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Abstract: Ant colony optimization (ACO) is a well-known class of swarm intelligence algorithms
suitable for solving many NP-hard problems. An important component of such algorithms is a record
of pheromone trails that reflect colonies’ experiences with previously constructed solutions of the
problem instance that is being solved. By using pheromones, the algorithm builds a probabilistic
model that is exploited for constructing new and, hopefully, better solutions. Traditionally, there are
two different strategies for updating pheromone trails. The best-so-far strategy (global best) is rather
greedy and can cause a too-fast convergence of the algorithm toward some suboptimal solutions.
The other strategy is named iteration best and it promotes exploration and slower convergence,
which is sometimes too slow and lacks focus. To allow better adaptability of ant colony optimization
algorithms we use κ-best, max-κ-best, and 1/λ-best strategies that form the entire spectrum of
strategies between best-so-far and iteration best and go beyond. Selecting a suitable strategy depends
on the type of problem, parameters, heuristic information, and conditions in which the ACO is used.
In this research, we use two representative combinatorial NP-hard problems, the symmetric traveling
salesman problem (TSP) and the asymmetric traveling salesman problem (ATSP), for which very
effective heuristic information is widely known, to empirically analyze the influence of strategies on
the algorithmic performance. The experiments are carried out on 45 TSP and 47 ATSP instances by
using the MAX-MIN ant system variant of ACO with and without local optimizations, with each
problem instance repeated 101 times for 24 different pheromone reinforcement strategies. The results
show that, by using adjustable pheromone reinforcement strategies, the MMAS outperformed in a
large majority of cases the MMAS with classical strategies.

Keywords: ant colony optimization; pheromone update strategies; adjustment parameters; TSP;
ATSP; experimental evaluation; heatmaps

1. Introduction

Ant colony optimization (ACO) is a nature-inspired metaheuristic that has been used
as a design template for many successful algorithms. These algorithms are mostly used to
solve NP-hard combinatorial optimization problems, although ACO has also been used
for continuous and mixed-variable optimization problems [1–6]. ACO algorithms are
stochastic and cannot guarantee optimal solutions, but they are commonly applied to NP-
hard optimization problems because, for such problems, exact algorithms generally cannot
yield optimal solutions in a reasonable time. It is sometimes also possible to combine ACO
techniques like pheromone trails with Monte Carlo methods to maintain some advantages
from both procedures [7].

The key concept in ACO is the use of pheromone trails associated with solution
components to allow the colony of artificial ants to accumulate collective knowledge and
experience about the problem instance that they are trying to solve. These pheromone trails
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bias future attempts of artificial ants to construct better solutions. Being metaheuristic,
ACO only gives general recipes on how to devise an algorithm. For solving a specific type
of problem, it is necessary to devise a specific ACO algorithm, and success depends not
only on the nature of the problem but also greatly on how these recipes are applied. It
is important to enable good guidance in the search space by properly balancing between
exploration and exploitation. A too greedy algorithm might result in fast convergence
toward moderate or bad solutions, but too little greediness can result in slow convergence
or unguided roaming through search space with a very low probability of obtaining good
solutions. For some NP-hard problems, ACO can get substantial help from heuristic
information, but for other NP-hard problems such useful heuristic information is unknown
or maybe impossible. Heuristic information is very useful for problems where some kind
of optimal route is objective, such as the traveling salesman problem (TSP) [8], asymmetric
traveling salesman problem (ATSP) [8], sequential ordering problem (SOP) [9,10], various
vehicle routing problems (VRPs) [11,12], car renter salesman problem (CaRS) [13], etc. In
these cases, the searching process can be faster because of heuristic information, and thus,
the parameters and strategies used in ACO should be adjusted accordingly.

The standard methods for reinforcing pheromone trails in modern ACO variants have
diametrically opposite strategies, leaving a large gap between too much and too little
greediness. In this paper, we conduct experimental research on generalized reinforcement
strategies to gain better control over algorithmic behavior and, thus, achieve better per-
formance in ant colony optimization algorithms. The research questions that we tried to
answer were the following. Can adjustable pheromone reinforcement strategies improve
the algorithmic performance of ACO algorithms? How can κ-best and max-κ-best be gen-
eralized or extended to provide less greedy algorithmic behavior than with κ = 1, in the
case when this is desirable? How do different adjustable pheromone strategies influence
the behavior of ACO algorithms (with and without local optimization) for combinatorial
problems that have efficient heuristic information? For experiments performed to answer
these research questions, we have chosen well-known instances of TSP and ATSP. Initial
ideas for such strategies were presented at the conference [14], and here, we extend our
proposal and carry out a comprehensive experimental evaluation. The results show that,
by using adjustable reinforcement strategies, an ACO algorithm can obtain better solutions
and allow greater control over algorithmic behavior. The main contributions of this paper
are a novel 1/λ-best strategy and comprehensive experimental research that answered pre-
viously stated research questions and provided insight into what influence the adjustable
pheromone strategies have on the algorithmic behavior of ACO, thus expanding scientific
knowledge about ACO.

The remainder of this paper is structured as follows. After the relevant related work
is covered in Section 2, Section 3 explains combinatorial problems that are relevant to
this study and important to understand the MAX-MIN ant system explained in Section 4.
Section 5 explains the numerically adjustable strategies κ-best, max-κ-best, and 1/λ-best.
Section 6 gives details about experimental settings and procedures, while Section 7 presents
the results of the experiments. Finally, the discussion is given in Section 8.

2. Related Work

Improvements made by ant colony optimization variants are achieved by changing
either the solution construction procedure or the pheromone update procedure. In the
case of a solution construction procedure, almost all ACO algorithms use the random
proportional rule introduced by the ant system [15,16] or the more general variant, the
pseudo-random proportional rule, used by the ant colony system [17]. Many improvements
in ant colony optimization variants are based on changing the way the pheromone trails
are modified in the pheromone update procedure. These changes are more often concerned
with the way the pheromone trails are reinforced than with the way the pheromone trails
are evaporated.
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The initial variant of ACO, named the ant system [18], uses all solutions from the
current iteration in the pheromone reinforcement procedure. The components of better
solutions are proportionally reinforced with more pheromone value than the solutions
with worse quality. This type of strategy provides only little guidance to the subsequent
solution construction procedure in searching through the solution space. The pheromone
reinforcement strategy introduced by the ant system causes too much exploration and too
little exploitation of previous knowledge.

In an attempt to improve algorithmic behavior, an ACO variant named the elitist ant
system was proposed [16]. To make the algorithm greedier, in addition to pheromone
reinforcement of all solutions in the current iteration, the components of the best solution
found from the beginning of the algorithm (also called global-best solution) are reinforced
with a weight determined by the parameter e.

More selective in choosing solutions for pheromone reinforcement is the rank-based
ant system, which uses weights for pheromone reinforcement based on solution ranks and
reinforces only w solutions from the current iteration [19], where w is an integer parameter.

Modern variants of the ACO algorithms use only one solution, in some sense “the best”
solution, to reinforce pheromone trails. The ant colony system (ACS) uses the global-best
solution for pheromone reinforcement [16]. The MAX-MIN ant system (MMAS) uses the
iteration-best or global-best solution [8].

The most commonly used variant of ACO is probably the MMAS because of its
excellent performance on many combinatorial optimization problems. When a faster and
greedier variant is preferred, then ACS might be used instead of MMAS.

The best–worst ant system uses only the global-best solution to reinforce pheromone
trails but also decreases the pheromone trails associated with the components of the worst
solution in the current iteration that are not contained in the global-best solution [20,21].

Although the authors of BWAS claimed good performance, the BWAS algorithm did
not gain wide popularity.

Population-based ant colony optimization uses the iteration-best solution to reinforce
pheromone trails but also has a special mechanism to completely unmake the pheromone
reinforcement made in the previous iteration, which is especially suitable for dynamic
optimization problems [22,23].

There are also some studies about reinforcing pheromone trails that cannot be applied
in general cases and address only specific situations. In [24], Deng et al. proposed a
technique for situations when pheromone trails are associated with nodes instead of arcs of
the construction graph. The best-so-far strategy is used together with new rules (these new
rules are named r-best-node update rule and a relevant-node depositing rule; the first one
has a somewhat similar name to our κ-best strategy, although the actual methods are very
different) proposed by the authors specifically for this type of problem. Their approach
is applied to the shortest path problem, even though the path is not uniquely defined by
the set of nodes and, therefore, pheromone trails associated with arcs would seem a more
appropriate choice. Associating pheromone trails to nodes in the shortest path problem
might have some success only if a path has a small subset of all possible nodes.

Pheromone modification strategies are proposed for dynamic optimization problems [25,26].
These strategies are not related to pheromone reinforcement, but instead, they are about
reacting to the change in problem to avoid restarting the algorithm. The pheromone trails
are modified to recognize changes in the problem instance, which is applicable in cases
where changes are small or medium.

Rather complex rules for giving weights to additional pheromone values used in the
pheromone reinforcement procedure of ACS are proposed in [27]. The authors performed
an experimental evaluation of the proposed rules on three small instances of Euclidean TSP
and claim better results than those obtained by AS and standard ACS.

The pheromone update strategy that is based on the theory of learning automata,
where additional pheromone values for reinforcement procedure depend not only on
solution quality but also on current pheromone trails, is used in [28].
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Swarm intelligence approaches are successfully combined with machine learning,
forming together a novel research field that has provided some outstanding results in
different areas [29,30].

3. Combinatorial Optimization Problems Relevant to This Study

Ant colony optimization always uses pheromone trails and, for some problems, heuris-
tic information to guide the ant’s construction of a particular solution. For some problems,
useful heuristic information was not discovered. For example, in the case of the quadratic
assignment problem (QAP) one of the best-performing variants of the ACO algorithm,
the MAX-MIN ant system, does not use heuristic information. Other examples of NP-
hard problems for which successful ACO algorithms do not use heuristic information
are the shortest common supersequence problem (SCSP) [31] and the maximum clique
problem (MCP) [32].

For some problems, researchers discovered heuristic information that can significantly
guide and speed up the search process and, thus, improve the performance of ACO
algorithms. This includes the traveling salesman problem (TSP), asymmetric traveling
salesman problem (ATSP), sequential ordering problem (SOP), vehicle routing problem
with time window constraints (VRPTW) [33], car renter salesman problem (CaRS), and
many others. For example, by using heuristic information (with parameter β = 4) for
TSP problem instance pka379, one ant in ACO can increase the probability of obtaining a
particular optimal solution in the first iteration by an enormous 1.03 × 10719 times. Since
TSP with 379 nodes has 378!/2 = 3.28 × 10811 solutions, this probability is increased from
3.05 × 10−812 without heuristic information to 3.14 × 10−93 with heuristic information.
It is obvious that, when considering those probabilities, we never expect to obtain an
optimal solution in the first iteration of the algorithm, but heuristic information can help
tremendously in starting iterations of ACO algorithms [34].

We used TSP and ATSP for experimental investigation in this research as they are often
used for testing new techniques or strategies of the swarm and evolutionary computation
algorithms and have various interesting extensions like SOP, VRPTW, and CaRS.

The asymmetric traveling salesman problem can be defined using a weighted directed
graph with a set of vertices V and a set of arcs A. The objective is to visit all vertices
exactly once and return to the starting vertex while minimizing the total tour weight. All
the information needed to solve the problem can be stored in a matrix that specifies the
distance between vertices in each direction (e.g., because of one-way streets).

D =


d11 d12
d21 d22

· · · d1n
· · · d2n

...
...

dn1 dn2

. . .
...

· · · dnn


The symmetric variant of the problem, where dij = dji, is traditionally studied separately,

is denoted simply as TSP. The symmetric TSP is possibly one of the most researched NP-
hard problems with significant achievements for some special variants. After decades of
research for the metric variant of TSP and especially Euclidian TSP, there are specialized
heuristics that can efficiently solve rather large instances, often to an optimum. In metric
TSP, there is a constraint that, for any three nodes labeled as i, j, and k, the following triangle
inequality holds:

dij + djk ≤ dik (1)

In addition, for Euclidian TSP, it is true that for any two nodes i and j with coordinates
(xi, yi,), (xj, yj) the distance dij is given by:

dij =
√(

xi − xj
)2

+
(
yi − yj

)2. (2)
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In this context, metaheuristics usually use metric and Euclidean TSP instances for
testing new techniques and strategies and less commonly to produce the best performing
algorithm for such variants.

4. MAX-MIN Ant System for TSP and ATSP

It is important to note that ACO is a general metaheuristic that has different variants,
and among them, the important variants are the ant colony system (ACS) [9,17], MAX-MIN
ant system (MMAS) [8], and three bound ant system (TBAS) [35,36]. Since MMAS is very
successful and the most popular for these kinds of optimization problems, in this study, we
describe and use the MMAS variant. The general description of the MMAS metaheuristic is
given in Algorithm 1. In the initialization phase, the algorithm loads the problem instance
and parameter settings and creates and initials necessary variables and data structures such
as pheromone trails, solutions, etc.

Algorithm 1: A high-level description of MMAS.

INPUT: problem instance, parameter settings (including stopping
criteria and local optimization choice)

Initialize ();
FirstIteration = true;
While stopping criteria are not met do
For each ant k in the colony do

Sk = ConstructSolution();
If local optimization is enabled then

Sk = LocalOptimization (Sk);
EndIf
If fist ant in the colony then

Sb = Sk;
EndIf

EndFor
If FirstIteration is true then

Solution = Sb;
FirstIteration = false;

Else if Sb is better than Solution then
Solution = Sb;

EndIf
EvaporatePheromoneTrails();
ReinforcePheromoneTrails();

EndWhile
OUTPUT: Solution

Our implementation of MMAS for ATSP and TSP uses a common design and associates
each arc with distance dij to pheromone trail τij and organizes it in a matrix. After that, in the
while loop, the colony of ants constructs new solutions. If some kind of local optimization is
used, which is optional, then solutions are possibly improved according to the implemented
method. After that, pheromone trails are evaporated by using the equation:

τij = (1 − ρ) · τij, (3)

i.e., by multiplying each pheromone trail with 1 − ρ, where ρ is a parameter of the algorithm
that must be between 0 and 1. If the pheromone value drops below the lower limit τMIN,
then the pheromone trail is set to τMIN. After the pheromone trails are evaporated, the
trails associated with components of some kind of best solutions are reinforced in the
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ReinforcePheromoneTrails () procedure. These pheromone trails that are reinforced are
increased in MMAS for TSP and ATSP by using Equation (4):

τij = τij +
1

f (sb)
, (4)

where f (sb) is the cost of some kind of best solution, which is normally the best solution in
the current iteration or best solution so far (in all previous and current iteration). If the case
of TSP when pheromone trail τij is reinforced, then by symmetry is also set τji = τij.

5. Adjustable Pheromone Reinforcement Strategies

As explained in Section 4, after each iteration of the ACO algorithm, pheromone trails
are updated by using some kind of best solution. In historical ACO algorithms like the ant
system, all solutions from the current iteration were used to reinforce pheromone trails.
This kind of strategy did not get good performance and was suppressed by modern ACO
algorithms that use the iteration-best or global-best strategy. In the iteration-best strategy,
only the best solution is used for pheromone reinforcement, and in global best (also called
best-so-far), the best solution from the beginning of the algorithm is used. These two
strategies have very different levels of greediness (focus on exploitation), and the optimal
level would often be somewhere in between. In some cases, researchers try to alternate
these two strategies in different scheduling. For example, three times the iteration-best (ib),
then one time the global-best (gb) solution, and then repeat this in cycles. For this kind of
scheduling strategy, further on we use notations such as 3-1-ib-gb.

To allow the entire spectrum of strategies that are adjustable by a numerical parameter,
we have given our initial proposals κ-best strategies and max-κ-best strategies in a short
conference paper [14]. Parameter κ is an integer value between 1 and infinity, and the larger
the parameter κ is, accordingly, the greediness (exploitation) increases. Unfortunately, there
were some errors in the conducted experiment (bug in the program) that favored more
greedy strategies, and thus, the experimental results of that paper should be discarded.
Meanwhile, we have used these strategies in different situations to get better results for
MMAS and TBAS algorithms. We also noticed that the optimal value for parameter κ
was sometimes 1, so here, we propose another strategy whose greediness (exploitation)
is less than 1-best and max-1-best. This new strategy is called 1/λ-best and should be
less greedy with a larger λ value and, hence, less greedy with a smaller number 1/λ,
which extends the κ-best and max-κ-best strategies. All three strategies are defined in the
following subsections.

5.1. Reinforcement Strategy κ-Best

This strategy uses the best solution constructed in the last κ iterations, where the
parameter κ can be any number from the set of natural numbers {1, 2, 3, 4, 5, . . . } or infinity.
To implement this strategy, it is necessary to have a data structure that can store up to κ
solutions. In each new iteration, the iteration-best solution should be added to that data
structure. Before adding a new solution, it is necessary to check how many solutions are
already in the data structure. If the data structure already stored the maximum-allowed κ
solutions, then the oldest solution should be removed first. In addition, if the new solution
is better than all the solutions found in the given structure, all the older solutions can be
safely removed. A suitable data structure for storing solutions in such a way is a queue, as
shown in Figure 1. It allows adding the newest and removing the oldest element with O(1)
complexity and also finding the best solution in the queue with O(κ) complexity. Because
the time and space complexity of this strategy is linear with respect to parameter κ, very
big values of κ are not practical because they would have a negative effect on algorithmic
speed. However, we do not expect very different behavior from the algorithm that uses
the 100-best and 1000-best strategies because different handling of reinforcement solution
would happen only in the cases when the algorithm neither improved nor reconstructed
the solution found before 100 iterations. Taking into consideration the inner working of
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ACO algorithms, this is a rather unlikely event that should rarely happen, thus making
100-best and 1000-best very similar strategies. Special cases of κ-best are 1-best, which is
equivalent to the iteration-best strategy, and strategies with large values of κ that are larger
than the maximal number of allowed iterations for the algorithm. Those large κ strategies,
such as the ∞-best strategy, are equivalent to the global-best strategy since they use the
best solution from all previous iterations. Although strategies with very large κ values that
must be implemented with a queue are generally not efficient because of linear complexity,
those large enough to be equivalent to global best are efficiently implemented with O(1)
complexity by storing only one solution that is best so far.
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5.2. Reinforcement Strategy Max-κ-Best

In the max-κ-best strategy, the best solution that was found can be used in up to
κ iterations of the algorithm. Then, after κ iterations, if the algorithm fails to find a
better solution, it takes the best solution from the last iteration and uses it for pheromone
reinforcement. The data structure for this strategy is simple and consists of one solution
and one integer type of counter. At the beginning of the algorithm, in the initialization
phase, the counter variable should be set to 0. After each iteration, the best solution from
that iteration, ibSolution, enters the max-κ-best strategy, as shown in Figure 2. The same
as with the κ-best strategy, there are two special cases. The max-1-best is equivalent to the
iteration-best strategy, and for κ larger than the maximal number of iterations, this strategy
is equivalent to the global-best strategy.
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5.3. Reinforcement Strategy 1/λ-Best

This is the strategy that uses the λ solutions that are best from the last iteration of the
ACO algorithm. We chose to write it as a fraction 1/λ, so this way the larger the lambda
gets, the smaller the value of the fraction is, and this fits nicely as a complementary method
for κ-best. So in both strategies, a smaller number means less greedy (less exploitation),
and a large number means more greedy (more exploitation). The special case is where
λ = 1, and then the strategy becomes 1/1-best, which is equivalent to the κ-best strategy
1-best. The maximal value that λ could obtain is the number of solutions constructed in
one iteration (number of ants in the colony), which would correspond to the strategy used
in the ant system (AS).
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6. Experimental Settings

For experiments, we have implemented MMAS for TSP and ATSP both with and
without local optimization in C++. For TSP, implemented local optimization was the 2-opt
that always accepts the first improvement gained by 2-exchange. For ATSP, we used 2.5-opt
also with the first improvement. For all algorithms, the parameter α was set to 1; for
problem instances of size 100 or more, the favorite list size was set to 30, and an initial
value for the pheromone trail was set according to the following equation:

τ0 =
1

ρ · f(snn)
, (5)

where f(snn) is the cost of an approximate solution obtained by the nearest neighbor heuris-
tic, and the upper trail limit τMAX was set equal to τ0. For MMAS algorithms without local
optimization, the colony size m was set equal to the size of the problem n, β was set to 4,
and ρ was set to 0.02, while for MMAS algorithms with local optimization, the colony size
m was set equal to 25, β was set to 2, and ρ to 0.2. These parameters are recommended in
the literature for MMAS designed for TSP and ATSP [8,37].

For each problem instance, we tested 24 pheromone reinforcement strategies: 1/5-best,
1/4-best, 1/3-best, 1/2-best, 2-best, 4-best, 8-best, 16-best, 32-best, 64-best, 128-best, max-2-
best, max-4-best, max-8-best, max-16-best, max-32-best, max-64-best, max-128-best, 5-1-ib-
gb, 3-1-ib-gb, 2-1-ib-gb, 1-1-ib-gb, iteration-best = 1/1-best = 1-best = max-1-best, and global-
best = ∞-best = max-∞-best. Each experiment was allowed 10,000 iterations, and each
experiment was repeated 101 times. All together, 7.05 × 1011 solutions were constructed
by MMASs, not counting changes achieved by local optimization. The experiments were
conducted on computer cluster Isabella.

For TSP, we used well-known problem instances available in TSPLIB (TSPLIB collection
of TSP instances is publicly available at http://comopt.ifi.uni-heidelberg.de/software/
TSPLIB95/, accessed on 1 April 2023) and VLSI Data Sets (VLSI Data Sets collection of
TSP instances is publicly available at https://www.math.uwaterloo.ca/tsp/vlsi/, accessed
on 1 April 2023), and for ATSP instances from 8th DIMACS Implementation Challenges
(ATSP instances from 8th DIMACS Implementation Challenge are publicly available at
http://dimacs.rutgers.edu/archive/Challenges/TSP/atsp.html, accessed on 1 April 2023).
Their characteristics and stopping criteria for MMAS without local optimization and for
MMAS with 2-opt local optimization are listed in Tables 1 and 2.

Table 1. Information per problem instance in the case of MMAS for TSP without local optimization
and with 2-opt local optimization.

Problem
Instance Size Optimal

Solution
Iterations for

MMAS No LO
Iterations for

MMAS & 2-OPT

gr21 21 2707 100 100
bays29 29 2020 400 100
swiss42 42 1273 200 100

hk48 48 11,461 200 100
eil51 51 426 500 100

berlin52 52 7542 300 100
st70 70 675 800 100
eil76 76 538 500 100

kroA100 100 21,282 800 100
kroD100 100 21,294 1400 100

eil101 101 629 900 200
lin105 105 14,379 400 100
pr124 124 59,030 800 100
xqf131 131 564 4500 2900
pr144 144 58,537 8700 100
ch150 150 6528 900 100

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
https://www.math.uwaterloo.ca/tsp/vlsi/
http://dimacs.rutgers.edu/archive/Challenges/TSP/atsp.html
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Table 1. Cont.

Problem
Instance Size Optimal

Solution
Iterations for

MMAS No LO
Iterations for

MMAS & 2-OPT

kroB150 150 26,130 2500 200
si175 175 21,407 4700 1800

brg180 180 1950 200 100
rat195 195 2323 700 2300
d198 198 15,780 7500 8900

kroA200 200 29,368 1500 400
ts225 225 126,643 1900 200
gil262 262 2378 7300 1400
pr264 264 49,135 9700 200
lin318 318 42,029 9000 1500

pma343 343 1368 3000 1300
bcl380 380 1621 2500 400
rd400 400 15,281 8600 9300
fl417 417 11,861 9800 6500

pbm436 436 1443 3500 1400
pcb442 442 50,778 9600 6900
si535 535 48,450 9100 9300
pa561 561 2763 8400 4900
u574 574 36,905 9800 9100
d657 657 48,912 9400 9800

xql662 662 2513 5300 3900
rbx711 711 3115 9600 7600
u724 724 41,910 9700 7300

rat783 783 8806 9700 8600
dkg813 813 3199 9400 4000
lim963 963 2789 7200 9600
pr1002 1002 259,045 9600 9300
u1060 1060 224,094 8000 9800

vm1084 1084 239,297 9600 10,000

Table 2. Information per problem instance in the case of MMAS for ATSP without local optimization
and with 2.5-opt local optimization.

Problem
Instance Size Optimal

Solution
Iterations for

MMAS No LO
Iterations for

MMAS & 2.5-OPT

atex1 16 1812 100 100
br17 17 39 100 100
atex3 32 2952 100 100
ftv33 34 1286 200 100
ftv35 36 1473 1400 300
ftv38 39 1530 1100 900
p43 43 5620 2000 100

ftv44 45 1613 500 200
atex4 48 3218 400 100
ftv47 48 1776 1100 200
ry48p 48 14,422 8600 200
ft53 53 6905 7400 2400

ftv55 56 1608 1900 100
ftv64 65 1839 400 200
ft70 70 38,673 7500 9700

ftv70 71 1950 4400 300
atex5 72 5269 1000 6900
ftv90 91 1579 900 800

kro124p 100 36,230 9800 5900
ftv100 101 1788 5500 500
td100.1 101 268,636 5500 7200
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Table 2. Cont.

Problem
Instance Size Optimal

Solution
Iterations for

MMAS No LO
Iterations for

MMAS & 2.5-OPT

ftv110 111 1958 500 700
dc112 112 11,109 1900 7900
ftv120 121 2166 9800 6600
dc126 126 123,235 5900 8600
ftv130 131 2307 400 2300
dc134 134 5612 1500 4300
ftv140 141 2420 3100 9700
ftv150 151 2611 500 5000
ftv160 161 2683 900 6700
ftv170 171 2755 4000 2400
dc176 176 8587 3200 3600
dc188 188 10,225 1300 4500

code198 198 4541 100 100
code253 253 106,957 1200 100
td316.10 317 691,502 9500 9300
rbg323 323 1326 7600 5500
rbg358 358 1163 9000 5500
rbg403 403 2465 5400 8100
rbg443 443 2720 7400 6000
dc563 563 25,951 9900 6700
atex8 600 39,982 9100 8800

big702 702 79,081 9200 9900
dc849 849 37,476 9500 9700
dc895 895 107,699 9800 5700
dc932 932 479,900 9500 8300

td1000.20 1001 1,242,183 8800 7800

7. Results

The results of experiments are analyzed by using medians as a suitable measure of
average algorithmic performance [38,39]. It is worth noting that for a single execution of
the MMAS algorithm, which is stochastic by nature, there is at least a 50% probability of
obtaining a solution that is as good as the median solution or even better than that. By
multiple running of the MMAS algorithm, whether sequentially or in parallel, it is possible
to arbitrarily increase this probability of getting a solution at least as good as the median
solution. For five executions, the probability becomes 96.88%, which is rather high, or by
10 executions with a very high probability of 99.9% [39].

Although for each experiment the stopping criteria were limited to 10,000 iterations, in
the case of the MMAS algorithm with some smaller problem instances, this was obviously
unnecessarily too many iterations. With some strategies, the MMAS found optimal solutions
within much fewer iterations in all 101 repetitions, while with other strategies, this was
achieved after many more iterations. Therefore, after collecting results, we determined for
each problem instance the number of iterations after which we performed analyses of the
results using the following method. We tracked the best median solution from 10,000 iterations
backward until we reached the iteration at which this median solution (out of 101 samples)
was reached by at least one of 24 strategies. This iteration was rounded up to the nearest
hundred, after which we analyzed the obtained solution quality. So, for example, when
MMAS without local optimization was used for gr21, then after 100 iterations the analysis was
performed, but in the case of u574, the analysis was performed only after 9800 iterations, as
presented in Table 1. The same method was used for ATSP, and the iterations after which the
analyses were performed are listed in Table 2, along with other data about problem instances.

The median values out of 101 samples were calculated for each strategy and problem
instance after the selected number of iterations, as presented in Tables 1 and 2. The median
results achieved by four MMAS algorithms are presented in Figures 3–6. These figures
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contain a combination of graphical and tabular forms. For each problem instance (first
column), the size is given in the second column. The third column has a percentage
deviation from the optimum for the median solution achieved by the best strategy, and
the fourth column has a percentage deviation from the optimum for the median solution
achieved by the worst strategy for that problem instance. These min. and max. deviation
[%] values are calculated according to the following method. For each problem instance,
we found the best and worst strategies according to their median solutions. Those median
solutions, Mbest and Mworst, were divided by the optimal solution, then the resulting
quotient was subtracted by 1, and the final result was multiplied by 100. For example,
in the case of MMAS without local optimization for TSP instance fl417, the algorithm
with the 4-best strategy had the median solution of 12,055, and for the algorithm with the
1/5-strategy, the median solution was 12,972. Since the optimal solution is 11,861, the min.
median deviation is 1.64%, and the max. median deviation is 9.37%, as shown in Figure 3.
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Figure 4. Median results of MMAS with 2-opt local optimization for TSP.

For each problem instance, the best strategy was colored yellow, the worst strategy
red, and all the other strategies with shades of colors in between. The best strategy is also
marked with the symbol “O” and the worst with the symbol “X”. Strategies that were the
best within their own category are marked by the symbol “◦”. In some cases, there is more
than one best strategy, e.g., MMAS without local optimization achieves a median solution
equal to the optimum for gr21 for all strategies, as shown in Figure 3.

Since κ-best and max-κ-best are intended to be adjustable and extended with the
1/λ-best strategy, we also performed statistical analyses of combined strategies based
on counting.

In addition, if, for some reason, it is not possible to adjust the appropriate strategy
before the algorithm is used for solving some problem instance in practice, one possible
approach would be to choose the strategy with the lowest average rank, as used in the
Friedman test. Therefore, we also calculated the average rank for each strategy and
performed the Friedman test and a post hoc procedure [40]. The null hypothesis of the
Friedman test is that there is no difference in performance of MMAS algorithm for tested
pheromone reinforcement strategies. If the P-value is lower than the significance level α,
which is usually set to 0.05, then the null hypothesis is rejected. When the null hypothesis is
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rejected, this means that the difference in results for some strategies is not due to statistical
error. However, this does not mean that each strategy provided a statistically significant
difference in comparison to every other strategy. To statistically compare the strategy with
the best average rank with every other strategy, pairwise comparisons can be performed in
a post hoc procedure, for which we used Holm’s and Hochberg’s procedures [40].
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7.1. Results of the MAX-MIN Ant System without Local Optimization for TSP

Results of MMAS without local optimization, presented in Figure 3, show that choos-
ing an appropriate strategy can make a significant difference in the performance of the
algorithm. For some problem instances, the algorithm with the most suitable strategy was
able to obtain a median solution equal to the optimum, while the most unsuitable strategy
has a median solution that is a few percent worse than the optimum. This is, e.g., the case
with hk48, lin105, brg180, ts225, and some others. There are also some cases where the
most successful strategies have a median solution less than 1% worse than optimum, but
unsuccessful strategies have a median solution more than 10% worse than optimum, such
as in the cases of eil101, kroA200, lin318, pma343, pbm436, and some others. Thus, using
an appropriate strategy is very important.

By looking at colors, it is obvious that most red-colored strategies are of the 1/λ-best
type, while most “X” marks are on the 1/5-best strategy. There is also a certain similarity
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between the coloring of κ-best and max-κ-best and to some degree also to ib-gb scheduling.
This shows that for some problem instances, the algorithm has similar behavior with respect
to a similar level of gridlines.

To create an entire spectrum of adjustable strategies, we have proposed κ-best, max-κ-
best, and 1/λ-best strategies. In that respect, it is important to evaluate their capabilities
in contrast to classical iteration-best and global-best strategies and occasionally use ib-
gb scheduling. By counting exclusive wins, it is noticeable that iteration best has 5 out
of 45 (11%) exclusive wins, global best has 0, strategy 1/λ-best for λ = {5, 4, 3, 2} has
4 (9%), strategy κ-best for κ = {2, 4, 8, 16, 32, 64, 128} has 10 (22%), strategy max-κ-best for
κ = {2, 4, 8, 16, 32, 64, 128} has 3 (7%), and ib-bg scheduling for combinations {5-1, 3-1, 2-1,
1-1} has 12 (27%) of exclusive wins.

When combined in some logical way so it could be adjusted by parametric number
or schedule, the results of total wins (not exclusive wins) are summarized in Table 3. Any
adjustable choice would be better than simply using ib or gb strategies, but 1/λ-best and
κ-best seem most promising, followed by ib-gb scheduling with included ib and gb, and
finally by 1/λ-best and max-κ-best.

Table 3. The Number of Wins for Combined Strategies in the Case of MMAS for TSP without
Local Optimization.

Combined Strategies Number of Wins Percentage of Wins

ib and gb 13 28.9%
1/λ-best and κ-best 30 66.7%

1/λ-best and max-κ-best 22 48.9%
ib-gb scheduling including ib and gb 27 60.0%

If for some reason, strategy is not adjusted to a particular problem instance, and
normally it should be, then the best average rank strategy might be used; in this case, this
is 3-1-ib-gb, followed by 5-1-ib-gb, 2-best, 4-best, max-2-best, max-4-best, etc., with average
ranks 6.8222, 6.9444, 7.0556, 7.0778, 7.5889, and 7.7111, respectively. The worst average
rank, 23.2889, was achieved by 1/5-best. Friedman statistic Q (distributed according to chi-
square with 23 degrees of freedom) is 537.807778, which corresponds to p-value 4.67·10−99,
while Iman and Davenport statistic T (distributed according to F-distribution with 23 and
1012 degrees of freedom) is 47.594353, which corresponds to p-value 1.9·10−143, so both
p-values are much lower than the usual significance level 0.05. This means that differences
in results obtained by different strategies are statistically significant.

In the post hoc analysis, we used Holm’s and Hochberg’s procedures to pairwise
compare the strategy that has the best average rank (3-1-ib-gb) with all the other strategies.
Both post hoc procedures, with an overall significance level of 0.05, could not reject the null
hypotheses for 5-1-ib-gb, 2-best, 4-best, max-2-best, max-4-best, 2-1-ib-gb, 8-best, 1-best,
1-1-ib-gb, and max-8-best, but they rejected the null hypotheses for all other strategies.

7.2. Results of the MAX-MIN Ant System with 2-opt Local Optimization for TSP

Figure 4 contains the results observed by the MMAS with 2-opt local optimization
that accepts the first improvement. These results show that using an appropriate strategy
is important because with the most successful strategy, the algorithm achieved for almost
all instances a median solution that is less than 1% distant from the optimum, but for an
inappropriate strategy, this can be more than 10%. As was the case with MMAS for TSP
without local optimization, most of the red area is within the 1/λ-strategy. There are also
similarities between κ-best, max-κ-best, and ib-gb-scheduling, which might be interpreted
as similar behavior of the algorithm for similar levels of a strategy’s greediness. In this
case, it can be observed that for larger problem instances, the less greedy strategies cause
poor performance.

When considering the number of exclusive wins by some strategies, 1/λ-best and
iteration best have zero exclusive wins. The global best has only one exclusive win. The
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most exclusive wins have κ-best, 16 out of 45 (36%), followed by ib-gb scheduling, 6 out of
45 (13%), and max-κ-best, 5 out of 45 (11%).

In the case of combined strategies, as shown in Table 4, it is obvious that adjustable
strategies can improve the algorithmic performance in comparison with the classical ap-
proach of using only iteration best and global best. In this case, the most successful strategy
was κ-best, followed by ib-gb scheduling and max-κ-best.

Table 4. The Number of Wins for Combined Strategies in the Case of MMAS for TSP with 2-opt
Local Optimization.

Combined Strategies Number of Wins Percentage of Wins

ib and gb 16 35.6%
1/λ-best and κ-best 34 75.6%

κ-best 34 75.6%
1/λ-best and max-κ-best 22 48.9%

max-κ-best 22 48.9%
ib-gb scheduling including ib and gb 24 53.3%

If the strategy is not adjusted to a problem instance (adjusting is highly recommended),
then the 8-best strategy might be used as a strategy that achieved the best average rank in
this group of experiments. After the 8-best strategy (average rank = 8.4), the descending
order follows max-4-best, max-8-best, 1-1-ib-gb, 4-best, 32-best, etc., with average ranks of
8.7, 8.9444, 9.1333, 9.3333, and 9.5333, respectively. The worst average rank, 22.3889, was
achieved by 1/5-best. Friedman statistic Q is 377.231778, which corresponds to p-value
8.47·10−66, while Iman and Davenport statistic T is 25.234114, which corresponds to p-value
1.5·10−83, so both p-values are much lower than the usual significance level of 0.05.

In the post hoc analysis, Holm’s and Hochberg’s procedures compared with equal
decisions: the 8-best strategy against all the other strategies. The null hypotheses could
not be rejected for max-4-best, max-8-best, 1-1-ib-gb, 4-best, 32-best, 64-best, global best,
128-best, max-64-best, max-16-best, max-32-best, 16-best, max-128-best, 2-1-ib-gb, 3-1-ib-gb,
or 2-best but was rejected for all other strategies.

7.3. Results of the MAX-MIN Ant System without Local Optimization for ATSP

The results of MMAS for ATSP are presented in Figure 5. With the most successful
strategies, the algorithm for some instances achieved a median solution that is optimal, but
for other instances, it was up to 42.6% worse than optimal. For some instances, choosing
the appropriate strategy is more important with respect to distance from optimum, while
for others, it is not that important. For most instances, the worst strategy was 1/λ-best, and
generally, there is a similarity between κ-best, max-κ-best, and ib-gb scheduling strategies
with respect to level of greediness and algorithmic performance.

When exclusive wins are counted, 1/λ-best with λ = {5, 4, 3, 2} has 13 out of 47 (28%),
iteration best has 5 (11%), κ-best with κ = {2, 4, 8, 16, 32, 64, 128} has 8 (17%), max-κ-best
also has 8 (17%), ib-gb scheduling has 6 (13%), and global best has 0 exclusive wins.

All dc* problem instances (dc112, dc126, . . . , dc932) have a similar pattern, where
for 1/2-best and iteration best, the algorithm gave the best performance (only for d849,
this is 8-best or max-8-best), and greedier k-best or max-k-best strategies have rather
bad performance.

When counting all wins, as shown in Table 5, the largest number of wins has a
combination of 1/λ-best and κ-best and a combination of 1/λ-best and max-κ-best, both
70.2%, followed by ib-gb scheduling, which includes ib and gb and has 38.3% wins.

When the strategies are not adjusted for a particular problem instance, the strategy
with the best average rank, in this case 5-1-ib-gb, might be used. The strategies with the
best ranks are 5-1-ib-gb (7.6489), 2-best (7.8085), 3-1-ib-gb (8.1596), max-2-best (8.6277),
4-best (8.9255), 2-1-ib-gb (9.0319), etc. The worst average rank, 21.0957, has the 1/5-best
strategy. Friedman statistic Q = 334.488085, which corresponds with p-value = 4.62·10−57,
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while Iman and Davenport statistic T, distributed according to F-distribution with 23 and
1058 degrees of freedom, is 20.611127, which corresponds with p-value = 1.52·10−69, both
much lower than 0.05.

Table 5. The Number of Wins for Combined Strategies in the Case of MMAS for ATSP without
Local Optimization.

Combined Strategies Number of Wins Percentage of Wins

ib and gb 9 19.1%
1/λ-best and κ-best 33 70.2%

1/λ-best and max-κ-best 33 70.2%
ib-gb scheduling including ib and gb 18 38.3%

In Holm’s and Hochberg’s post hoc procedures with 5-1-ib-gb against others, the null
hypotheses could not be rejected against 2-best, 3-1-ib-gb, max-2-best, 4-best, 2-1-ib-gb,
1-best, 8-best, max-4-best, max-8-best, 1/2-best, or 1-1-ib-gb, but it was rejected for all
other strategies.

7.4. Results of the MAX-MIN Ant System with 2.5-opt Local Optimization for ATSP

The results for ATSP obtained by MMAS with 2.5-opt local optimization are presented
in Figure 6. For almost all but a few problem instances, with a suitable strategy, the
algorithm obtained median solutions less than 1% within optimum and often completely
equal to optimum. In the case when reinforcement strategy was not adequately matched
with the characteristics of the problem instance, for some instances the median solutions
were more than 10% worse than optimum. The distribution of red color is more complex
and not so dominantly reserved for the 1/λ-strategy as with other tested algorithms. There
are also obvious similarities between κ-best, max-κ-best, and ib-gb scheduling with respect
to the level of greediness and corresponding algorithmic performance.

When it comes to exclusive wins, 1/λ-best with λ = {5, 4, 3, 2} has 11 out of 47 (23%), itera-
tion best has 0, κ-best has 10 (21%), max-κ-best has 3 (6%), both with κ = {2, 4, 8, 16, 32, 64, 128},
ib-gb scheduling has 16 (34%), and global best has 0.

Table 6 presents summarized results for combinations that cover a wider range of
numerically controlled strategies. The best in terms of all wins was combination 1/λ-best
and κ-best, followed by ib-gb scheduling with included ib and gb, and 1/λ-best and max-κ-
best. So, any of these combinations allowed better performance through adjustability than
only using iteration-best and global-best strategies.

Table 6. The Number of Wins for Combined Strategies in the Case of MMAS for ATSP with 2.5-opt
Local Optimization.

Combined Strategies Number of Wins Percentage of Wins

ib and gb 5 10.6%
1/λ-best and κ-best 28 59.6%

1/λ-best and max-κ-best 20 42.6%
ib-gb scheduling including ib and gb 23 48.9%

In the cases of some instances, the lower level of greediness is preferred, but in others,
it is the opposite. There are also some cases where only 1/5-best and 1/4-best strategies
allow the best performance of the algorithm.

The strategies with the best average ranks are 3-1-ib-gb (8.4468), 5-1-ib-gb (8.7766),
2-1-ib-gb (8.8191), 1-1-ib-gb (9.734), 4-best (10.1489), max-2-best (10.4149), etc. The worst
average rank, 18.5426, has the 1/5-best strategy. Friedman statistic Q = 148.90383, which
corresponds with p-value = 2.04 × 10−20, while Iman and Davenport statistic T, distributed
according to F-distribution with 23 and 1058 degrees of freedom, is 7.348572, which corre-
sponds with p-value = 3.45 × 10−22, both much lower than 0.05.
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Holm’s post hoc procedure, as well as Hochberg’s procedure with the 3-1-ib-gb against
others, could not reject the null hypotheses for 5-1-ib-gb, 2-1-ib-gb, 1-1-ib-gb, 4-best, max-2-
best, 2-best, 8-best, 1-best, 16-best, max-4-best, max-8-best, or 1/2-best, but it was rejected
for all other strategies.

8. Discussion

A large number of experiments were carried out in this research to allow the analysis
of the behavior of ant colony optimization algorithms (MMASs with and without local
optimization) with respect to different pheromone trail reinforcement strategies that can be
adjusted with numerical parameters. The experiments confirmed that, by using numeri-
cally adjustable strategies, it is possible to significantly improve algorithmic performance.
Although some regularities between different strategies were observed, they are not so
clear and simple as to would allow the recommending of some predefined parameters and
strategy that would be the best for all problem instances and all variants of the algorithms.
There is also a similarity between κ-best, max-κ-best, and ib-gb scheduling, so it is possible
to fine tune an algorithm by using only one of these strategies, although in some cases
κ-best and max-κ-best should be extended with 1/λ-best to one compound numerically
controlled strategy with a lower level of greediness.

In our previous studies, we had some limited experiences with new adjustable strate-
gies that helped us, in some cases, achieve the state-of-the-art results. However, there were
no comprehensive analyses that would allow us to estimate the potential of adjustable
strategies as a tool for improving ACO algorithms. The introduction of 1/λ-best was
motivated by our observation that in the case of the quadratic assignment problem, which
does not use heuristic information and, thus, has much higher exploration at the start,
often strategies with low greediness provide the best results. Because of this, we wanted
to further extend numerically adjustable strategies in a way that they could be even less
greedy than iteration best. To our surprise, this research showed that 1/λ-best can have
some success even with TSP, which, however, has very efficient heuristic information. For
MMAS without local optimization, 1/λ-best had some occasions of great success in contrast
to a classically used global-best strategy that had 0 exclusive wins, but in most cases, global
best is safer for scenarios where there is limited parameter tuning. The 1/λ-best is recom-
mended only in combination, preferably with 1/λ-best or alternatively with max-κ-best.
The 1/λ-best was shown to be rather important for ATSP with and even more without local
optimization. Only in the case of TSP, for which the MMAS with good local optimization
(2-opt) allows faster coverage toward very good solutions, implementing the 1/λ-best
strategy seems completely unnecessary.

Judging by the results of these experiments, it seems that the higher level of greediness
is better for TSP with larger problem instances, especially when local optimization is used,
but for ATSP, the level of desirable greediness seems to be more connected to a group
of problem instances, presuming with similar structure, than it was with the size of the
problem. So, in the case of problems with good heuristic information, it might be helpful
to implement 1/λ-best and k-best strategies and try κ-best first. If lower values for κ give
better results, then smaller λ parameters might also be worth trying.

When considering the good potential of numerically adjustable strategies, it could be
worth trying them all for problems that are related to TSP and ATSP and have efficient
heuristic information like SOP, VRPs, CaRS, CaRSP, etc.

It is a highly advisable to adjust the pheromone reinforcement strategy to a particular
problem instance that should be solved, but if, for some reason, this is not possible, then the
strategy with the best average rank with similar problem instance and working conditions
might be used. We used Friedman test with Holm’s and Hochberg’s procedures to test the
statistical significance of differences among achieved average ranks.

In our future research, in addition to trying out adjustable strategies for some of the
aforementioned problems, we plan to carry out a comprehensive study with ACO for a
combinatorial problem that does not have useful heuristic information and presumably
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might find a strategy with a low level of greediness a good fit for overall balancing between
exploration and exploitation.
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