle α = 30°

Table 2. Minimal and maximal local and average Nusselt numbers on a heated boundary for
30° inclination angle and for different regimes of free convection (different Ra numbers).

Ra =105 Ra =106 Ra =2,5·106 Ra =5·106

Numax 2,04 4,03 5,00 5,87
Nu min 0,02 0,03 0,01 0,01

Nu 1,39 2,69 3,32 3,84
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Figure 7. Local Nusselt numbers on a heated boundary for different regimes of free
convection (different Ra numbers), aspect ratio a/b = 20 and inclination angle α = 60°

Table 3. Minimal and maximal local and average Nusselt numbers on a heated boundary for
60° inclination angle and for different regimes of free convection (different Ra numbers).

Ra =105 Ra =106 Ra =2,5·106 Ra =5·106

Numax 2,26 4,31 5,32 6,09
Nu min 0,02 0,01 0,01 0,02

Nu 1,54 2,91 3,57 4,03
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Figure 8. Local Nusselt numbers on a heated boundary for different regimes of free
convection (different Ra numbers), aspect ratio a/b = 20 and inclination angle α = 0°

(horizontal position)
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Table 4. Minimal and maximal local and average Nusselt numbers on a heated boundary for
0° inclination angle and for different regimes of free convection (different Ra numbers).

Ra =105 Ra =106 Ra =2,5·106 Ra =5·106

Numax 8,48 10,42 10,76 12,32
Nu min 0,02 0,03 0,01 0,03

Nu 2,41 3,78 3,71 3,02

Ranges of Nusselt numbers depending on inclination angle for different Rayleigh numbers are
shown on figures 9 and 10. The dependence of average Nusselt numbers as well as maximal
and minimal local Nusselt numbers on inclination angles can be seen from figures 11-14.
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Figure 12. Dependency of minimal and maximal local and average Nusselt numbers on
different inclination angles for Ra=106
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Figure 13. Dependency of minimal and maximal local and average Nusselt numbers on
different inclination angles for Ra=2,5·106
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4. CONCLUSION

From the presented results can be noted that the intensity of heat transfer grows as Rayleigh
number grows even if on one wall the non-uniform isothermal boundary condition is applied.
For small inclination angles (α<30°), when the position is almost horizontal, a distribution of
local Rayleigh numbers is notable non-uniform, since some closed flow cycles appear. In that
case the number of closed cycles grows as Rayleigh number raises. Although the average
Nusselt number is high, heat transfer is locally more non-uniformly distributed for Ra=5·106

than for Ra=105. For these small inclination angles, the difference of maximal and minimal
local Nusselt number is higher. Overall heat transfer from heated wall to the air is enhanced
since closed flow cycles shift thermal energy to the centre of domain.
When the higher inclination angles are used (α>30°), further angle increasing do not affect
significantly the distribution and intensity of heat transfer, regardless of Rayleigh number
value. In this case it can be concluded that the distribution and intensity of local Nusselt
numbers mainly depend on Rayleigh number regardless of inclination angle. Local Nusselt
numbers at Ra= 2,5·106 are two times higher than for Ra=105.
Regarding the fact that local and average Nusselt numbers do not significantly depend on
inclination angles higher then 30° it can be concluded that is not possible to reduce convective
heat losses by changing the inclination of conventional solar collector.

5. LIST OF SYMBOLS

a thermal diffusivity (m2/s)
c specific heat (J/kg k)
h height (m)
g acceleration of gravity  (m/s2)
gx, gy components of g in x and y dimension (m/s2)
L0 referent length (m)
Nu Nusselt number
nr vector perpendicular on boundary surface of control volume
P dimensionless pressure
p pressure (Pa)
Pr Prandtl number

iq specific internal heat source (J/m3)
Ra Rayleigh number
S surface (m2)
t time (s)
T temperature (K)

0T minimal temperature (K)
1T maximal temperature (K)
T∆ difference of maximal and minimal temperature 01 TTT −=∆  (K)
xu velocity component in x direction (m/s)
yu  velocity component in y direction (m/s)

xW dimensionless velocity component in x direction
yW dimensionless velocity component in y direction

0W referent velocity (m/s)
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X ,Y dimensionless coordinates
x,y coordinates (m)

β thermal expansion coefficient (K-1)
η dynamic viscosity (Pa s)
ϑ dimensionless temperature
ν kinematic viscosity (m2/s)
ρ density (kg/m3)
τ dimensionless time
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TOPLINSKI GUBICI SLOBODNOM KONVEKCIJOM U PLOČASTOM
SOLARNOM KOLEKTORU

Sažetak: U radu su numeričkim putem analizirani toplinski gubici uslijed slobodne konvekcije
u zatvorenom zračnom prostoru s izotermnim neravnomjernim rubnim uvjetom. Definiran je
matematički model temeljen na Oberbeckovom matematičkom modelu graničnog sloja. Model
opisuje dvodimenzijski nestacionarni problem prijelaza topline. Numeričkom metodom
konačnih volumena izračunata su polja karakterističnih termodinamičkih veličina kao što su
vektori brzina, funkcija toka i raspodjela temperatura. Razvijen je računalni program za
rješavanje nestacionarnog dvodimenzijskog prijelaza topline. Analiziran je utjecaj Rayleigh-
evog broja na pojavu različitih režima strujanja i prijelaza topline za različite kuteve nagiba
domene. Utjecaj različitih režima stujanja na prijelaz topline ispitan je preko lokalnih i
prosječnih Nusseltovih brojeva. Rezultati istraživanja primjenjeni su na predviđanje
toplinskih gubitaka uslijed slobodne konvekcije unutar aproksimiranog modela solarnog
kolektora za različite kuteve nagiba.

Ključne riječi: toplinski gubici uslijed slobodne konvekcije, solarni kolektor, metoda
konačnih volumena, toplinski gubici, Rayleigh-ov broj, lokalni i prosječni Nusselt-ov broj
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