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Abstract. The Maximum a Posteriori Ambiguity Search (MAPAS) method for GPS (Global Positioning System)
ambiguity resolution first introduced by Macabiau, is generalized to accommodate: (1) satellite switches caused
by satellites rising or falling below the horizon or obstructing terrain, and (2) cycle slips due to temporary loss of
lock on satellite signals. It is shown that MAPAS and generalized MAPAS are equivalent to Bayesian estimation.
The generalized MAPAS method is successfully applied to real GPS satellite data with cycle slips and satellite
switches due to satellite obstruction.
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1. Introduction

The Global Positioning System (GPS) is a system of satellites in space used to identify
unknown positions on land, sea, air, or in space.

The position of the satellites is known at all times. Each satellite sends out signals contin-
uously, and both the signals and their transmission times are precisely controlled by atomic
clocks.

The current GPS system comprises twenty-five satellites at heights of 20200 km above
the earth. The number of satellites a receiver can see or detect is variable, but occasionally it
may be up to twelve. In order to identify its position by interferometric methods the receiver
produces a reference carrier and beats this carrier against the received signals to extract carrier
phase shifts. These phase shifts may be used to obtain millimeter-level relative positioning and
precise orientation in space.

GPS has been used by astronomers to achieve earth orientation accuracies of 5·6×10−8 de-
grees. These accuracies are within a factor of four of those achieved by the most precise very
long baseline interferometry (VLBI) methods using quasars (e.g., 1·4×10−8 degrees which is
smaller than the angle a postage stamp in San Francisco subtends as viewed from New York).

GPS receiver measurements have also been used to perform global ionospheric and tro-
pospheric tomography of the atmospheric index of refraction. The mathematical model can be
reduced to finding unknown integers called the integer ambiguities. Once these numbers are
found, the receiver can determine precise relative positions and orientations in space as long
as it maintains carrier lock to the satellites.

There are many methods to resolve the integer ambiguities, but each has its limitations, see
[1–10], [11, Chapter 15], [12], [13, Chapter 8], and references therein. The integer ambiguity
resolution methods divide into two classes, namely, those that provide confidence levels for
their integer ambiguity estimates and those that do not. Our method, the MAPAS method from
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[8] and [14], and the particle nonlinear filtering method developed in [1–4] provide confidence
levels for their estimates. Older methods such as the venerable LAMBDA method do not. In
future GPS applications provably convergent ambiguity resolution methods with confidence
bounds will be required. This is an area of current research.

In this article we investigate a method for resolving integer ambiguities to a given sta-
tistical confidence level in a minimum amount of time. We also address the satellite loss of
lock, or cycle-slip problem, on integer ambiguity resolution. The contributions of our gen-
eralized MAPAS method described in this paper are the mathematically rigorous method of
accommodating cycle slips as well as appearances and disappearances of satellite signals.

In Section 2, we develop a linearized mathematical model of Interferometric GPS. In
Section 3, we state the problem of estimating the baseline vector and then reformulate it to
the problem of resolving integer ambiguities. In Section 4 the problem of resolving integer
ambiguities is reduced to a lower dimensional problem. Our generalized MAPAS method
of resolving this smaller number of ambiguities is described. The enhanced features of our
method are described in comparison to the MAPAS method. The results of applying this
method to real data are discussed in Section 5. In Section 6 we give comparisons with methods
developed in [1–4] and we state some open problems in the area of interferometric GPS
estimation.

In the conclusion, in Section 7 we describe our contribution, comparing it to other works
and indicate what future work would be of interest in addition to the open problems from
Section 6.

2. Mathematical model for interferometric GPS

As in [13, Chapter 8] and [5] we introduce notation where subscripts refer to receivers and
superscripts refer to satellites. A quantity ∗ from receiver r to satellite j is denoted by ∗jr .

A difference of a quantity ∗ between receivers r1 and r2 and the satellite j is denoted by

∗jr1,r2 := ∗jr2 − ∗jr1,
which is the so-called single difference.

The difference of the quantity ∗ between receivers r1 and r2 and satellites j and k is defined
as the difference between the single differences ∗kr1,r2 and ∗jr1,r2 i.e.

∗j,kr1,r2 := ∗kr1,r2 − ∗jr1,r2 = ∗kr2 − ∗kr1 − ∗jr2 + ∗jr1 .
Let c be the speed of light in vacuum, zr1 and zr2 positions in the Earth Centered Earth

Fixed (ECEF) coordinate frame of the two receiver antennas r1 and r2, respectively, sl posi-
tion of the GPS satellite in the ECEF coordinate frame indexed by l ∈ {1, 2, . . . , 25}, Ksl ,
l ∈ {1, 2, . . . , 25} the unit vector in the ECEF coordinate frame from zr1 to sl , d distance
in meters from zr1 to zr2 , and τ lm travel time of the GPS signal’s wavefront from the satellite
l ∈ {1, 2, . . . , 25} to the antenna m ∈ {r1, r2}.

Then

τ lr2,r1 = τ lr1 − τ lr2 (1)

is the travel time delay between the plane wave arrival from the satellite l at antenna positions
zr2 and zr1, respectively. This is shown in Figure 1.

If we denote by vT the transpose of the vector v, then we have
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Figure 1. GPS signal wavefront from satellite sl hitting receiver r2 and approaching receiver r1.

cτ lr2,r1 = (
zr2 − zr1

)T
Ksl , (2)

for l ∈ {1, . . . , 25}, i.e. the distance from receiver r1 to the wavefront of the signal of satellite
l, when that wavefront is already at the receiver r2, is the scalar product of the vector from r1
to r2 and the unit vector from the receiver r1 to the satellite sl .

Here we assume that the unit vectors from the receiver r1 to the satellite sl and the receiver
r2 to the satellite sl are parallel, since the distance between the receivers under consideration
is relatively small with respect to their distance to the satellites.

From [15, Chapter 13] we have that the GPS signal from satellite l to antenna r1 at the
location zr1 , for t ≥ T0, is

Re

[
Ax̃sl

(
t + tsl − τ lr1

)
e

2π i(fc+f ld)
(
t+t

sl
−τ lr1

)]
,

where x̃sl is the complex envelope of the GPS signal transmitted by the l’th GPS satellite, tsl
is the satellite clock offset from GPS system time, A is the amplitude factor that accounts for
transmission loss and satellite and receiver antenna patterns, fc is the carrier frequency, and
f ld is the Doppler shift, f lr1 = fc + f ld is the Doppler-shifted frequency at zr1 , and T0 is the
initial epoch when measurement begins. The receiver at zr1 produces a reference carrier

Re
[
e2π if0(t+t0)] ,

where t0 is the oscillator clock offset from GPS system time of the receiver r1 and f0 is
the reference frequency produced by this receiver. The receiver beats this carrier against the
received signal.

We assume that the reference carrier frequency produced at receiver r1 is equal to the
satellite carrier frequency f0 = fc, and we neglect the Doppler shift f ld relative to the size of
the carrier f lr1 = fc + f ld ≈ fc; see [15, Chapter 13].

With these assumptions the beat phase produced at the receiver r1 at time t ≥ T0 can be
represented as

−2πfcτ
l
r1
(t)+ 2πfc(tsl − t0).

When a receiver is switched on at the epoch T0, it measures the instantaneous fractional beat
phase where the integer part representing the number of cycles between the satellite sl and the
receiver r1 is unknown.

Denoting that integer by Nlr1 and introducing measurement noise νlr1(t), t ≥ T0 which is
normally distributed with mean zero and variance σ 2 and independent for different indexes r1,
l, and t , we have the measurement equation
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φlr1(t) := fcτ lr1(t)+ fc(tr1 − tsl )−Nlr1 + νlr1(t), t ≥ T0. (3)

The left-hand side of (3) is the so-called integral plus fractional part of the Integrated Carrier
Phase (ICP).

From (1) and (3), for t ≥ T0, we have the so-called first differences

φlr1,r2(t) = φlr2(t)− φlr1(t) = −fcτ lr2,r1(t)+ fc(tr2 − tr1)−Nlr1,r2 + νlr1,r2(t). (4)

By considering (4) for l = l1 and l = l2, where l1 �= l2, i.e. the two equations for two
different satellites l1 and l2, we have for t ≥ T0 the so called double differences

φl1,l2r1,r2
(t) = φl2r1,r2(t)− φl1r1,r2(t) = −fc

(
τ l2r2,r1 − τ l1r2,r1

)−Nl1,l2r1,r2
+ νl1,l2r1,r2

(t). (5)

The purpose of taking first differences is to cancel satellite clock offsets tsl1 and tsl2 and the
second differences to cancel the receiver clock offsets tr1 and tr2 . Both satellite and receiver
clock offset errors are with respect to true GPS system time.

A model where the Doppler shift is not assumed negligible relative to the carrier and
possible consequences of such modelling is considered in [5].

The travel time from satellite l to antenna m can be written as

τ lm = d(m, l)

c
+ T lm + I lm + βlm,

where d(m, l) is the distance from antenna m to satellite l; T lm is the tropospheric delay, I lm is
the ionospheric delay and βlm is multipath and other error source delays. For short baselines
the signal from the l’th satellite to each receiver in the baseline travels approximately through
the same region of the atmosphere. Therefore, the tropospheric and ionospheric delays along
the paths are approximately equal, i.e. T lr1 ≈ T lr2 and I lr1 ≈ I lr2 , respectively, and approximately
cancel when double differences are taken.

Multipath-induced errors at the different receivers are not the same and they do not can-
cel in the double differences. The residual errors after double differencing due to multipath
and atmospheric path differences are absorbed into the measurement noise-term νl1,l2r1,r2

(t) in
Equation (6).

As the baseline lengths increase, the path differences through the atmosphere increases and
νl1,l2r1,r2

(t) increases. The double-differenced integer ambiguity Nl1,l2r1,r2
in Equation (6) assumes

an integer value which must be estimated by statistical estimation. When the noise νl1,l2r1,r2
(t) in

Equation (6) reaches a level that no longer allows us to estimate the correct integer Nl1,l2r1,r2
, we

must model atmospheric effects and subtract them from νl1,l2r1,r2
(t).

From the relation fcλc = c, where λc = 19·029367 cm is the GPS wavelength, and from
Equations (5) and (2), we have for t ≥ T0

φl1,l2r1,r2
(t) = λ−1

c

(
Ksl2 (t)−Ksl1 (t)

)T (
zr2(t)− zr1(t)

)−Nl1,l2r1,r2
+ νl1,l2r1,r2

(t), (6)

where we note that the receivers r1 and r2 could be moving in time.
Equation (6) is valid for smaller baselines. In the case of long baseline, i.e. longer than

20 km, it was noted in [8] that atmospheric effects should be considered. For baselines larger
than a few meters and smaller than 20 km we can use pseudoranges to find an approximate
estimate of the position of the receiver r2, z̃r2 which can be displaced from zr2 by up to a few
meters. Then we have for t ≥ T0

τ lr2,r1(t) = τ lr̃2,r1(t)+ τ lr2,r̃2(t), (7)
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where

τ l
r̃2,r1
(t) = τ lr1(t)− τ lr̃2(t),

τ l
r2,r̃2
(t) = τ l

r̃2
(t)− τ lr2(t).

τ l
r̃2
(t) is the travel time from the satellite l to the approximated position z̃r2 of the receiver r2.
Suppose that we know the position of the receiver r1 (or its approximation) which, together

with approximation z̃r2, allow us to calculate τ lr1(t) and τ l
r̃2,r1
(t), t ≥ T0.

Substituting (7) in (5) we obtain

φ̃l1,l2r1,r2
(t) = λ−1

c

(
K̃sl2 (t)− K̃sl1 (t)

)T (
zr2(t)− zr1(t)

)−Nl1,l2r1,r2
+ νl1,l2r1,r2

(t), (8)

where

φ̃l1,l2r1,r2
(t) := φl1,l2r1,r2

(t)+ fc
(
τ
l1
r̃2,r1
(t)− τ l2r̃2,r1(t)

)
(9)

and K̃sl (t) is the unit vector from the estimated position z̃r2 of receiver r2 to the satellite l. If the
second term on the right-hand side of (9) is known from the noisy measurements, we have to
alter the noise term in (8) (the third term on the right-hand side in (8)). In other words, we have
to replace νl1,l2r1,r2

(t) with ν̃l1,l2r1,r2
(t) which depends on νl1,l2r1,r2

(t) and the noise of the measurements
from which we get τ l

r̃2,r1
(t), t ≥ T0. Similar considerations for long baselines are given in [8].

Atmospheric refraction effects have to be considered in interferometric GPS modelling for
satellites which have very low elevation with respect to the receivers, i.e. usually less than
seven degrees. The standard deviation of νl1,l2r1,r2

(t) increases significantly for low elevation
satellites.

Observe that the unknown baseline zr2(t) − zr1(t), t ≥ T0 enters linearly into observation
Equation (6) and implicitly into Equation (8) as part of the scalar product which makes its
estimation simpler and less time consuming. Although the model (6) is simple, it has achieved
millimeter level relative positioning accuracies and microradian attitude accuracies over short
baselines.

3. Statement of the interferometric GPS integer ambiguity estimation problem

We start our measurements of the ICP at epoch T0. The measurements or observations are
taken at equidistant time steps, i.e. we have discrete measurements of the ICP’s at t0 =
T0, t1, t2, . . . , where ti+1 − ti =  t , for i = 0, 1, 2, . . . .

One of the satellites is chosen as a reference satellite for the purpose of forming double
differences (5) and this choice is assumed at least for some time during the integer ambiguity
resolution procedure. Here we will consider Equation (6). Let us consider that the baseline
vector is just several meters long. The equivalent approach to the one considered in this paper
to the problem of finding the baseline vector zr2(t) − zr1(t), t ≥ T0 when it is longer than
several meters and smaller than 20 km is to use Equation (8) instead of Equation (6).

Let pk ∈ Nt be the number of satellite signals which we are receiving at the time instant
tk, k = 0, 1, 2, . . . . Then, from (6) with lk1 selected as a reference satellite, and t = tk, k =
0, 1, 2, . . . , we have the system of equations

φ
lk1 ,l

k
j

r1,r2(tk) = λ−1
c

(
K
s
lk
j
(tk)−K

s
lk1
(tk)

)T (
zr2(tk)− zr1(tk)

)
(10)
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−Nl
k
1 ,l
k
j

r1,r2 + νl
k
1 ,l
k
j

r1,r2(tk), j = 2, . . . , pk, k = 0, 1, . . . .

Let for j = 1, . . . , pk − 1 and k = 0, 1, . . . , yjk := φ
lk1 ,l

k

j+1
r1,r2 (tk), a

j

k := λ−1
c

(
K
s
lk
j+1
(tk)

−K
s
lk1
(tk)

)
, Njk := N

lk1 ,l
k
j+1

r1,r2 , νjk := −νl
k
1 ,l
k
j+1

r1,r2 (tk), and xk := zr2(tk) − zr1(tk). Then, from
Equation (10), and simple manipulation, for j = 1, . . . , pk − 1, k = 0, 1, . . . , we have(

a
j

k

)T
xk = yjk +Njk + νjk . (11)

As long as there is carrier lock on the satellite’s signals, the integer ambiguities in Equa-
tions (5), (6), (8), (10), and (11) are constant. When a temporary loss of signal lock is expe-
rienced, the phase measurements related to the particular satellite can not be performed. The
integer ambiguities in Equations (10) and (11) are indexed by time to account for cycle slips
and changes in the order and choice of the satellite signals. Once the signal is re-acquired the
initial integer ambiguity related to the measurement has a different value.

System (11) can be represented in the matrix form

Akxk = yk + Nk + νk, k = 0, 1, 2, . . . , (12)

where

Ak :=




(
a1
k

)T
(
a2
k

)T
...(

a
pk−1
k

)T



,

yk :=
(
y1
k , y

2
k , . . . , y

pk−1
k

)T
, Nk :=

(
N1
k , . . . , N

pk−1
k

)T
,

and νk :=
(
ν1
k , ν

2
k , . . . , ν

pk−1
k

)T
.

For each j = 1, . . . , pk − 1, integer ambiguities Njk are constant between the cycle slips
and between appearances and disappearances of the signals from the satellites lk1 and lkj , j =
2, . . . , pk, i.e. during uninterrupted signal reception.

We state the problem as follows:
For every n = 0, 1, 2, . . . the problem is to estimate xn from the noisy measurement sequence
yk and the almost exact sequence Ak , k = 0, 1, . . . , n. At time tk we have pk signals from
satellites indexed by lk1 , . . . , l

k
pk

∈ {1, 2, . . . , 25}. Let lk1 be the reference satellite, lk2 , l
k
3 , l

k
4

set of primary satellites, and the rest of the satellites lk5 , . . . , l
k
pk

are the so-called secondary
satellites. We divide Equation (12) into two equations for k = 0, 1, 2, . . .

Akpxk = yk,p +Nk,p + νk,p (13)

and

Aksxk = yk,s +Nk,s + νk,s, (14)
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where

Akp :=



(
a1
k

)T
(
a2
k

)T
(
a3
k

)T


 Akp :=




(
a4
k

)T
...(

a
pk−1
k

)T


 ,

yk,p := (
y1
k , y

2
k , y

3
k

)T
Nk,p := (

N1
k , N

2
k , N

3
k

)T
,

νk,p := (
ν1
k , ν

2
k , ν

3
k

)T
yk,s :=

(
y4
k , . . . , y

pk−1
k

)T
,

Nk,s :=
(
N4
k , . . . , N

pk−1
k

)T
, and νk,s :=

(
ν4
k , . . . ν

pk−1
k

)T
.

We chose the reference satellite and the set of primary satellites such that the 3 × 3 matrix
Akp is invertible for all k = 0, 1, 2, . . . . Since no four satellites lie in a plane, this is always
possible. If the matrix Akp is close to singular, applying an inverse of Akp to both sides of
Equation (13) can cause large errors in estimating xk. Here we assume that the right-hand side
of (13) is only known approximatively. The size of the relative error in xk is determined by
the condition number of Akp.

By choosing an appropriate reference satellite and set of primary satellites, and taking the
inverse of Akp on both sides of Equation (13) we get an expression for xk which we substitute
in Equation (14) to obtain

Aks
(
Akp
)−1 (

yk,p +Nk,p + νk,p
) = yk,s +Nk,s + νk,s. (15)

Let αk := Aks
(
Akp
)−1
yk,p − yk,s and ηk := νk,s − Aks

(
Akp
)−1
νk,p, k = 0, 1, 2, . . . . Then

from (15) and after simple manipulations, for k = 0, 1, 2, . . . , we have

αk = Nk,s − Aks
(
Akp
)−1
Nk,p + ηk. (16)

The covariance matrix of the noise term in (16), ηk , is calculated in the Appendix.
Since αk is only the transformation of the measurements yk,p and yk,s the problem of

estimating xk by using Equation (12) was transformed into the problem of estimating integer
ambiguities Nk,s and Nk,p using Equation (16). The idea is that the noise νk is relatively small,
so that estimating xk from (13) or (12) will yield a satisfactory answer.

4. The generalized MAPAS method

Since the number of integer ambiguities Nk ∈ N
pk−1 could be quite large in applications and

is definitely larger than the number of integer ambiguities Nk,p ∈ N
3, the generalized MAPAS

method is introduced which reduces the problem of finding Nk to the problem of finding Nk,p.
This reduces the computational cost of estimating xk , k = 0, 1, . . . .

For each k = 0, 1, 2, . . . , let γ jk be integer index such that t
γ
j
k

is epoch when the most

recent cycle slip with the respect to epoch tk of satellite lkj occurs for j = 1, . . . , pk . If there
were no cycle slips before or at the time tk, then t

γ
j
k

is the time when the signal from the



142 T. C. Poling and A. Zatezalo

satellite lkj was first acquired which could have started at the beginning of the observation

process at epoch T0 or later. We note that γ jk ≤ k for j = 1, . . . , pk, k = 0, 1, . . . .
The motivation for the definitions below will become clear after inequality (19). For every

j = 1, . . . , pk − 4 and N ∈ N
3 let

Ñ
j

0,s(N) := αj0 +
(
A0
s

(
A0
p

)−1
N
)
j
,

Ñ
j

k,s(N) :=
(
pk−1−4∑
m=1

(
k − σm+4

k−1

)
Ñmk−1,s(N)Ilk−1

m+4=lkj+4
+ αjk

+
(
Aks
(
Akp
)−1
N
)
j

)
/
(
k − σ j+4

k + 1
)
,

N̂
j

k,s(N) :=
[
Ñ
j

k,s(N)
]
,

where σ jk := max{γ 1
k , γ

2
k , γ

3
k , γ

4
k , γ

j

k }, αjk and
(
Aks
(
Akp
)−1
N
)
j

are the j th coordinates of αk

and Aks
(
Akp
)−1
N , respectively; [∗] is the closest integer to the quantity ∗, i.e. the so-called

round operator, and Ilk−1
m+4=lkj+4

is equal to one if lk−1
m+4 = lkj+4 and zero otherwise.

If lkj+4 = lij+4, for i = σ jk , . . . , k − 1, j = 1, . . . , pk − 4, we have

N̂
j

k,s(N) =

 1

k − σ j+4
k + 1

k∑
i=σ j+4

k

(
α
j

i +
(
Ajs
(
Aip
)−1
N
)
j

) . (17)

By setting N = Nk,p into (17) and by (16), for j = 1, . . . , pk − 4, we get

N̂
j

k,s

(
Nk,p

) =

Njk,s + 1

k − σ j+4
k + 1

k∑
i=σ j+4

k

η
j

i


 . (18)

If for some j ∈ {1, . . . , pk − 4} and k ∈ {0, 1, 2, . . . } we have∣∣∣∣∣∣
1

k − σ j+4
k + 1

k∑
i=σ j+4

k

η
j

i

∣∣∣∣∣∣ <
1

2
, (19)

then by (18) we have N̂jk,s
(
Nk,p

) = Njk,s .
Since the expected values of ηk’s are zero and the covariance matrices are uniformly

bounded (through choice of satellites), as a consequence of Bernstein’s theorem, see [16,
pp. 24], the inequality (19) will occur for large enough k. This is under the assumption that
the cycle slips do not occur until inequality (19) is satisfied and the received signals arrive
continuously from the same satellites. This is the motivation for the definition of N̂jk,s(N), for
N ∈ N

3.
Let for N ∈ N

3 and k = 0, 1, 2, . . . ,

βk(N) := N̂k,s(N)− Aks
(
Akp
)−1
N,
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where N̂k,s(N) =
(
N̂1
k,s , . . . , N̂

pk−4
k,s

)T
.

The quantities βk(N), k = 0, 1, 2, . . . are the so-called predicted measurements for given
N ∈ N

3. The so-called prediction error is then defined for N ∈ N
3 and k = 1, 2, . . . , by

δk(N) := αk − βk(N).
In [8], under the assumption Nn,p = Np , for n = 0, 1, . . . , the following conditional

probability density is given

P
(
N = Np|δ1(N), . . . , δn(N)

)
(20)

= f
(
δ1(N), . . . , δn(N)|N = Nn,p

)
P
(
N = Np

)
∑
M∈N f

(
δ1(M), . . . , δn(M)|M = Nn,p

)
P
(
M = Np

) ,
for N ∈ N , where N ⊂ N

3 is the given set of integer ambiguities chosen such that Np ∈ N ,

f
(
δ1(N), . . . , δn(N)|N = Nn,p

) =
n∏
i=1

f
(
δi(N)|N = Np

)
,

f
(
δk(N)|N = Np

) := 1

(2π)
pk−4

2 (det-k)
1
2

e−
δk (N)

T -−1
k
δk (N)

2 ,

and -k is the covariance matrix of noise term ηk in (16).
The assumption that Nn,p = Np for all n, is justified in [8] by assuming that during integer

ambiguity resolution the satellite signals in use are free of cycle slips and when the cycle
slips occur the integer ambiguity resolution restarts. It also means that signals from the same
satellites are used all the time.

Here we formulate a generalized approach where appearance of new satellite signals, dis-
appearance of existing satellite signals, and cycle slips can be taken into consideration and
appropriately modelled.

If for some k ∈ {1, 2, . . . } (19) is true, then from (16) we have

αk = N̂k,s(Nk,p)− Aks
(
Akp
)−1
Nk,p + ηk. (21)

Then under the same assumption, from (21) we have that the conditional probability of αk
given Nk,p = N is

p
(
α|Nk,p = N) = 1

(2π)
pk−4

2 (det-k)
1
2

e− (α−βk (N))T -−1
k
(α−βk(N))

2 , (22)

and, if we further assume Nk,p = N for k = 0, 1, 2, . . . , we have

p
(
αk|Nk,p = N) = f (δk(N)|N = Np

)
. (23)

Let Yn be a complete sigma algebra generated by the sequence of observations α0, α1, . . . , αn.
Then we recursively calculate the conditional probability density of N = Nn,p, for N ∈ Nn,
n = 1, 2, . . . , by using Bayes rule. We obtain

P
(
N = Nn,p|Yn

) = p
(
αn|Nn,p = N)P (N = Nn,p|Yn−1

)
∑
M∈Nn

p
(
αn|Nn,p = M)P (M = Nn,p|Yn−1

) , (24)
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P
(
N = N0,p|Y0

) = 1

|N0| , N ∈ N0, (25)

where in general |N | is the number of elements in a set N and Nk is the set of integer
ambiguities chosen at time step t = tk.

The set Nk has fewer elements with every k, since we discard all N ∈ Nn−1 when the
conditional probabilities P

(
N = Nn−1,p|Yn−1

)
are smaller than the prescribed threshold Pmin.

Instead of choosing a uniform probability distribution function for the initialization (25)
of the recursive procedure (24), we can use any other, if possible, more suitable initial dis-
tribution. This, of course, could very much depend on the particular interferometric GPS
application.

The question is, how to get P
(
N = Nn−1,p|Yn−1

)
, N ∈ Nn−1 from P

(
N = Nn,p|Yn−1

)
,

N ∈ Nn in recursive procedure (24). We proceed as follows:
If no cycle slips are detected at t = tn and the set of primary satellites and the reference
satellite is the same as for t = tn−1, and since Nn ⊂ Nn−1, we take for N ∈ Nn

P
(
N = Nn,p|Yn−1

) = P (N = Nn−1,p|Yn−1
)
.

Otherwise, if the cycle slip occurs on the signal from one of the primary satellites or the
reference satellite at t = tn, then the integer ambiguity estimation can be restarted by using
pseudoranges utilizing knowledge about the dynamics of xk, k = 0, 1, 2, . . . , together with
the probability distribution of xn−1 obtained from the previous measurements. The same can
be done if we have to choose a different reference satellite signal and/or a different primary
satellite signal.

In the stationary case, when x = xk for k = 0, 1, 2, . . . , the situation is better. At t = tn−1,
for N ∈ Nn−1, we have already assigned probability P

(
N = Nn−1,p|Yn−1

)
, n = 1, 2, . . . , to

an estimate of x defined for n = 1, 2, . . . , by

x̂(N) := 1

n− σ̃n−1

n−1∑
j=σ̃n−1

(
Ajp
)−1 (

yj,p + N) ,
where σ̃n−1 = max{γ 1

n−1, γ
2
n−1, γ

3
n−1, γ

4
n−1}.

Therefore we can define

Nn = {
M ∈ N

3 : M = [
Anpx̂(N)− yn,p

]
, N ∈ Nn−1

}
,

and to eachM ∈ Nn we assign the same probability as for x̂(N) ifM = [
Anpx̂(N)− yn,p

]
.

If we have the same initial condition and the assumptions under which (20) is valid, the
left-hand sides of (20) and (24) are equal, i.e. the procedure defined by (24) is a generalization
of (20). To see this, we divide the numerator and denominator on the right-hand side in (20)
by
∑
M̃∈N f

(
δ1(M̃), . . . , δn−1(M̃)|M̃ = Np

)
P
(
M̃ = Np

)
and from Equation (23) we get

P
(
N = Np|δ1(N), . . . , δn(N)

)

= p(αk|Np = N)P (N = Np|δ1(N), . . . , δn−1(N)
)

∑
M∈N p(αk|Np = M)P (M = Np|δ1(M), . . . , δn−1(M)

) ,
which by induction implies the equality.
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The M-ary Sequential Probability Ratio Test (MSPRT) developed in [17] and [18], was
applied to the integer-ambiguity resolution procedure in [8] and [14]. It is used for choosing
the stopping criteria given the error of choosing the false-integer ambiguity. This property,
along with the reduction in computational costs, makes the generalized MAPAS method very
attractive for applications.

5. Real-data example

The real data we use here for estimating integer ambiguities in interferometric GPS are ob-
tained from twelve channel L1 frequency Marconi GPS receivers used in the IMA Summer
Program for Graduate Students, July 22-31, 1998; see [5].

The epochs (measurements) are separated approximately by one second. We used mea-
surements from the beginning of the data set. The satellites are indexed by integers from 1 to
32. The measurements are taken only from satellites with elevation angles above 7 degrees.
For further discussion on the satellite geometry see problem (2) in the next section, [8], [5],
and references therein. The algorithm is written in Matlab.

We start with satellites indexed by 6, 16, 17, 23, 26, and 28. At epoch 234 the signal from
the new satellite indexed by 21 appeared and at epoch 264 the signal from the same satellite
disappeared. We did not go beyond epoch 503, since all of our cases could be resolved by that
epoch.

We chose satellite 17 as a reference satellite and satellites 6, 16, and 23 as the primary
satellites. We have cycle slips on the signals of the secondary satellites at epochs 8, 14,
131, and 477. One cycle slip appears during the integer-ambiguity resolution on the reference
satellite and that is at epoch 488. The cycle slips on the primary satellites appear at epochs
210, 223, 241, 266, 285, and 387.

For initialization we chose the uniform distribution in a 3D ball with radius d̃ and the center
at the receiver r1. This can be considered as a simulation of integer-ambiguity resolution when
the baseline is more than several meters long. In that case we would have an estimate of the
position of the receiver r2 which here we can consider to be the position of the receiver r1 i.e.
zr1 ≈ z̃r2. We choose radius d̃ such that it is larger than the length of the true baseline, which
is 0·73 meters.

In [14] P0 := 1
1+D ≈ 1 − D, for small D, where D is the decision parameter, and P0

is the threshold for stopping the integer ambiguity procedure, i.e. when for some k ∈ N the
probability of some N ∈ Nk is larger than P0, the integer ambiguity procedure is stopped
with decision Nkp = N . For such k ∈ N, TS := tk is called the stopping time. The total error
probability ε is given by

ε = 1 −
∑
M∈N

P
(
Np = M) P̃ (Np = M|M) ,

where P̃
(
Np = N |M) is the probability that N ∈ N is accepted, assuming M is the correct

ambiguity. In [14] it is shown that

ε ≤ D

1 +D ≈ D,
for small D. Therefore, if the desired error probability is ε, then for small ε > 0 we chose
P0 = 1 − ε which is also the so-called confidence level, i.e. the probability of resolving the
true-integer ambiguity.
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Table 1. MAPAS for different d̃

d̃ in (m) ASN S0 TS

1 24 209 t372

2 116 1701 t485

3 315 5709 t503

4 642 13539 t503

5 1111 26455 t503

6 1723 45650 t503

7 2483 72464 t503

8 3394 108205 t503

9 4456 154101 t503

10 5658 211374 t503

11 6999 281313 t503

The covariance matrices -k of ηk, k = 1, 2, . . . in the measurement equation (21) are
given in the Appendix with σ = 0·05 meters. In [1], Equation (10), the covariance matrix of
the carrier phase measurement, is altered by adding the term 1

n2 I , where I is the unit matrix of
an appropriate dimension. Changing the covariance matrix in [1] is justified by the Simulated
Annealing technique. The decrease of temperature in Simulated Annealing is compared in [1]
to the decrease of the additional uncertainty added to the data as time grows.

We use the same idea. We add to the covariance matrix -k, k = 1, 2, . . . of the noise ηk in
Equation (16) the quantity  

k
Ipk−4,  > 0 i.e.

-̂n := -n +  

n
Ipn−4, n = 1, 2, . . . . (26)

By transformation (26) we decrease the average number of samples since thresholds P0 and
Pmin can then be taken significantly smaller and larger, respectively. For example, to resolve
the ambiguity correctly for  = 0, Pmin and P0 have to be 10−25 and 1 − 10−15, respectively,
and for = 40, they can be 10−6 and 1−10−6, respectively. For smaller ambiguity sets these
values could be chosen even more suitably. This observation could mean that further studies
of the noise with possible self-tuning estimators of its variances and means could significantly
improve the performance of the method.

It is interesting to note that the number of epochs needed to resolve the integer ambiguities
does not decrease for  > 0. Indeed, in our example, fewer epochs are needed to come to the
final decision, even though the probability of the true integer ambiguity is larger for  > 0
during the estimation process. Therefore, the stopping time is not improved by the altering
covariance matrix -k, k = 1, 2, . . . by (26) but during the integer ambiguity procedure
estimate of the integer-ambiguity is better, i.e. the highest probability is more often assigned
to the true integer ambiguity.

There are several important parameters which influence performance of the method in
practice. These are the thresholds P0 and Pmin, the data uncertainty parameter and the initial
probability distribution.
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Figure 2. Conditional probability distributions of the integer ambiguities at two different epoch.

The parameters which indicate performance of the method are the Average Sample Number

(ASN) defined for n such that tn = TS by ASN :=
∑n
i=0 |Ni |
n+1 , the initial number of integer

ambiguities S0 which in our case directly depends on d̃, and the stopping time TS .
The parameters ASN and S0 are important indicators for overall computation time which,

together with the stopping time TS , give a general idea of the performance for the on-line
applications i.e. estimation during data acquisition. In Table 1 we present performance para-
meters of the example. We set Pmin = 10−6 which is set the same for different d̃. When d̃ < 8
we can set Pmin = 10−5 which would give TS = 395 i.e. a much smaller stopping time.

In Figures 2.a. and 2.b. we give plots of conditional probabilities of integer-ambiguity sets
Nk for k = 165 and k = 225, respectively, calculated during the same integer-ambiguity
resolution procedure. The parameters chosen during the integer-ambiguity procedure are d̃ =
5 meters,  = 40, Pmin = 10−6, and P0 = 1 − 10−6 i.e. we have one of the cases from
Table 1. The tip of the probability of the true integer is circled. The sizes of the sets N165 and
N225 are 146 and 55, respectively. Of the initial 26455 candidate integer ambiguities only a
few remain which have a significant probability mass at epoch t225. Observe that the correct
integer ambiguity has been resolved by epoch t = t503 i.e. TS = t503. For different confidence
levels we will have different stopping times TS . Even though TS = t503 may seem to be poor
performance, it is in fact very good performance since the values of P0 and Pmin are very small
and the data set is corrupted by frequent cycle slips of all satellites in use.

The ambiguity-resolution method developed in this paper performed well on real selective
availability (SA) corrupted GPS data, produced the correct integer ambiguities, and associated
confidence levels, and is applicable in the presence of GPS cycle slips. A comparison of our
method with traditional methods such as the LAMBDA method is complicated by the fact that
our stopping time is a function of the desired confidence level and the LAMBDA method does
not provide confidence levels.

Since the intentional corruption of the GPS satellite signals by SA has been turned off by
the U.S. Department of Defense (DoD), the GPS standard positioning service (SPS), which
is available to nonmilitary users, provides initial absolute positioning accuracies in the 10–
20 meter range worldwide, see [10]. For distances up to 3000 km Wide Area Differential GPS
(DGPS) provides relative positioning accuracies on the order of 5–10 meters and for distances
up to 200 km local area Code Differential GPS provides relative positioning accuracies on the
order of 0·5–1 meters.
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The method described here improves these initial accuracies to subcentimeter accuracies
when the baselines are short. Our choices of d̃ in Table 1 are consistent with expected initial
uncertainty in zr2 . The real data used in this paper was taken when the SA was still turned on.
We have not analyzed the effects of SA being turned off and how much that will reduce phase
measurement noise (see problem (6) in the next section).

6. Open problems

For the stationary case like the one we considered in this article, the generalized MAPAS
method is very similar (if not equivalent) to the general Particle Nonlinear Filtering method de-
scribed in [1–4]. In those articles the Particle Nonlinear Filtering method is further developed
for Gaussian Shape Distributions. The similarity comes from the Bayes update step which is
the same as Step 4 of Algorithm 1 in [1] and Equation (24) in Section 4 of this article. In our
case, the initial condition is the uniform distribution in a ball which is equivalent to associating
to each integer-ambiguity one particle with equal weight. Then, during the integer-ambiguity
resolution we apply the Bayes rule and then discard particles whose weight decreases below
a specified threshold. In this case particles are not moving, since we do not have any baseline
dynamics. It would be very interesting to compare these two methods when we have a moving
baseline with prescribed dynamics. The advantages and disadvantages of each method can be
shown by comparing their performance during cycle slips.

In this article we have begun to address the problem of resolving GPS integer ambiguities
to a given statistical confidence level in a minimum amount of time. Different optimization
objective functions will lead to different ambiguity resolution methods. Some promising areas
of future research include:

(1) Evaluating the time required to resolve the integer ambiguities to a specified confidence
level as a function of satellite and receiver geometry and motion;

(2) Evaluating the accuracy of interferometric position and attitude estimates as a function
of satellite and receiver geometry and motion;

(3) Recommending optimal satellite-selection strategies and corresponding Interferometric
GPS integer-ambiguity-resolution methods which achieve the highest position and attitude
accuracies given a specified confidence level or time to resolve the integer ambiguities;

(4) Developing methods for determining when one or more GPS satellites or GPS receivers
have broken and are giving bad data;

(5) Developing methods for dropping bad satellites and receivers and optimally reconfig-
uring the system to use the best available remaining good satellites and receivers;

(6) Statistically characterizing the pseudorange and phase measurement noise now that
the intentional corruption of the GPS satellite signals by Selective Availability (SA) has been
removed from the signals;

(7) Improving the atmospheric modelling to extend interferometric methods to longer
baselines;

(8) Evaluating how to use GPS pseudolites optimally to improve GPS precision, reliability
and robustness;

(9) Defining how future satellite carrier frequencies, waveforms and orbits should be se-
lected to ensure rapid, reliable, and robust ambiguity resolution and corresponding high-
precision localization accuracy.
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The GPS satellite system has reached a level of maturity and sophistication that future
advances will require more rigorous mathematical analysis. GPS is a wonderful source of
numerous unsolved mathematics problems.

7. Conclusions

In this article the authors have developed an interferometric Global Positioning System (GPS)
model for high-precision relative positioning which includes the effects of satellite switches
and cycle slips on integer-ambiguity resolution. The problem of finding relative position re-
duces to resolving integer ambiguities which are constant between cycle slips. A generalized
Maximum a Posteriori Ambiguity Search (MAPAS) method for resolving integer ambiguities
has been derived and successfully applied to real data. It was shown under certain assumptions
that the generalized MAPAS method is the Bayes optimal estimator applied to the reduced
space of integer ambiguities. In comparison to other methods and their principles, the gen-
eralized MAPAS method has been shown to be at least as practical or even more practical,
since it models cycle slips and satellite switches and provides confidence levels in terms of
assigned probabilities during the integer-ambiguity resolution procedure. This extra feature of
the generalized MAPAS method opens many important possibilities for improvement of the
integer-ambiguity resolution like reliability, robustness, and estimates of the optimal times to
resolve the integer ambiguities to given confidence levels.

In addition to the nine open problems proposed in Section 6, it seems very important to
develop high-fidelity mathematical models for GPS integrated with Strap Down inertial navi-
gation systems (INS) and numerical methods for attitude determination which give confidence
levels in terms of conditional probability functions for special applications, such as moving
vehicles in space, air, or on the ground. Of course the possibilities for applications are endless.
For applications like those already mentioned in Section 6, performance comparisons between
different methods would be of great interest.

The authors believe that the results and discussions from this article propose interferomet-
ric GPS problems which will require rigorous mathematical attention for their solution and
therefore give possibilities for significant improvements of this important technology.
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Appendix

Here we are calculating the covariance matrix of the noise ηk, k = 0, 1, . . . , which is the third
term on the right-hand side in Equation (21). It is used in the calculation of the right-hand side
of (22) which is then used in the Bayes rule update (24).

In Section 3 just before Equation (11) we defined νk by

νk = −
(
ν
lk1 ,l

k
2

r1,r2, . . . , ν
lk1 ,l

k
pk

r1,r2

)T
.
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Therefore we have

E
((
νik
)2
)

= E
((
ν
lk1 ,l

k
i+1

r1,r2

)2
)

= E
((
ν
lki+1
r1,r2 − νlk1r1,r2

)2
)

= E
((
ν
lki+1
r2 − νlki+1

r1 − νlk1r2 + νlk1r1
)2
)

= 4σ 2.

(1A)

Also from definition, for i �= j , we have

E
(
νikν

j

k

)
= E

((
ν
lki+1
r2 − νlki+1

r1 − νlk1r2 + νlk1r1
)(
ν
lkj+1
r2 − νl

k
j+1
r1

−νlk1r2 + νlk1r1
))

= E
((
ν
lk1
r1 − νlk1r2

)2
)

= 2σ 2.

(2A)

Since νk is a linear combination of normally distributed random variables with mean zero
and covariance σ 2, it is also normally distributed with mean zero and pk−1×pk−1 covariance
matrix Ck derived from (1A) and (2A) i.e. we have

Ck = σ 2




4 2 . . . 2

2 4 . . . 2

...
...
. . .

...

2 2 . . . 4


 ,

which is pk − 1 × pk − 1 matrix. We can split matrix Ck into block matrices

Ck =
[
Ck,p Ck,ps

Ck,sp Ck,s

]
, (3A)

where Ck,p, Ck,ps , Ck,sp, and Ck,s are 3 × 3, 3 × pk − 4, pk − 4 × 3, and pk − 4 × pk − 4
matrices, respectively. Also, we have that Ck,p and Ck,s are covariance matrices of νk,p and
νk,s , respectively. Also, we have Cov

(
νk,p, νk,s

) = Ck,ps and Cov
(
νk,s, νk,p

) = Ck,sp.
By definition of ηk we have

ηk = νk,s − Aks
(
Akp
)−1
νk,p =

[
−Aks

(
Akp
)−1
Ipk−4

] [
νk,pνk,s

]
, (4A)

where Ipk−4 is the unit pk − 4 × pk − 4 matrix.
Therefore, by linearity of probability expectation, (3A), and (4A), we have

-k = Cov (ηk) =
[
−Aks

(
Akp
)−1
Ipk−4

]
Ck

[
−
(
Aks
(
Akp
)−1
)T

Ipk−4

]

= Aks
(
Akp
)−1
Ck,p

(
Aks
(
Akp
)−1
)T − Ck,sp

[
Aks
(
Akp
)−1
]T

−Aks
(
Akp
)−1
Ck,ps + Ck,s.
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