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A sample of 737 healthy males, 19 to 27 years old, fairly representative for the Yugoslav population of this age and gender, was described over a set of 23 morphological characteristic selected so to assess factors of longitudinal and transversal dimensions of skeleton, muscular mass and fat tissue. An algorithm for a neural network for cluster analysis with coded name Triatlon was applied in order to detect the morphological types. The essence of the applied clustering algorithm is a taxonomic neural network based on adaptive multilayer perceptron as a core engine working on the basis of starting classification obtained by a rational method of fuzzy clustering of variables, and then of fuzzy clustering of objects described on fuzzy clusters of variables. Triatlon conclude that five clusters are necessary and sufficient for the taxonomic description of this data set, and that by only three hidden neurons can produce an acceptable classification of objects. After 15 iteration Triatlon produce an excellent fuzzy classification of variable, but initial fuzzy clustering of objects is obtained after 71 iteration. However, multilayer perceptron consider this classification as good, but not satisfactory, and start learning process in order to obtain a better classification. The final classification is obtained after 24 learning attempts. However, coefficient of efficacy of Triatlon in this case was only 0.920, markedly lower then in applications of this program in other taxonomic problems. In spite of complex position of types in the space of manifest morphological characteristics and not always clear pattern and structure of discriminant factors obtained types can be identified as follows:

(1) Typus asthenicus, defined by low development of skeleton, low muscular mass and low fat tissue;

(2) Typus sthenicus, defined by strong development of skeleton, high amount of muscular mass and above average fat tissue due to the high amount of fat cells;

(3) Typus gracilis, defined primarily by small measures of transversal dimensions of skeleton;

(4) Typus disharmonicus, defined by inconvergent development of morphological characteristics and low fat tissue;

(5) Typus leptomorphicus, defined by above average development of longitudinal dimensions of skeleton.
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1. INTRODUCTION


In a previous paper (Momirovi}, Ho{ek, Prot and Bosnar, 2002) a sample of 737 healthy males, 19 to 27 years old, was described, by a procedure which minimize error of measurement, by 23 anthropometric variables Morphological types were determined by neural network SIMTAX. The algorithm implemented in this network classify objects in the standardized image space by iterative application of Lebart's multilayer perceptron. Initial classification was obtained on the basis of position of objects on the envelope of hyperelipsoid defined by Orthoblique transformation of principal components of data matrix, also transformed to standardized image space. Dimensionality of latent, and in the same time taxonomic space was determined by number of spectral values greater then inflection point of their distribution. Three taxon were obtained, with classification efficacy of 0.991 in image and 0.986 in real space. First taxon, of 35% of examines, was identified as sthenomorphia, second taxon, of 29% of examines, as asthenomorphia, and third taxon, of 36% of examines, as picnomorphia. Obtained taxons were similar, but not identical, with taxons K, M and R obtained by a method of fuzzy clustering applied by A. Ho{ek (1978) on a set of 200 examines described by the same set of anthropometric measurements, but not to the taxons obtained by Zlobec (1975) by concurrent application of a simple fuzzy clustering method and to taxons obtained by Ward's method of hierarchical clustering and Friedman and Rubin method of local optimization.


The aim of this paper is to present results of an alternative attempt to solve the old and at yet unsolved problem of morphological types by an other taxonomic neural network who analyze objects in real space on the basis of results obtained by an initial fuzzy classification similar to classification methods applied in works of Zlobec (1975) and Ho{ek (1978). 

2. METHODS


A sample of 737 healthy males, 19 to 27 years old, fairly representative for the Yugoslav population of this age and gender, was described over a set of 23 morphological characteristic, defined by the following variables:

CODED NAME
VARIABLE

WEIGHT
Body mass

HEIGHT
Body height

LLENGTH
Leg length

BIACRO
Biacromial span

BICRIS
Bicristal span

TRISKIN
Triceps skinfold

SCAPSKIN
Subcapular skinfold

AXSKIN
Axilar skinfold

CRUPARM
Upper arm circumference

CRLWARM
Lower arm circumference

CRUPLG
Upper leg circumference

CRLWLG
Lower leg circumference

HANDLG
Hand length

HANDDM
Hand diameter

ABDSKIN
Abdominal skinfold

LWLSKIN
Lower leg skinfold

CHCIRC
Chest circumference

DIWRIST
Diameter of wrist

DIAEL
Diameter of elbow

DIAKNE
Diameter of knee

FOOTL
Foot length

FOOTDM
Diameter of foot

ARMLG
Arm length


An algorithm for a neural network for cluster analysis with coded name Triatlon was applied in order to detect the morphological types. The essence of the applied clustering algorithm is a taxonomic neural network based on adaptive multilayer perceptron as a core engine working on the basis of starting classification obtained by a rational method of fuzzy clustering of variables, and then of fuzzy clustering of objects described on fuzzy clusters of variables.

3. RESULTS


Triatlon conclude that five clusters are necessary and sufficient for the taxonomic description of this data set, and that by only three hidden neurons can produce an acceptable classification of objects. After 15 iteration Triatlon produce an excellent fuzzy classification of variable, but initial fuzzy clustering of objects is obtained after 71 iteration. However, multilayer perceptron consider this classification as good, but not satisfactory, and start learning process in order to obtain a better classification. The final classification is obtained after 24 learning attempts. The whole process is presented, in an abbreviated form, in the following tables.                

Table 1. Starting input to hidden layer axons


 f1
f2
f3

WEIGHT
.313
-.919
.230

HEIGHT
-.471
-.116
-.445

LLENGTH
-.021
.620
.579

BIACRO
-.250
-.147
-.031

BICRIS
.327
-.126
-.030

TRISKIN
.038
-.103
-.024

SCAPSKIN
.042
-.015
.219

AXSKIN
.092
-.197
-.001

CRUPARM
.040
-.341
-.084

CRLWARM
.201
-.036
.128

CRUPLG
-.600
-.145
.065

CRLWLG
-.058
-.181
.001

HANDLG
-.306
.284
.253

HANDDM
.322
.387
.318

ABDSKIN
-.070
.265
.152

LWLSKIN
.195
-.034
-.012

CHCIRC
-.074
-.236
-.183

DIWRIST
-1.054
-.049
.125

DIAEL
-.025
.004
.135

DIAKNE
1.053
.242
.025

FOOTL
.137
.319
.248

FOOTDM
.286
-.019
.156

ARMLG
.113
.199
.306

Table 2. Starting hidden layer to output axons


g1
g2
g3
g4
g5

f1
.449
.236
.172
-.817
-.214

f2
.331
-.544
.093
-.152
.750

f3
.201
.521
-.736
.006
.382

Table 3. Initial and classification in first iteration


g1
g2
g3
g4
g5

g1
54
15
10
0
25

g2
18
150
1
14
9

g3
12
2
159
26
15

g4
1
1
0
116
15

g5
6
0
0
12
76

Table 4. Number of objects and accordance of starting classifications


number
prognosis
accordance

g1
104
54
.519

g2
192
150
.781

g3
214
159
.743

g4
133
116
.872

g5
94
76
.809

Table 5. Final input to hidden layer axons


 g1
g2
g3

WEIGHT
.767
1.916
-.834

HEIGHT
.007
.785
.242

LLENGTH
-.118
-.958
-.097

BIACRO
.015
.062
-.543

BICRIS
.011
.898
.155

TRISKIN
.019
.631
-.057

SCAPSKIN
.316
-.936
-.635

AXSKIN
-.469
-.029
-.180

CRUPARM
-.024
-.098
-.347

CRLWARM
-.352
.258
.267

CRUPLG
.257
-.993
-.603

CRLWLG
-.112
.188
-.025

HANDLG
.070
.061
-.442

HANDDM
-.250
-1.110
.439

ABDSKIN
-.261
-.086
.924

LWLSKIN
.168
.178
-.038

CHCIRC
.074
-.474
.280

DIWRIST
.946
-.578
-.219

DIAEL
.192
.346
-.092

DIAKNE
-1.684
-.263
-.288

FOOTL
-.023
-.070
.207

FOOTDM
-.020
-.078
.245

ARMLG
-.064
-1.493
.341

Table 6. Final hidden layer to output axons


g1
g2
g3
g4
g5

g1
-.353
-.125
-.258
.876
-.159

g2
-.058
-.001
.698
.053
-.712

g3
.600
-.761
.128
.187
.091


Fisherian discriminant analysis in the whole variable space
, incorporated in program, gives the following identification structures:

Table 7. Centroids of final taxons


 g1
g2
g3
g4
g5

WEIGHT
-.692
.860
-.432
-.075
.070

HEIGHT
-.266
.390
-.386
-.147
.294

LLENGTH
-.169
.356
-.546
-.185
.457

BIACRO
-.641
.677
-.347
-.037
.115

BICRIS
-.120
.332
.159
-.248
-.208

TRISKIN
-.344
.889
-.075
-.566
-.124

SCAPSKIN
-.454
1.009
-.261
-.480
-.069

AXSKIN
-.245
.841
-.197
-.639
.046

CRUPARM
-.704
.913
-.215
-.193
-.090

CRLWARM
-.480
.733
-.207
-.315
.049

CRUPLG
-.781
.869
-.310
-.109
.036

CRLWLG
-.575
.701
-.196
-.137
-.022

HANDLG
-.389
.180
-.547
.056
.595

HANDDM
-.052
.099
-.632
-.174
.733

ABDSKIN
-.139
.247
-.225
-.039
.092

LWLSKIN
-.252
.537
.010
-.246
-.190

CHCIRC
-.571
.736
-.385
-.053
.047

DIWRIST
-.607
.172
-.868
.945
.254

DIAEL
-.436
.455
-.283
.081
.031

DIAKNE
.172
.753
.119
-1.557
.377

FOOTL
-.197
.301
-.496
-.122
.430

FOOTDM
.009
.105
-.346
.040
.188

ARMLG
-.046
.250
-.639
-.179
.570

Table 8. Discriminant coefficients


 g1
g2
g3
g4
g5

WEIGHT
-.450
.796
.711
.671
-1.908

HEIGHT
.050
-.214
.612
.087
-.499

LLENGTH
-.043
.040
-.589
-.183
.759

BIACRO
-.386
.381
.007
-.091
-.055

BICRIS
-.010
-.149
.679
.080
-.589

TRISKIN
-.099
.027
.444
.037
-.440

SCAPSKIN
-.295
.530
-.922
.126
.443

AXSKIN
.142
.246
.016
-.436
.012

CRUPARM
-.203
.262
-.101
-.092
.049

CRLWARM
.188
-.209
.366
-.255
-.038

CRUPLG
-.773
.202
-.555
.013
.914

CRLWLG
-.027
.008
.188
-.098
-.086

HANDLG
-.611
.138
.203
-.058
.160

HANDDM
.413
-.304
-.652
-.196
.873

ABDSKIN
.618
-.691
.151
-.064
.214

LWLSKIN
-.048
.035
.043
.155
-.193

CHCIRC
.185
-.213
-.326
.094
.339

DIWRIST
-.382
.078
-.712
.763
.202

DIAEL
-.132
.053
.172
.171
-.294

DIAKNE
.399
.408
.242
-1.549
.458

FOOTL
.128
-.160
-.010
.014
.080

FOOTDM
.320
-.087
-.138
.044
-.048

ARMLG
.530
-.121
-1.143
-.045
.931

Table 9. Structure of discriminant functions


 g1
g2
g3
g4
g5

WEIGHT
-.530
.641
-.310
-.041
.052

HEIGHT
-.203
.291
-.277
-.079
.218

LLENGTH
-.129
.265
-.392
-.100
.339

BIACRO
-.490
.505
-.249
-.020
.085

BICRIS
-.092
.247
.114
-.135
-.154

TRISKIN
-.263
.663
-.054
-.307
-.092

SCAPSKIN
-.348
.752
-.187
-.260
-.051

AXSKIN
-.188
.627
-.141
-.346
.034

CRUPARM
-.538
.681
-.154
-.104
-.067

CRLWARM
-.367
.546
-.149
-.171
.037

CRUPLG
-.598
.648
-.222
-.059
.027

CRLWLG
-.440
.523
-.141
-.074
-.016

HANDLG
-.298
.134
-.392
.030
.442

HANDDM
-.039
.074
-.453
-.094
.544

ABDSKIN
-.106
.184
-.162
-.021
.068

LWLSKIN
-.193
.401
.007
-.133
-.141

CHCIRC
-.437
.549
-.276
-.029
.035

DIWRIST
-.464
.128
-.623
.512
.189

DIAEL
-.333
.339
-.203
.044
.023

DIAKNE
.131
.562
.085
-.844
.280

FOOTL
-.150
.224
-.356
-.066
.319

FOOTDM
.007
.078
-.249
.022
.140

ARMLG
-.035
.187
-.458
-.097
.423

Table 10. Pattern of discriminant functions


 g1
g2
g3
g4
g5

WEIGHT
-.172
.484
-.279
-.044
-.065

HEIGHT
-.112
.192
-.163
-.072
.132

LLENGTH
.025
.236
-.307
-.067
.124

BIACRO
-.392
.249
-.051
-.067
.153

BICRIS
.097
.255
-.048
-.076
-.208

TRISKIN
.279
.700
-.366
-.164
-.395

SCAPSKIN
.339
.819
-.530
-.119
-.459

AXSKIN
.346
.696
-.436
-.184
-.340

CRUPARM
-.224
.484
-.149
-.097
-.095

CRLWARM
-.155
.388
-.124
-.138
-.011

CRUPLG
-.454
.340
-.033
-.102
.122

CRLWLG
-.262
.325
-.067
-.085
.010

HANDLG
-.713
-.248
.204
-.093
.713

HANDDM
-.230
-.071
-.100
-.109
.496

ABDSKIN
.098
.214
-.220
.004
-.087

LWLSKIN
.179
.437
-.222
-.058
-.314

CHCIRC
-.067
.457
-.302
-.020
-.120

DIWRIST
-.157
.109
-.456
.350
.018

DIAEL
-.134
.243
-.161
.018
-.027

DIAKNE
.115
.441
.031
-.589
.153

FOOTL
-.095
.142
-.200
-.062
.201

FOOTDM
.300
.229
-.382
.064
-.161

ARMLG
.141
.226
-.396
-.048
.121

Table 11. Correlations of discriminant functions


g1
g2
g3
g4
g5

g1
1.000
-.615
.221
-.411
.251

g2
-.615
1.000
-.106
-.354
-.094

g3
.221
-.106
1.000
-.308
-.693

g4
-.411
-.354
-.308
1.000
-.273

g5
.251
-.094
-.693
-.273
1.000

Table 12. Standardized discriminant coefficients


 g1
g2
g3
g4
g5

WEIGHT
-.344
.593
.510
.364
-1.417

HEIGHT
.038
-.160
.439
.047
-.371

LLENGTH
-.033
.030
-.423
-.099
.563

BIACRO
-.295
.284
.005
-.049
-.041

BICRIS
-.008
-.111
.487
.043
-.437

TRISKIN
-.076
.020
.319
.020
-.326

SCAPSKIN
-.226
.395
-.662
.069
.329

AXSKIN
.109
.183
.012
-.236
.009

CRUPARM
-.155
.196
-.072
-.050
.036

CRLWARM
.144
-.155
.263
-.138
-.028

CRUPLG
-.592
.150
-.399
.007
.678

CRLWLG
-.021
.006
.135
-.053
-.064

HANDLG
-.468
.103
.146
-.031
.118

HANDDM
.316
-.226
-.468
-.106
.648

ABDSKIN
.473
-.515
.108
-.035
.159

LWLSKIN
-.037
.026
.031
.084
-.143

CHCIRC
.142
-.159
-.234
.051
.252

DIWRIST
-.292
.058
-.511
.413
.150

DIAEL
-.101
.039
.123
.092
-.218

DIAKNE
.305
.304
.174
-.839
.340

FOOTL
.098
-.119
-.007
.007
.059

FOOTDM
.245
-.065
-.099
.024
-.036

ARMLG
.406
-.090
-.820
-.024
.691

Table 13.  Contingency matrix of Neural network and Fisherian classification


g1
g2
g3
g4
g5

g1
110
0
3
0
3

g2
0
162
4
0
5

g3
14
4
136
0
0

g4
1
4
0
137
2

g5
17
2
0
0
133


Therefore, classification of entities in morphological space is really a hard task for any clustering algorithm, as can be seen from the measure of efficacy of final classification obtained by Triatlon, a taxonomic neural network with almost perfect behavior in the classification of objects in other fields of anthropological space (Momirovi}, 2002).

Table 14. Number of objects and efficacy of final classification


number
prognosis
error

g1
116
110
6

g2
171
162
9

g3
154
136
18

g4
144
137
7

g5
152
133
19


Coefficient of efficacy of Triatlon in this case was only 0.920, markedly lower then in other applications of this program in biochemistry, physiology, psychology, sociology and criminology.


However, in spite of complex position of types in the space of manifest morphological characteristics and not always clear pattern and structure of discriminant factors obtained types can be identified as follows:

(1) Typus asthenicus, defined by low development of skeleton, low muscular mass and low fat tissue;

(2) Typus sthenicus, defined by strong development of skeleton, high amount of muscular mass and above average fat tissue due to the high amount of fat cells;

(3) Typus gracilis, defined primarily by small measures of transversal dimensions of skeleton;

(4) Typus disharmonicus, defined by inconvergent development of morphological characteristics and low fat tissue;

(5) Typus leptomorphicus, defined by above average development of longitudinal dimensions of skeleton.


Therefore, morphological types in real space are differnt of those obtained in image space by Momirovi}, Ho{ek, Prot and Bosnar (2002) but are similar, altough not identical, with taxons obtained by method of fuzzy clustering applied by A. Ho{ek (1978).

4. DISCUSSION


It seems, in any case, that manifes morphological space is not an ideal envinronment for the determination of morphological types. Some reasons for this apparently paradoxical statment is the true nature of anthropometric variables. Namely, most of them are partially included one to other to an udetermined manner, and most of them, altough manifestly different, have the same genetical origin. This results in very uncertain position of objects in the space of manifest morphological characteristics, partly because of latent degeneration of this space due to the near singularity of some of segments spanned by specific morphological vectors.
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� Some other taxonomic neural networks were also applied. Hopfield neural network Hoptax produces unsatisfactory clustering with coefficient of efficacy of only .882. A perfect coefficient of efficacy was obtained by neural network Dualtax, but with very difficult identification of taxons defined in principal component space. Similar results to these obtained by Triatlon were obtained by Intruder, a very simple neural network, but identification structures obtained by Triatlon are more informative then the structures obtained by Intruder due to the intermediary fuzzy clustering of both variables and subjects. Of course, both hierarchical methods and classic methods of local optimization produce quite unsatisfactory results; Ward method produces five clusters with coefficient of efficacy of only .822, and McQueen's method produces five clusters with a relatively good coefficient of efficacy (.917), but not clearly defined in morphological space.


� Identification structures in taxonomic algorithms must be, at least initially, defined in the whole space of variables because necessary inversion operations in intrataxon space can produce, in the case of perfect or almost perfect classification, very unstable results due to the possible weak conditionality of matrix of intrataxon dispersion.





