Optimal syntax for packet header compression specification

Julije Ozegovic
University of Split, FESB Split
Split, Croatia
E-mail: julije.ozegovic@fesb.hr

Abstract: Packet header compression is an important issue for
integration of cellular wireless networks with global Internet.
Lot of effort to develop robust compression scheme is recently
undertaken. Among the others, EPIC and EPIC-lite schemes
take approach of formal compression specification. In this paper,
based on practical implementation experience, the EPIC-lite
scheme extension with optimal syntax for packet header
compression specification is proposed.

1. INTRODUCTION

Former widespread of wireless cellular networks and
Internet brings to the front issues of their integration. Internet
stack of protocols, designed for flexibility some three decades
ago, do not perform well in cellular wireless environment
because of poor payload to packet ratio. In particular, IP/TCP
for data and IP/UDP/RTP for voice, with their 40+ octets of
header, can waste up to 75% of valuable radio bandwidth.

Since it is not likely to change protocol stack in global
Internet, wireless networks should be enhanced to transport
Internet packet more efficiently. Idea to develop special
protocol stack for wireless area with gateways (proxies)
connecting it to Internet is abandoned in favor of Internet
packet header compression.

Header compression approach has advantage of exploiting
strict format of header fields, which can yield much better
compression ratio compared to conventional methods based
on redundancy. In large proportion of flows that utilize short
packets, header compression is sufficient. In some flows, like
HTTP documents, compression based on redundancy can be
applied to payload part of the packet.

This paper is organized as follows. In Chapter two, an
overview of header compression schemes is given. In Chapter
three, the proposed syntaxes for header compression
specification are analyzed. In Chapter four, the experience
gained through the experimental implementation of EPIC-lite
scheme is disclosed. Chapter five is used to propose optimal
syntax for header compression specification. Conclusions and
future work are given in Chapter six.

2. PREVIOUS WORK

CSLIP [8] was inspired with the need to obtain ergonomic
response times in interactive data traffic like Telnet: a 200 ms
character echo on serial line connection. It is interesting that
actual numbers are very close to voice-data integration
constrains. No error recovery mechanism was provided.

Deflate [7] is a proposition for general data compression
on Internet. It uses standard LZ77 [17] compression
algorithm combined with Huffman encoding of control data
(literals, distances, and lengths). Both are later considered for
packet header and payload compression.

IP header compression (IPHC) [5, 6] is a major
improvement of previous attempts. It introduces concepts of
context, context identifier (CID), encoding method and
robustness. Robustness against packet losses is achieved by
"twice" algorithm and feedback from the decompressor.
IP/TCP and IP/UDP headers are thoroughly analyzed,
including TCP options and IPv6 extension headers.

Compressing IP/UDP/RTP Headers [2] is generally
extension of [8]. However, table encoding is proposed, and
idea of multiple contexts is introduced. Heuristics of
detecting the RTP header existence is elaborated.

Robust Header Compression (ROHC) [1] is a proposal of
the IETF ROHC working group. The main contribution to
previous work, especially [2], is in robustness enhancement,
and in separation of rules and profiles.

Robustness is achieved by introducing three modes of
operation, unidirectional (without decompressor feedback),
bi-directional optimistic and bi-directional reliable. Multiple
contexts per flow are specified, where r contexts can provide
safe decompression after r-1 consecutive packet losses.

ROHC framework defines packet formats, which serve as
common platform for transport of packets with compressed
headers. Various protocol headers can be compressed using
appropriate "profiles", set of rules used to achieve maximal
compression rate. Itself, [1] defines ROHC uncompressed,
[P/UDP/RTP, IP/UDP and IP/ESP in textual form.

3. HEADER COMPRESSION SPECIFICATION

In header compression schemes mentioned earlier, no
special effort on formal specification of compression process
was involved. In CSLIP [8], C Ilanguage reference
implementation is given. In Deflate [7], a mixture of text, C
sample functions and pseudo code is used. In IPHC [5, 6],
textual description is used with one algorithm in pseudo code.
In [2] and ROHC [1], text with tables is used.

The first atempt to introduce formal header compression
syntax is UHCF (Unified Header Compression Framework)
[10]. Pearl like specification language is proposed. The major
effort in formal compression specification is presented in
EPIC-lite (Efficient Protocol Independent Compression) draft
[12, 14]. Following the conclusions of 51st IETF meeting,
authors of EPIC-lite are proposing modified input syntax
presented in Formal notation draft [13]. Simultaneously,
Internet draft about Generic notation [9] is issued. All three
use modified Augmented Backus-Naur Form (ABNF) [4].

3.1 UHCF syntax

UHCEF [10] is a complete framework, actually providing
formal compression specification for CSLIP [8] engine. The
specification consists of Field, Rule and Action instructions in
Pearl like syntax. Profile header comprises protocol
identifiers for compressed and uncompressed packets.

Field instructions are used to implicitly define header
fields, by specifying their lengths, encoding methods and
methods parameters if appropriate. For INFERRED method,
a formula written in C should be linked. For DELTA,
negative increment can be forbidden to force full header
transfer in case of retransmission.

Rule instructions can be used to filter out packets from
other protocol stacks (to be sent uncompressed), and Action
instructions to initiate particular action when condition is
satisfied. State values can be stored in variables.

UHCEF syntax is presented on simple IPv4 profile, and
more elaborate TCP/IPv4 without options is appended.

3.2 EPIC-lite syntax

EPIC-lite [12] is a complete header compression system
under ROHC framework. The independence is obtained by
universal specification language used to formally specify a
profile, a set of rules used to compress particular protocol
stack headers.

Use of ABNF syntax provides definition of rules by
combining previously defined rules, or primitive rules (called
toolbox methods). The inner interpreter, which executes the
rules, is a stack oriented machine with four stacks:
uncompressed _data, control, compressed and

unc(ompressed) fields. Some explicit stack-manipulation
methods are provided. Benefit of using stacks is smooth
parameter passing. Drawback is low readability of formal
specification, and usage of stack manipulation methods for
complex processing.

Main EPIC-lite strength is "OR" operator to perform
choice of methods or rules. It provides possibility to encode
particular field in optimal manner. The chosen set of methods
for processed header is called "format". Each format is
identified by Huffman code token, calculated using the
probability of format. To achieve format probability, each
method is assigned probability proportional to its usage
frequency. Huffman tokens guaranties optimal encoding.

Unfortunately, complex protocols like IP/TCP end with
numerous formats, some of them with extremely low
probabilities and therefore long Huffman tokens. These
formats are discarded, and replaced with partially compressed
header (IR-DYN). To provide acceptable compression of
flows that behave differently, formats can be grouped in
format sets. In this case, format discard is performed on set
basis.

Special case is with ORed rules. Rule can include multiple
field compressions, and fail if any of the field compressions
fail. In that case, interpreter must go back to the OR point,
and try next ORed rule. Going back is complicated because
stacks must be restored to original content at the OR point.

Multiple format sets are defined using FORMAT method, a
specific OR point where format set choice is signaled to the
decompressor. Number of format sets equals product of
possible choices at various FORMAT points.

Protocol options (like in TCP) are handled with LIST
method, in combination with OPTIONAL and U methods.
List method provides possibility to encode optional fields,
and indicates option presence and order to the decompressor.
Unfortunately, order code requires N*logN bits for N
possible options, which is frequently more than 32 bits.
Additional complication is that various option combinations
can dramatically increase number of possible formats, thus
lowering their probabilities. To avoid this, U method redirects
compressed fields to unc fields stack, whose content is
appended to the compressed header. This way, compressed
options are out of the compressed header, and are not covered
by Hufmann code tokens. To process them, signaled order
and presence codes are used.

Among exceptions, let us mention IP checksum and NBO
(Network byte order). IP checksum can be recalculated at the
decompressor. NBO tests a field for swapped bytes, and
reverts them if necessary. This is indicated by NBO bit left on
the uncompressed_data stack under the tested field.

3.3 EPIC-lite formal notation extension

EPIC-lite original specification was criticized because of
explicit usage of stack manipulation methods. To avoid this,
Formal notation draft [13] provides new LABEL method.

Treating original header as uncompressed data stack in
EPIC-lite [12], header field processing order is determined by
the physical field order of the header. Processing of the
particular header field can be postponed by storing it on the
control stack, and retrieving it back when necessary (with
possible rotation of the control stack).

In Formal notation draft [13], a variable is created using
LABEL method, and field content is stored there. NEXT-
FIELD method reads content of the specified label, and
pushes it on top of the uncompressed data stack.

Using LABEL method, special MSN (Master Sequence
Number) methods in EPIC-lite became obsolete. Predefined
(reserved) label MSN is wused instead. LIST and
UNCOMPRESSED methods are redefined to use labeling
mechanism.

3.4 Generic notation

Generic notation [9] presents alternative solution of input
syntax and consequently virtual compressor-decompressor
machine. Based on EPIC-lite [12], and using ABNF, it
introduces several new concepts. The profile declaration
consists of two parts: the uncompressed (original) header
format and compressed header format.

To solve the problem of stack manipulation, a concept of
variable is introduced. In uncompressed header declaration,
each header field is given a name. Instead of removing some
bits from the stack, field names are used for explicit
reference. Reference can be done in almost any order, which
makes field compression ordering possible. Field names are
hierarchical, and follow structure of the header (i.e.
protocol.field). The BITS and VALUE methods are used to
declare permanent fields in the header. However, only length
(number of field bits) is declared, which means that position
of the field is relative to all previously declared fields. This is
impractical for optional fields (e.g. TCP options), which are
declared inside LIST structure. IP options are not covered in
presented example.

In Generic notation the same idea from EPIC-lite, of
Huffman tokens usage for format identification, is exploited.
Compressed header format is defined implicitly with field
compression ordering, and compression methods usage.
Toolbox methods, similar to EPIC-lite ones, are redefined to
use concept of variable names.

The first significant difference is lack of FORMAT
method. Instead, compressed header is organized as
hierarchical structure of subheaders. Each subheader includes

Huffman tokens of its own, and takes the role of single entry
in higher layer header. New HUFFMAN and P (probability)
methods are introduced to define Huffman coding using the
profile source. This gives profile author freedom to use
Huffman tokens at will.

Options are covered with new SUBTREE methods, which
exploit LIST structure from the uncompressed header
declaration. The published example shows complexity of the
problem and proposed solution.

4. EXPERIENCE FROM EXPERIMENTAL
IMPLEMENTATION OF EPIC-lite

Recently, a project to realize experimental implementation
of EPIC-lite [12] was started on University of Split, FESB
Split. It resulted with working application that performs file-
to-file compression and decompression of captured packet
flows [3, 16, 11]. Full EPIC-lite profiles for IP/TCP and
I[P/UDP/RTP are tested. Compatibility is achieved by
successful interchange of compressed files between FESB
and authors of [12].

The overall results from the experiment show, that EPIC-
lite is complete specification, and that can be used to realize
independent software implementation. To accelerate
application testing, several simplified profiles were created
successfully. More complex functions were included and
tested gradually. For final testing, twelve RTP and eight TCP
traces were used, from 20 to 500 packets long.

While creating test profiles, the strengths and weaknesses
of EPIC-lite BNF syntax were observed. Strength results
generally from freedom that BNF notation gives to the profile
writer. However, this freedom can be harmful, because
profiles that conform to BNF formally, may not always
specify correct header processing. This is especially true
considering implicit uncompressed data stack and explicit
control stack manipulation. Writing programs with stack
machine requires from programmer to keep track of stack
content during program development and testing. This is
further emphasized with multiple stack machines.

In EPIC-lite, encoding methods simply remove specified
number of bits from input data stack, and push compression
result on compressed stack. This means that order of
processing must strictly follow the structure of the header.
Compressed header takes the same order. Exceptionally,
particular field content can be transferred to control stack,
and processed later. This results with profile programming
errors, without possibility for profile parser to detect them.

Next, ORed rules require special method implementation,
which is not specified in draft [12], see [16]. While it is
implementation specific, such a method should be declared in
future standard to simplify implementation. Also, FORMAT
choose function is implementation specific, resulting in

different ~ compression efficiency from different
implementations. Some guidelines should be included in
future standard.

The processing of fields of variable length is solved with
introduction of unc_fields stack, which is also used by the U
method inside the LIST/OPTIONAL structure.
Implementation of this part was very complex, though
successful.

Despite the complexity of some structures, experimental
implementation is based on optimized, extended linear profile
data structures [3].

5. OPTIMAL SYNTAX FOR HEADER COMPRESSION
SPECIFICATION

Based on previous work and experience from EPIC-lite
experimental implementation, we propose new syntax for
header compression specification. The goals of new syntax
are as follows:

1. declare format of uncompressed header explicitly

2. enable random access to uncompressed header fields,

except for optional fields

3. declare method parameters

referencing

4. declare profile and context check fields for packet
classification, as well as protocol identifier fields
optimize inter method and rule communication
introduce control structures, e.g. IF
7. keep data structures as simple as possible, no

unnecessary hierarchy
8. provide for safer profile programming and possible
formal profile verification

literally to simplify

o w

Declared goals can be obtained if uncompressed and
compressed headers are treated as simple list of fields, what
they actually are. Header compression and decompression
should not differ much from regular header processing in
protocol stack software.

5.1 Compression ordering

One of important issues is the problem of compression
ordering. Treating input data as bit stack, implies
compression ordering to match field structure of the header.
This structure was not designed for optimal compression.

One can require random declaration of header fields,
random access to them to provide arbitrary compression
ordering, and then to reorder compression results in arbitrary
manner. Evidently, all that freedom is redundant. Especially,
it is not needed to reorder compressed header fields, because
it is natural to decompress the header in reverse order than the
compression was done.

In EPIC-lite, Huffman tokens refer to list of compression
methods actually used to yield compressed header. Free
reordering of compressed field gains unnecessary
complication in Huffman tokens. The simplest way is to keep
compressed fields order as generated at the compression time.
Random access to uncompressed header fields provides
enough freedom for optimal compression ordering.

To conclude, uncompressed header fields should be
declared as random access variables, and compressed header
can be realized as implicit bit stack. This simplifies relation
between compressor and decompressor, and is in
conformance with BNF notation.

5.2 Field declaration

Considering header is a list of fields, each field can be
declared with its offset from the beginning of the header and
its length, both in bits:

<field_name> = FIELD(<offset>, <length>)

This rule declares simultaneously variable "field name",
which can be referenced at will. The moment of reading field
content to variable is implementation specific. Possible
solutions are to read all fields at the beginning of header
processing, or at the first field reference. Length parameter is
needed, because fields lengths are of arbitrary value.

Some fields have predefined values for protocol stack, and
are declared using:

<field_name> = FIELD-N(<offset>, <length>, <value>)

Such fields can be used for profile check.

Some fields are located after the variable part of the lower
layer header (e.g. after IP options). Since next header offset is

known, this information should be used easily providing
expression instead of the <offset> parameter:

IHL = FIELD(4,4)
ackno = FIELD(IHL*32+64, 32)
Some fields are optional, and their position is unknown.

Such fields are declared with position of first option position,
and can be accessed inside option processing structure:

<field_name> = FIELD-O(<offset>, <length>)
<length> of zero can be declared for varying lengths.
It should be possible to declare variables for general use.

Here we propose not to declare length, but length information
can be stored at the time of initialization.

<variable_name> = VARIABLE
Variable can be initialized at any time:

<rule_name> = STORE(<variable_name> , <expression>)

5.3 Profile declaration

Beyond parameters specified in EPIC-lite, profile header
should contain names of rules for profile and context check,
protocol identifiers, and field and variable declarations:

CO_packet =<CO_packet_rule>
IR_DYN_packet =< IR_DYN _packet_rule>
IR_packet =< IR _packet_rule>

profile_check
context_check
protocol_unc
protocol_comp
<field_name>

= < profile_check_rule>

= < context_check_rule>

= <value>

= <value>

= FIELD(<offset>, <length>)

= VARIABLE

<profile_check_rule> = version protocol
<context_check_rule> = sadr dadr sport dport

5.4 Method parameters

Introduction of field declarations, requires redefinition of
toolbox methods. Some changes are simple:

<rule_name> = IRREGULAR(<field>, <probability>)
<rule_name> = STATIC(<field>, <probability>)

<rule_name> = VALUE(<field>, <value>, <probability>)

Using VALUE method, field is checked for value.
<rule_name> = LSB(<field>, <length>, <offset>, <probability>)
In LSB, field is transferred by length LSB bits.

Some methods are more elaborate:
<rule_name> = INFERRED-IP-CHECKSUM(<field>, <length>)
where <length> can be declared as [HL*32. In decompressor,

IP checksum is recalculated on declared header and inserted
in the <field>.

<rule_name> = INFERRED-OFFSET(<field1>, <field2>,
<variable_name>)
Difference fieldl-field2 is calculated and stored in
variable, which is than compressed using appropriate method.
<rule_name> = INFERRED-SIZE(<field>)
All parameters needed are contained in <field> declaration,
size is recalculated and inserted in <field>.
<rule_name> = NBO(<field>, <variable_name>)
<field> is checked for network byte order, and modified if
needed. Action is indicated with flag stored in
<variable name>.
<rule_name> = SCALE(<field>, <v_quotient>, <v_reminder>,
<v_modulo>)
<field> is scaled with appropriate modulo, and quotient,

reminder and modulo are stored in appropriate variables for
later compression.

5.5 ORed rules

As mentioned earlier, BNF notation permits ORed rules.
Each OR branching point involves format tree branching,
covered by Huffman token.

Besides, Huffman token should cover OR points inside the
selected rule. This is possible if all ORed rules deal with the
same set of fields. If different fields are involved, current
EPIC-lite method of calculating ID bits could fail.

In stack oriented environment with destructive stack pops,
stack restoration to original value at OR point is needed in
case of method failure. If rule involves compression of
several consecutive fields, failure of one compression causes
rule to fail, and multiple bit patterns should be restored on the
stack.

With header field variables, reading is non-destructive.
ORed rules of arbitrary length are inherently supported.

However, OR operation involves rule (or method) trying in
order which is implementation specific. For single method
this can be acceptable, but for complex rules processing
efficiency can be disturbed. Introduction of specific control
structure can be considered.

Here we discuss the possible use of conditional branching
(IF structure). Suppose that some field or group of fields
carry information if specific bit field is set, otherwise it
carries zero. In that case, branching decision can be done by
testing the (bit) field for non-zero value:

<rule_name> = IF(<field>, <rule_true>, <rule_false>)
This concept can be extended to field content testing:
<rule_name> = IF(<field> = <value>, <rule_true>, <rule_false>)

Multiple consecutive IF statements of this kind can serve as
primitive CASE structure. To make them coherent structure,
usage of ELSEIF, ELSE and ENDIF can be preferred:

<rule_name> =

IF(<field> = <value>, <rule_true>)
ELSEIF(<field> = <value>, <rule_true>)
ELSEIF(<field> = <value>, <rule_true>)

ELSE(<rule_false>)
ENDIF
The concept of Huffman token could be applied to single

or multiple IF statements for branching decision signaling.
However, if branching condition field is encoded after the IF
structure, it is known to the decompressor before the IF
structure is executed. In that alternative case, no Huffman
token bits need to be used for IF structure.

We propose to keep Huffman token signaling of choice for
IF structure, to avoid possible errors in profile and achieve
compatibility with ORed rules. The same restrictions covering
OR points inside selected rules remain.

5.6 Optional fields

The problem of optional fields coding is problem of
signaling selected OR choices in variable number of fields
environment, combined with arbitrary option occurrence and
ordering. Currently considered optional fields found in [12,
13, 9] are TCP options, TCP sack option blocks, RTP CSRC
entries and SCTP chunks.

Generating Huffman tokens for optional fields is tricky,
because large number of possible combinations exists. This
leads to header formats with very small probabilities, and
prohibitively long tokens are needed. Even partial header
encoding is not possible because of the same reason.

In EPIC-lite [9, 12], compressed fields are redirected by U
method to unc_fields stack, whose content is appended after
the compressed header of known length. Huffman token does
not cover content appended. Decompressor reads appended
data when needed, using length information encoded in
compressed header part. Huffman tokens are created as if
actual data order conforms with one in profile, while presence
and order codes are provided to decompressor, to indicate
actual ordering. Tokens cover all optional entries, which
means that multiple occurrences are not possible if not
explicitly included.

In Generic notation, subheaders are provided for option
coding. Authors claim that this approach solves the order and
presence signaling problem, but no practical confirmation
have been published yet.

Here we try to propose optimal syntax for header
compression specification, not the actual algorithm itself.
However, syntax change often changes properties of
corresponding virtual machine. Considering EPIC-lite is
proven in practice, the field specification concept is applied
to LIST and OPTIONAL methods.

<rule_name> = LIST(<length>, <field>, <v_order>,

<v_present>, 1*(OPTIONAL(<rule>,
<value>)))

Length parameter is actually expression like
(data_offset-5)*32. Field parameter contains option identifier
code. LIST tries to compare <field> with <value> for each
optional entry, and executes the matched one. Order and
presence variables are updated. This action is repeated, until
<length> bits are exhausted.

Selected rule normally reference FIELD-O data, which
means that their position is relative to the special list_offset,
initially set to zero (first option). After one option is
executed, list offset is updated by length of the offset. This
can be done automatically by tracking FIELD-O maximum
offset plus length. LIST then rereads <field>, but now with
different list_offset. Actually, first option code field name is
reused. This is possible because in known protocols, all
options begin with code field of the same length.

Another form of LIST uses "end of options" code:
<rule_name> LIST-C(<end>, <field>, <v_order>, <v_presence>,
1*(OPTIONAL(<rule>, <value>)))
This kind of LIST tries to execute option entries until
<end> code is recognized.

Finally, lists of the same entry without code identifiers are
found, e.g. sack blocks. LIST-N is based on length parameter:
<rule_name> LIST(<length>, <v_order>, <v_presence>,
1*(OPTIONAL-N(<rule>)))
In previous examples, U method is not used. It seems that
concept of unc_fields stack is redundant.

Decompressor reads required amount of bits as indicated
by the compression involved, referenced by Huffman token.
Presence of these bits is indicated with presence code. It is of
no concern whether these bits are included inside the
compressed header or after it. In our opinion, U method is
redundant, and can be excluded from the specification. The
only restriction is that optional fields must be treated under
OPTIONAL method.

5.7 Variable length fields

Inside the packet format, sometimes fields or groups of
fields of variable length exist. TCP options and SCTP chunks
of data are of the kind. In EPIC-lite [9, 12],
UNCOMPRESSED method can be used to carry such fields
uncompressed, with lower efficiency, instead of complex
LIST/OPTION encoding.

Uncompressed fields are appended after the EPIC-lite
header, which is possibly redundant like the U method is.
Proposed syntax is:

<rule_name> = UNCOMPRESSED(<v_length>, <field>)

Fields with zero length are normally used, and <v_length>
parameter can be variable or field, available for encoding
after the UNCOMPRESSED is executed.

5.8 Multiple format sets

In practice, flows of the same protocol stack behave
differently. Mention interactive traffic, bulk data transfer or
Web browsing, transported using TCP. Covering all this
possibilities with normal OR functionality can result with
large number of header formats. It is better to recognize flow
behavior, and apply optimal set of compression formats.

In EPIC-lite [9, 12], FORMAT method is proposed. Here,
the same concept is modified to use variables:
<rule_name> = FORMAT(<v_selection>, <rule>, 1*<rule>)

Format selection result is stored in selection variable, and
available for later compression.

5.9 Compressing payloads

Using ABNF, compression of arbitrary length payloads can
be specified. This is possible, because variable length fields
are already transferred using UNCOMPRESSED method.
Providing some compression scheme is adopted, e.g. LZ77
[17], the ABNF rule might look like:

<rule_name> = LZ77(<length>, <v_length>)

where length bits should be compressed, and total length
obtained is stored in variable for subsequent compression.

This possible solution implies that LZ77 is a toolbox
method, and that payload is just another field under the EPIC-
lite framework. Instead of predetermined compression
algorithm, optimal one can be specified using e.g. UDVM
[15] byte code.

6. CONCLUSION

In this paper, an overview of proposed header compression
standards and compression specification syntaxes is given.
Based on experience from experimental realization of EPIC-
lite [12], optimal syntax for header compression specification
is proposed. It is based on EPIC-lite concept of Huffman
tokens header format indication.

The optimal compression ordering is achieved by random
access to header fields, and by using implicit compressed
stack for compression results. Uncompressed header format is
declared independently in profile header, together with other
variables, protocol identifiers, and profile and context check
rules. Each header field contains position (offset) parameter
for random access, except for optional fields whose position
is shifted according to previous options.

Random access to header fields provides easy
implementation of multi field ORed rules, because input_data
restoration is not necessary. Besides ORed rules, alternative
IF/ELSEIF/ELSE/ENDIF structure is introduced for further
consideration.

Optional fields encoding keeps the same concept from
EPIC-lite, modified to use declared header fields. The
possible redundancy of using additional unc fields stack,
appended after the compressed header, is discussed.
Compression of payload is proposed obeying the same
principles.

Proposed syntax satisfies declared goals. Usage of declared
fields yields human readability of the profile, and is basis for
its formal verification.

Introduced concepts should be elaborated to full standard
proposal. Future work includes experimental realization of
the concept and verification for functionality, ease of
implementation, profile writing safety, and header
compression efficiency versus complexity. Comparison to
other proposals [12, 13, 9] will be performed.

REFERENCES

[1] Bormann C, et al, 2001, "Robust Header Compression
(ROHC): Framework and four profiles: RTP, UDP, ESP, and
uncompressed”, RFC 3095

[2] Casner S, Jacobson V, "Compressing IP/UDP/RTP
Headers for Low-Speed Serial Links", RFC 2508, 1999.

[3] Cizmic, M., Vodopija, T.,;” Ozegovic, J.: "EPIC Lite
offline processing", SoftCOM 2002.

[4] Crocker D, et al: “Augmented BNF for Syntax
Specifications: ABNF”, RFC 2234, 1997.

[5] Degermark, M., Engan, M., Nordgren B, Pink S, "Low-
loss TCP/IP Header Compression for Wireless Networks"

ACM/Baltzer Journal on Wireless Networks, vol 3, no 5,
1997.

[6] Degermark M, Nordgren B, Pink S.: "IP Header
Compression", RFC 2507, 1999.

[7] Deutsch, P. "Deflate", RFC 1951,1996.

[8] Jacobson, V. "Compressing TCP/IP Headers for Low-
Speed Serial Links", RFC 1144, 1990.

[9] Liao, H., Zhang, Q., Zhu, W.: "Generic Header
Compression Notation for ROHC", draft-liao-rohc-notation-
00.txt, 2002.

[10] Lilley, J., Yang, J., Balakrishnan, H., Seshan, S.: "A
unified header compression framework for low-bandwidth
links", Proceedings of the sixth annual international
conference on Mobile computing and networking, p.131-142,
Boston, 2000.

[11] Mornar, M., Pezelj, A.,;’ Ozegovic, J.: " Testbed for
header compression implementation ", SoftCOM 2002.

[12] Price, R., Hancock, R., McCann, S., Surtees, A., Ollis,
P., West, M.: "Framework for EPIC-LITE", draft-ietf-rohc-
epic-lite-01.txt, 2002.

[13] Price, R., Surtees, A., West, M.: "A Formal Notation for

Header Compression", draft-west-rohc-formal-notation-
00.txt, 2002.

[14] Price, R., Surtees, A., McCann, S., West, M., Hancock,
R., Findlay, D.: "EPIC Provably Optimal Format Encoding
for Compression in the Internet", SoftCOM 2002.

[15] Price R, et al, "Signalling Compression (SigComp)",
RFC 3320, 2002.

[16] Stula, M., Vidjak, L., Ozegovic, J.: " Program structures
for EPIC-LITE experimental implementation ", SotCOM
2002.

[17] Ziv J., Lempel A., "A Universal Algorithm for
Sequential Data Compression", IEEE Transactions on
Information Theory, Vol. 23, No. 3, pp. 337-343.

