

Information model for configuration

of modular products

Davor Pavlić

Keywords: configuration, product variants, product family, modular products, STEP

Abstract
The necessity for products adapted to the individual customer demands is more and more
present in the current conditions of market globalization. Modular product architecture
promises the advantages of high volume production while at the same time, being able to
produce a high variety of products that are customized for individual customers. This paper
presents the informational model for configuration product variants of modular architecture in
relation with customer requirements and configuration knowledge. All variants of the product
family are developed by the general product variant defined for a particular product family.
General product variant could contain three classes of generic modules. Those are: working
generic modules, auxiliary generic modules and secondary generic modules. The product
variant is build up from the instances of the particular generic modules. The information
models are developed according to the STEP standard 10303-214. The entities of the
information models are representing using the EXPRESS-G notation.

1 Introduction

In the early part of the 20th century, Henry Ford said, "You can have any color you want as
long as it's black". Since then, marketplace has dramatically changed and a product of
abovementioned range could not possibly survive. Necessarily, products are being adapted to
meet the individual demands of a customer enjoying the market globalization. It is variety in
demand that makes companies offer a wider range of variant products in order to be
competitive on the market. However, increased variety does not necessarily generate a larger
profit because such a variety implicates higher fixed costs, (e.g. manufacture, installation,
service, etc).

In order to increase the product variety and minimize costs, it is necessary to interrelate the
modular architecture with customer�s demands and configuration knowledge [Figure 1]. The
moment the quantity of customer�s demands and differences between them increase, the
number of modules increases as well. Interrelation between demand and modules is realized
through configuration knowledge, which defines the way demand is influenced in the
selection of modules. Thus, higher demand increases the range of product variants, which in
consequence decreases the design time. Design time decreases since the solution to a
particular demand is found quicker with less chance of mistaking. Also, with a decrease in
design time, there is a decrease in the both design and production costs, which again is a
consequence of the production of modules. Eventually, the lower the design and production
costs are, the larger the profit is.

CONFIGURATION
KNOWLEDGE

CUSTOMER'S
DEMANDS

MODULAR
ARCHITECTURE

PRODUCT
VARIETY

COSTS

Figure 1. Aspects relevant for the managing of product variety

2 Fundamentals

Studying the product variants present on the market, one might notice they vary one from
another with respect to the following [1]: size, market, performance, functionality and
aesthetic. The differences between product variants along with variety in demand, force the
designer to develop product variants adapted to the customer�s demands in less time and with
tight resources available. The configuration of product variants is seen as a method in
developing product variants that should have a modular architecture. Therefore, they are
called modular products. The advantage of modular architecture is high volume production
combined with quite a variety of products customized for individual customers [2]. In the
development of product variants, enterprises focus on the development of product family
rather than an individual product. In this article, a product family is defined by a set of
products originated from a common set of modules to obtain a range of product variants that
would cover a certain market segment [3].

Each product variant is configured upon the customer�s requirements previously specified by
the requirement list for that particular product family. All variants of the product family are
developed by the general product variant defined for that product family. The general product
variant consists of generic modules classified by three module types: working, auxiliary and
secondary module. Working generic modules are defined for each product variant of a
particular product family. Auxiliary generic modules comprise of product variants listed by
the customer�s requirements. Secondary generic modules exist in the product variant only
when auxiliary modules need some additional modules to fulfill the customer�s requirements.
A generic module can contain many instances. The product variants based on the general
product variant comprises the instances of particular generic modules. Further diversification
of generic modules into module instances enables defining each module instance by the
customer�s requirements.

The information model that is presented in this article, serves as a framework for
configuration of product variants. The information model is developed in accordance with
the product modeling standard of ISO 10303-214 [4]. The entities of the information models
are representing using the EXPRESS-G notation. ISO 10303, or STEP (STandard for
Exchange of Product model data), is an international standard that provides a representation

of product information along with the necessary mechanisms and definitions that enable the
exchange of product data [5]. STEP consists of the following common parts: the Integrated
Generic Resources (IGR), Integrated Application Resources (IAR) and application specific
protocols (AP). AP214 is an application protocol developed as a standard for the exchange of
information relevant to vehicle design. It comprises of the extensive constructs for
representing structures, their hierarchies, views etc. EXPRESS is an object focused
information modeling language with a graphical representation which is based on the entities
and relations: EXPRESS-G.

3 Case study: Information model for configuration of modular

products

The proposed information model for configuration of modular products consists of several
modeling structures. Each model structure represents the entities that describe particular areas
linked to the configuration of modular products. These entities correspond to the semantics of
STEP.

Requirement model

Product class model P
ro

pe
rty

 m
od

el

Instance modelAssociation model

Figure 2. Modeling structures for the proposed information model

The following model structures are represented in Figure 2:
• Requirement model - defines the entities describing the customer�s requirements and

requirements list, both necessary to determine the product variant,
• Product class model - defines the entities describing product families and product

variants,
• Property model - defines the entities describing the characteristics of requirements and

modules,
• Association model - defines the entities describing the module classification,
• Instance model - defines the entities describing the module instances as well as those

defining the rules and constraints for their utilization.

3.1 Requirement model

Entities for description of the customer�s requirements and requirements list have not been
defined in the application protocol AP214, ISO 10303 STEP standard. The configuration
process starts with definition of the requirements and requirement list. The entities described

in this model as shown in Figure 3 represent the expansion of ISO 10303 standard and
application protocol AP214.

The requirement entity describes requirements that are essential to product configuration. It is
important to emphasize that requirement describes only the definition of requirements,
without a value immanent to a particular requirement. The value of a particular requirement is
described by Property model and is linked to the requirement by item_property_association.
The following attributes describe the requirement entity:

• id - specifies the unique identifier of the requirement,
• name - specifies a word or group of words by which the requirement is referred to,
• description � specifies a textual definition of the requirement.

In the defining process, some requirements exclude others. Potentially, a particular
requirement implies inclusion of an additional one. Therefore, requirement_inclusion entity
specifies the influence between different requirements through the following attributes:

• id - specifies the unique identifier of the influences between different requirements,
• description - specifies additional information of requirement influences,
• id_requirement_relating - specifies the requirement which influences others,
• id_requirement_related - specifies the additional requirements influenced by the one

specified in id_requirement_relating attribute,
• id_requirement_expresion - specifies the operator that determines the influence

between different requirements, such as the following allowed ones:
! AND - mutually inclusive requirements,
! NOT - mutually exclusive requirements.

Requirement_list entity identifies the requirement list through the following attributes:
• id - specifies the unique identifier of the requirement list,
• name - specifies a word or group of words by which the requirement list is referred to,
• description - specifies additional information of requirement list,
• level_type - specifies the level of the requirement list. Requirement lists based on the

template represent the lower level lists. The higher level list represents the templates
of requirement lists,

• version_id - specifies the identification of a particular version of a requirement list.
A relationship between two requirement lists is defined by requirement_list_relationship and
described through the following attributes:

• description - specifies additional information of the relationship between two
requirement lists,

• related - specifies the second of the two requirement lists related by the entity
requirement_list_relationship. The semantics of this attribute is defined by
relation_type,

• relating - specifies the first of two requirement lists related by the entity
requirement_list_relationship. The semantics of this attribute is defined by
relation_type,

• relation_type - specifies the meaning of the relationship through the following values:
! derivation - the requirement_list_relationship defines the relationship in which

a related requirement list is derived from a relating requirement list
(requirement lists are derived from the template requirement list),

! version_sequence - the requirement_list_relationship defines the relationship
in which a relating requirement list is a pre-revision of the requirement list and
a related requirement list is a post-revision of the requirement list.

requirement_list_
representation

requirement

specification_
category

requirement_
inclusion

requirement_list_
association

product_class

requirement_list_
relationship

requirement_list

item_property_
association

requirement_
association

Figure 3. Entity diagram describing the customer�s requirements and requirements list

Requirement_list_representation entity specifies an association between requirement and
requirement_list entities. It specifies all requirements comprised in the requirement lists. The
attributes describing requirement_list_representation are as follows:

• description - specifies additional information of an association,
• id_specified_requirement - specifies the requirement which is associated with the

requirement list defined by id_specified_requirement_list attribute,
• id_specified_requirement_list - specifies the requirement list which consists of the

requirements defined by id_specified_requirement attribute.
A separate requirement list is defined for a particular product family. The
requirement_list_association entity specifies an association between a requirement list
(requirement_list) and a particular product family (product_class). This
requirement_list_association is describe through the following attributes:

• description - specifies additional information of an association,
• describing_requirement_list - specifies the requirement list (defined by the attribute

level_type as a template requirement list) which is associated with the product family
defined by the attribute described_element,

• described_element - specifies the product family for which requirement list is defined
by the attribute describing_requirement_list.

Particular requirements influence the selection of the auxiliary generic modules. The
requirement_association entity specifies the association between the requirement
(requirement) and generic modules (specification_category). The following attributes
describe the requirement_association entity:

• description - specifies additional information of an association,

• describing_requirement - specifies an requirement influencing the selection of
auxiliary generic modules defined by described_element,

• described_element - specifies the auxiliary generic modules specified by the
requirement and defined by describing_requirement.

3.2 Product class model

The product class model denotes the entities used in identification of both product family and
product variants, as presented in the Figure 4 where product_class stands for the basic entity.
As mentioned in the previous chapter, a requirement list is especially defined for a particular
product family. The entity product_class can take a different meaning according to the level
in which the product_class entity is considered. In an association between the requirement list
and product family, the product_class entity is defined as a product family. In case the
product family is discussed on the grounds of comprising product variants, product_class is
defined as a product variant.

product_class_
relationship

product_class

item_property_
association

class_specification_
association

requirement_list_
association

class_category_
association

requirement_list_
association

Figure 4. Entity diagram describing product family and product variants

Product_class entity is described through the following attributes:
• id - specifies the unique identifier of the product family or product variant,
• name - specifies a word or group of words by which the product family or product

variant is referred to,
• description - specifies additional information of the product family or product variant,
• level_type - specifies the level which describes the meaning product_class. In this

article, the product_class entity is being discussed on two levels: higher and lower.
Where discussed on the higher level, product_class is considered as a product family.
Where discussed on the lower level, product_class is considered as a product variant,

• version_id - specifies the identification of a particular version of the product family or
product variant.

Due to different meanings the product_class entity takes, it is necessary to define the
association between them, which is done by the product_class_relationship entity and
described though the following attributes:

• description - specifies additional information of the association between different
meanings,

• related - specifies the second level related by the entity product_class. The semantics
of this attribute is defined by relation_type,

• relating - specifies the first level related by the product_class entity. The semantics of
this attribute is defined by relation_type,

• relation_type - specifies the meaning of the association though the following values:
! hierarchy � a general product variant defined by related is subordinate to the

product family, defined by relating,
! derivation � the product variants defined by related are derived from a general

product variant, defined by relating.

3.3 Property model

The previous two chapters describe the entities of an information model which defined the
terms like requirement, requirement list, product family and product variant. All entities used
in that part of information model, only identified the terms and do not consider the values
which are associated with them. Property model describes the entities for identification and
association of the values with the other entities.

The property_value entity specifies either numerical or textual values defined by
value_with_unit and string_value. Therefore, both value_with_unit and string_value are
derived from property_value. The value_with_unit entity represents either single numerical
measure or a range of ones with upper, lower or upper and lower bounds without further. It
does not specifies them. The attributes describing the value_with_unit entity are as follows:

• significant_digits - specifies the number of decimal digits of numerical value,
• unit_component - specifies the unit in which the entity value_with_unit is expressed

and it is defined by the entity unit.
Numerical values are further specified by numerical_value, value_range and value_limit,
which are all derived from value_with_unit, inheriting its attributes. The numerical_value
entity specifies the quantity of a numerical value by value_component attribute. The
value_range entity specifies the pair of numerical values representing the range in which the
value shall lie. The attributes of this entity are as follows:

• lower_limit - specifies the minimum acceptable value,
• upper_limit - specifies the maximum acceptable value.

The value_limit entity specifies a numerical value by either lower or the upper limit through
the following attributes:

• limit - specifies the value of the limit,
• limit_qualifier - specifies the kind of limit. The following values shall be used:

maximum (the specified limit is an upper limit) and minimum (the specified limit is a
lower limit).

The string_value entity specifies the textual value comprising one or more alphanumeric
characters defined by the value_specification attribute.

The property entity represents the physical characteristics of the product and customer�s
defined measurements of the product. The property_value_representation entity denotes
property by a specified value defined by property_value. The attributes describing
property_value_representation are as follows:

• definition - specifies the entity property which characterizes the entity
property_value_representation,

• qualifier - specifies the kind of the value used, which is as follows:
! nominal - the value is a nominal value,
! specified - the value is a specified value,
! typical - the value is a typical value.

• specified_value - specifies the value of property and is defined by property_value,
• value_determination - specifies information on how to interpret the value. The

following values shall be used:
! calculated - the value has been calculated,
! designed - the value represents a value intended by the design,
! estimated - the value has been estimated.

property

unit

property_value

value_with_unit =>
property_value

string_value =>
property_value

numerical_value=>
value_with_unit =>

property_value

value_range=>
value_with_unit =>

property_value

value_limit =>
value_with_unit =>

property_value

item_property_
association =>
property_value_

association

requirement_list_
representation

product_class

requirement_list_
association

specification_
category

specificationproperty_value_
representation_relationship

property_value_
representation

property_value_
association

Figure 5. Entity diagram describing the property value

The property_value_representation_relationship entity represents the influence between the
different values through the following attributes:

• description - specifies additional information on influence between different values,
• related - specifies the second of the two values which are mutually influenced. The

semantics of this attribute is defined by relation_type,

• relating - specifies the first of the two values which are mutually influenced. The
semantics of this attribute is defined by relation_type,

• relation_type - specifies the meaning of the association thought the following values:
! dependency - value, defined by the attribute related, is influenced by the value,

defined by the attribute relating,
! equivalence - value, defined by the attribute related, represents the same value,

defined by the attribute relating, differs from one another in different units and
values.

The association of the values with other entities of the information model begins with the
property_value_association. This entity specifies which value should be assign to the other
entity through the following attributes:

• description - specifies additional information of the assigned value,
• describing_property_value - specifies the value, defined by the entity

property_value_representation, that is being assigned.
Item_property_association specifies the entities by the attribute described_element, to which
specified value is assigned. This entity is derived from the property_value_association entity.

3.4 Association model

General product variant (defined by entity product_class) consists of the several generic
modules classified by three module types: working, auxiliary and secondary module. The

entities described in the association model as shown in Figure 6
Figure 6, represent the identification and classification of modules. The entity
specification_category that identifies the modules is described through the following
attributes:

• id - specifies the unique identifier of the module,
• description - specifies additional information of the module,
• implicit_exclusive_condition - specifies whether the module instances are mutually

exclusive in the particular product variant through the values of either true or false.
The true value is used in this information model because general product variant
consists of generic modules, which is realized by one instance only (defined by the
entity specification) of each generic module.

All variants of the product family are developed by the general product variant defined for a
particular product family. The entity class_category_association defines which generic
modules are the working generic modules that are present in general product variant. This
entity is described through the following attributes:

• associated_category - specifies the module of which the meaning in the product
variant is specified by the attribute mandatory. The module is defined by the
specification_category entity.

• associated_product_class - specifies the product variant, defined by the entity
product_class, which consists of the module defined by the attribute
associated_category,

• mandatory - specifies the working module type. Modules defined by the attribute
associated_category are the working generic modules.

If requirement list consists of the requirements not realized by the working generic modules,
then the requirements are realized by the auxiliary generic modules. The entity
class_specification_association defines which generic modules are auxiliary or secondary
generic modules that are present in the general product variant. This entity is described
through the following attributes:

• associated_product_class - specifies the product variant, defined by the entity
product_class, which consists of the module defined by the attribute
associated_specification,

• associated_specification - specifies the module which type is defined by attribute
association_type,

• association_type - specifies the module types through the following values:
! option - auxiliary module type. The module defined by the attribute

associated_specification exists in the product variant when specified by the
requirement,

! addition - secondary module type. The module is defined by the attribute
associated_specification and present in the product variant only when auxiliary
generic modules need some additional modules to meet the customer�s
requirements,

class_category_
association

class_specification_
association

specification_
category

specification_
category_
hierarchy

specification

item_property_
association

requirement_list_
association

product_class

Figure 6. Entity diagram describing the classification of modules

The sequence of the determination of generic modules instances is described by the
hierarchical structure of the generic modules, which is defined by the entity
specification_category_hierarchy through the following attributes:

• sub_category - specifies the lower level in hierarchy of the generic modules in the
product variant,

• super_category - specifies the higher level in hierarchy of generic modules in the
product variant.

3.5 Instance model

A generic module can contain many instances. The instance of the module represents the
generic module in the product variant adapted to the customer�s requirements. The instance
model denotes the entities used in description of module instances, as presented in the Figure7
where specification stands as an entity specifying the module instance. The entity
specification is described through the following attributes:

• id - specifies the unique identifier of the module instance,
• name - specifies a word or group of words by which the module instance is referred to,
• description - specifies additional information of the module instance,
• category - specifies the module to which the instance belongs,
• package - specifies the necessity of existence the instances of secondary generic

modules that enable us to meet the customer�s requirements.

specification_
expression

specificationspecification_
inclusion

item_property_
association

specification_
category

Figure 7. Entity diagram describing the module instances

In the process of determination of generic modules instances, some of them exclude others.
Potentially, a particular instance implies inclusion of an additional one. Therefore,
specification_inclusion entity specifies the influence between different instances through the
following attributes:

• id - specifies the unique identifier of the influences between different instances,
• description - specifies additional information of instance influences,
• if_condition - specifies the instance which influences others,
• included_specification - specifies the additional instances influenced by the one

specified in if_condition attribute,
The entity specification_expression specifies the kind of the influences between the instances.
This entity is described through the following attributes:

• id - specifies the unique identifier of the kind of the influences,
• description - specifies additional information of the kind of the influences,
• operand - specifies the instance that the attribute operation is referred to,
• operation - specifies the operator that determines the influence between different

instances, such as the following allowed ones:
! AND - mutually inclusive influences,
! NOT - mutually exclusive influences.

4. Conclusion and directions for further research

This research is focused on modules design, which involves selecting modules combination to
best satisfy the given set of requirements. As it was mentioned before, a successful managing
of product variety relies on a few aspects: modular product architecture, stronger
interdependences between customer requirements and product architecture and configuration
knowledge.

Managing product variety should be observed within the configuration of product variants, in
which the abovementioned aspects are interrelated. In order to do so, an information model is
defined to provide a framework for configuration of product variants. Proposed information
model describes the configuration of general product variant adapted to the customer�s
requirements for a particular product family. General product variant consists of generic
modules that are classified by three module types: working, auxiliary and secondary.
Additional diversification of the generic modules into module instances provides a definition
of each module instances by the customer�s requirements. Dependences between the
requirements, requirements and generic modules and between the instances of different
generic modules are represented by the constraints immanent to configuration knowledge.
Information model as presented here does not cover all aspects necessary for the description
of the configuration of product variants. Thus, the presented information model does not
cover configuration process and configuration knowledge managing the configuration
process. Further research is focused on integration of presented information model with an
information model of configuration process. Such integrated information models offer several
important potential advantages: product variants are adapted according to the customer
requirements; product variants are based on systematization knowledge; high complexity
tasks are solving and shorten configuration time needed.

This study is a sequel to bigger-scheme effort to increase product variety without significant
additional costs. Should we apt to have this research actually decrease the costs in industry, it
is necessary to extend the study to the areas connected with product development. The aim of
such extension is an integrated development of modular products. The extensions of the
research are concern to the integration of the configuration model with the system for product
data management (PDM) and CAD system.

References

[1] Liedholm, U., "Conceptual Design of Products and Products Families", Proceedings of the

4th WDK Workshop on Product Structuring, Tichem, M., Andreasen. M. M., Duffy, A. H.
B., Delft University of Technology, Delft The Netherlands, 1998, pp. 91-112

[2] O�Grady, P.,Liang; W.Y., Tseng, T.L., Huang, C.C., Kusiak, A.: "Remote Collaborative
Design With Modules"; Techical Report TR 97-03, University of Iowa, 1997.

[3] Andreasen, M.M., McAloone, T., Mortensen, N.H.; " Multi-Product Development -
platforms and modularization"; Technical University of Denmark, ISBN: 87-90130-34-0,
Lyngby, 2001.

[4] ISO 10303-214:2000, "Product data representation and exchange: Application protocol:
Core data for automotive mechanical design processes", ISO, 2000.

[5] ISO 10303-1:1994, "Industrial automation systems and integration - Product data
representation and exchange - Part 1: Overview and fundamental principles", ISO, 1994.

Davor Pavlić, B. Sc.
University of Zagreb
Faculty of Mechanical Engineering and Naval Architecture
Chair of Design Theory
I. Lučića 5, 10000 Zagreb, Croatia
Phone: +385-1-6168 117
e-mail: davor.pavlic@fsb.hr

