

Program structures for EPIC-LITE experimental implementation

Linda Vidjak, Maja Stula, Julije Ozegovic

University of Split, FESB Split
Split, Croatia

E-mail: {linda.vidak, maja.stula, julije.ozegovic}@fesb.hr

Abstract: New header compression techniques are
developed, and among them is EPIC-LITE compression
scheme, to increase efficiency when transferring Internet
packets over the limited cellular radio links. Experimental
implementation of EPIC-LITE on University of Split,
FESB Split, yielded experience of how to solve particular
problems efficiently. In addition, optimal data structures
used can be exploited to download preprocessed profiles
to terminal equipment.

1. INTRODUCTION

Internet Engineering Task Force (IETF) Robust Header
Compression (ROHC) group is currently working on new
compression scheme standardization [2]. The ROHC scheme
is designed to compress different packet headers, according to
the specified ROHC profiles, over error prone channels.

Efficient Protocol Independent Compression (EPIC-LITE)
scheme [1], extends the basic ROHC framework by
introducing ABNF (Augmented Backus-Naur Form) [3]
based input language for creation of new ROHC profiles. It is
currently subjected as a standardization proposal. Under
EPIC-LITE, processing can be divide in offline phase, when
profile is used to generate data structures, and online phase,
when actual compression and decompression takes place.

In this paper, process of developing program and data
structures for packet header compression and decompression
(online processing) according to the EPIC-LITE framework,
and ideas emerged from this activity, are presented.

The paper is organized as follows. In Chapter Two, general
EPIC-LITE overview is given. Chapter Three describes some
of the basic concepts given in Chapter Two from
implementation point of view. Chapter Four is dedicated to
the profile. Emphasis is put on implementation and usage of a
linear profile structure. Conclusions and future work are
given in Chapter Five.

2. EPIC-LITE OVERVIEW

Original packet header is compressed according to the
profile, and payload is added to the compressed header.
Compressed header doesn't contain just compressed fields. It
is extended with Huffman indicator flags, padding bits and
uncompressed fields, Figure 1.

Huff. b. unc. fields pad.pad. payloadcompress. fields
Compressed packet

Header payload
Original packet

Header payload
Uncompressed packet

COMPRESSION

DECOMPRESSION

Figure 1 – Compressed and decompresed packet structure

Uncompressed fields are whatever information,
compressed or uncompressed, whose format is not covered
with indicator flags, but rather with information contained in
compressed header itself. EPIC-LITE scheme assures that the
original packet can be regenerated from the compressed
packet.

The basic parts of compression and decompression are
Huffman flags generation, profile, context, encoding methods
(EPIC toolbox), and state machine.

Indicator flags or Huffman bits are version of Huffman
encoding [4] for each compressed header format. Multiple
format exists, because profile writer can specify more than
one encoding method for particular field (using "or"
operator). The flags are placed in front of the packet to
indicate to the decompressor exactly which encoding method
has been applied to corresponding header field.

Profile is specification that determines how to compress
headers of a certain kind of packet stream over a certain kind
of link [2]. Part of a profile for TCP/IP stream is shown on
Figure 2.

The context is information that consists of one or more
uncompressed header field values from previous packets [2].
The compressor and decompressor both maintain a copy of
context, so fields can be compressed relative to their stored
values for better compression efficiency. For robustness,
compressor can maintain more than one context per flow, and
compress headers according to all of them. This way, it is
ensured that decompressor can successfully decompress
received header, under the sole condition that its context is
one of contexts stored at the compressor.

TCP-IP-CO = INFERRED-IP-CHECKSUM(IPv4-co-header)
 TCP-co-header
 CRC(8,100%)

IPv4-co-header = version
 header-len
 tos-co
 ecn
 length
 ip-id-co
 rf-flag-co
 df-flag-co
 mf-flag
 offset
 ttl-co
 protocol
 ip-chksum
 src-address-co
 dst-address-co
version = VALUE(4,4,100%)
header-len = VALUE(4,5,100%)
tos-co = STATIC(99%) | IRREGULAR(6,1%)
ecn = IRREGULAR(2,100%)
length = INFERRED-SIZE(16,-16)
ip-id-co = NBO(16) ; check byte-order
 FORMAT(ip-id-seq-co, ip-id-rnd)
 STATIC(100%) ; format selector
 STATIC(100%) ; nbo flag

Figure 2 – Part of TCP/IP stream profile

Encoding methods are functions for compression and
decompression of header fields. EPIC-LITE [1] treats ROHC
encoding methods as library functions that are called by the
modified BNF input language. In [1], the syntax of each
encoding method is given using ABNF.

Profile writer determines what method will be used for
which field. It is supposed by EPIC-LITE draft that the writer
has knowledge about protocol header for which he is writing
profile. That knowledge should primarily be about header
structure (e.g. at which position field begins, how long the
field is in bits) and behavior of a field (e.g. field doesn't
change for a flow). Behavior of a field is important to choose
the best method for compression of that field.

Header compression [2] can be characterized as an
interaction between two state machines, one compressing
machine and one decompressing machine. Compressor and
decompressor have three states each. Both machines start in
the lowest compression state and transit gradually to higher
states.

(FO STATE)
IR DYN STATE-

IR STATE (SO STATE)
CO STATE

Figure 3 – State machine

According to [1] and [2] there are three states shown on the
Figure 3. IR (Initialization and Refresh) state is used to
refresh or to initialize static parts of the context at the
decompressor. The compressor sends, practically, full header
in this state using IR profile. IR-DYN (Dynamic Initialization
and Refresh) or FO (First Order in [2]) state is used to
transmit the fields that differ between two consecutive
packets in a stream. It is used when compressor suspects that
decompressor has lost full context. CO (COmpressed) or SO
(Second Order in [2]) state is state where compression is
optimal. Compressor enters this state when it is sufficiently
confident that decompressor has enough information (full
context) to decompress a packet.

3. BASIC IMPLEMENTATION ISSUES

EPIC-LITE scheme implies two main phases of processing.
Offline processing includes parsing textual profile to generate
indicator flags and data structures suitable for online
processing [4]. Online processing is used to actually
compress and decompress headers.

The experimental implementation described here concerns
file to file compression and decompression. Input data for
compressor are packets (TCP/IP, RTP) captured to the file,
while decompressor uses compressed packet headers from file
generated by the compressor.

3.1 Input data

Through EPIC-LITE draft [1] several bit stacks
(uncompressed_data stack, compression_data stack,
unc_fields stack) and one item stack (control_data stack) are
introduced. EPIC-LITE actually specifies multiple stack
oriented machine.

Experimental application treats input data as an array of
bytes, loaded to the memory buffer in the same order as they
were received from the communication channel, currently
from the captured flow input file. This approach was chosen
to optimize bit manipulations and prepare the code for
processing actual packets stored in communications
subsystem structures (like Linux sk_buff [6]).

3.2 Bit manipulation

Packet header fields have different lengths varying form 1
bit (flags) up to more than 32 (IpV6 source address, some
TCP options). Bit manipulation, like extracting 1 bit from a
byte, reading bits from 7-th to 14-th bit in 16 bit word etc. is
not something that is natural neither to programming
languages nor to processors. Processors are made to operate
on 8, 16, 32 or 64 bit long parts of memory. Practically, there
is no way to read just 1 or 3 bits from a bit stream. Processor
always has to access at least 1 byte and manipulate it to
extract wanted bits.

In experimental implementation, each field value is
extracted and stored in the 32 bits word, aligned right. This is
possibly done only once. The length information is found in
profile structure or context. To extract field value, shifting
and "and" masks are used. The opposite process is used when
assembling compressed header. Actual read and write
algorithms are byte oriented to flexibly manipulate arbitrary
long fields. Since virtual machine is stack oriented, extract
operation is assumed to be destructive.

Bit manipulation procedures are further complicated with
two requirements: to preserve original input data array, and to
append compressor generated data to the input data.
Preservation is needed after format failure because of low
probability, and after multi field rule failure. The problem is
resolved by using special addition to the uncompressed data
stack, called "help stack". Appended data is pushed to the
help stack, and read first before access to input data is
possible, Figure 4.

00110001 10110001 00111111 11100000 11111111

11110001 10100000 00000000

ENCODING
METHOD

process data data left to process

input data

pop

push/pop

help stack

byte
pointer

bit
pointer

bit
pointer

byte
pointer

Figure 4 –Bit stack manipulation

This way, stack read is actually nondestructive, because
original data is not overwritten. It can be restored by simply
moving stack pointer back to appropriate value.

3.3 Encoding methods

According to practical implementation experience,
encoding methods are classified in two main groups:
o Elementary methods – are encoding methods that

process single header field. This is done without
modifying field order and uncompressed packet data.
Methods in this group are STATIC, VALUE,
IRREGULAR, IRREGULAR-PADDED, INFERRED
-IP-CHECKSUM, and LSB.

o Complex methods – are methods that process more
than one field. Those are methods like: FORMAT,
LIST, CRC, "MACRO". In this group we also put
methods that change field order like STACK encoding
methods, than U and UNCOMPRESSED, as well as

methods that put some additional information to
compressed header that doesn’t exist in original header
like NBO flag, FORMAT flag and MSN.

Method classification is later used for development of
linear profile structures.

3.4. Multi field rules and "or" operator

Multi field rules are BNF rules that process several
consecutive header fields. Such rules can be connected with
choice "or" operator. This special case is called ORed rules
[5]. It is executed in a way that first ORed rule is used. If any
of methods inside first rule fails, the whole rule fails, and next
ORed rule is tried for compression.

Complexity emerges from a fact that if one ORed rule fails,
all context, input and output data values have to be restored to
a state before ORed rule was applied.

In experimental implementation it was necessary to code
ORed rules as a separate method. New "MACRO" method is
introduced, despite not being specified in the EPIC-LITE
draft. However, this method is transparent, and implicitly
defined when ORed rules are specified in the profile.

Implemented MACRO method is by function very similar
to FORMAT method, but choice is indicated through
indicator flags, rather than through explicit indication.

3.5 State machine

Compressor and decompressor are implemented like
independent program functions, Figure 5. Compressor
initially starts in IR state and in this state compresses r
consequent packets, where r is number of contexts per flow.
Experiments were conducted with r=3. Then compressor
moves to CO state. IR-DYN state is reached in two cases,
indicator flags were discarded, or all encoding methods stated
in the profile for a field have failed.

N < r

profile = IR profile = CO

COMPRESS

OK

error

COMPRESS

OK

profile = IR-DYN

COMPRESS

OK

YES

NOYES

NO

YES

NO

YESNO

Wait for packet

ROHC
header

DECOMPRESS

OK

profile = IR profile = CO

YES

NOYES

log file

NO

profile = IR-DYN

Wait for packet

COMPRESSOR DECOMPRESSOR

Figure 5 – State machine flow chart

State machines call inner interpreter functions to perform
actual compression and decompression. All parameters
needed for state machine and inner interpreter operations are
contained or linked to a master structure, unique per flow.

4. PROFILE STRUCTURES

One of the main strength of EPIC-LITE specification is
protocol independence, gained from the ABNF input
language for compression specification. It can be used to
simply generate particular protocol stack application, or to
implement universal compressor - decompressor machine. In
later case, profile is used to generate required functionality on
demand: offline and online phases mentioned before emerge,
and inner interpreter concept is introduced to process
whatever methods profile did specify.

Experimental implementation uses profile parsed to a
linked list of data structures to be interpreted by inner
interpreter compressor and decompressor machines. Each
structure actually represents one encoding elementary or
complex method or rule, and contains all necessary
parameters, Figure 6.

bToolbox parameter indicates if method concerned appears
in integer string representation of used header format or not
[4]. If not, default value of 0 is used in integer string. value is
pointer to the list of encoding method parameters, while
length is pointer to header field length. offset is offset
parameter, as well as prob is probability parameter, as
specified for particular method. method_id parameter is used
for method identification. list_order is useful as branch
indicator for LIST method.

typedef struct encoding_method
{
 bool bToolbox;
 VALUE_LIST* value;
 LENGTH* length;
 int offset;
 u16 prob;
 u8 method_id;
 u8 list_order;

 encoding_method* Child;
 encoding_method* Or;
 encoding_method* Next;
 encoding_method* Prev;
};

Figure 6 – Profile parameters

Several pointers to structures of the same kind are
provided, to accommodate proper profile representation.
Child is a pointer to the child encoding method of complex
structures like FORMAT, Or to the next optional method or
rule, Next to the next field encoding method or rule, and Prev
pointer to the previous field encoding method or rule. Next
pointer is used by compressor to traverse forward the profile,
while decompressor uses Prev to traverse backwards.

4.1. Linear profile

Experimental implementation was developed in several
phases. The first profiles used contained only elementary
methods, so it was possible to parse profile text file to a
linked list shown on Figure 7. Usage of Next, Prev, and Or
pointers is illustrated based on beginning of profile from
Figure 2. Lack of Child pointer can be noticed.

STATIC

Next
Or

Prev

IRREG

Next
Or

Prev

VALUE

Next
Or

Prev

IRREG

Next
Or

Prev

header-len tos-co ecn

Figure 7 – Linear profile

Although EPIC-LITE profile has a tree structure based on
possibility to define new rules using previous ones, simple
profile was easily parsed to almost linear list structure.

Compressor inner interpreter passes from the beginning of
the linked list towards its end. Each structure in the list
contains information about header field that compressor is
just to compress, so by passing through profile list
compressor actually passes along the uncompressed header.

If field length is not among method parameters (e.g.
STATIC encoding method), it can be obtained form the
context, where it is initiated using IR headers. Compressor
than reads amount of bits defined by field length from
uncompressed_data stack to 32-bit long variable,
incrementing stack pointer for the value of field length.

Compressed fields are used to construct compressed header
by concatenating them in reverse order.

After reading indicator flags from beginning of the
compressed header, decompressor calculates list of used
methods in reverse order, in accordance with compressed
fields order. For each field, decompressor reads amount of
bits defined by profile or encoding method. Passing backward
through linear list of structures, decompressor inner
interpreter passes through the compressed header.

Using almost linear list structure described, several benefits
were encountered. Calculation of method string from
indicator flags is simple, inner interpreter operations are
optimized, and list itself resembles header format closely.

4.2 Extended Linear Profile

More elaborated profiles introduced complex methods like
FORMAT, MACRO and LIST. These methods actually
perform additional branching and are close to tree structure of
ABNF. Due to benefits of almost linear format, its properties
were to be preserved.

The solution was found in additional branching by
introducing new Child pointer. The solution used is called
extended linear format, still much simpler than full tree
structure of complex profile. In Figure 8, data structure for
profile from Figure 2 is disclosed.

Extended linear profile generation is described in [4].

5. CONCLUSION

This paper provides basic implementation issues of EPIC-
LITE scheme. Experimental implementation has shown that
functional compressor and decompressor application can be
made based on EPIC-LITE specification.

Implementation developed includes solution and
optimization of bit manipulation, encoding method
classification, and state machine functionality. In particular, a
need for additional method to support ORed rules was
recognized, and MACRO method was introduced.

Experience gained in data structures for simple profiles,
which were almost linear, implied the same strategy to be
used for complex profiles. Extended linear profile structure is
successfully applied and used by compressor and
decompressor inner interpreters. Generation of linear profile

structure was supported by the offline part of the
experimental implementation.

The significance of extended linear profile is, that in
optimized manner complex profiles are supported, while
enabling the format indicator flags to be downloaded to
online processes in simple syntax. Doing so, terminal
equipment need not perform complex Huffman generation
procedures.

Future work will provide additional testing of inner parser
and extended linear profile. Transition to processing actual
packets, stored in communications subsystem structures,
should also be included.

REFERENCES

[1] R. Price, R. Hancock, S. McCann, A. Surtees, P. Ollis, M.
West: "Framework for EPIC-LITE", draft-ietf-rohc-epic-lite-
01.txt, February 2002.
[2] Bormann C, et al, 2001, "Robust Header Compression
(ROHC): Framework and four profiles: RTP, UDP, ESP, and
uncompressed", RFC 3095
[3] Crocker D., et all, "Augmented BNF for syntax
specifications: ABNF", RFC 2234, 1997
[4] Cizmic, M., Vodopija, T. ,, Ozegovic, J.: "EPIC lite
offline processing", Softcom 2002.
[5] Ozegovic, J., "Optimal syntax for packet header
compression specification", Softcom 2002.
[6] Mornar, M., Pezelj, A.,, Ozegovic, J.: " Testbed for header
compression implementation ", SOFTCom 2002.

VALUE

Child
Or

Next
Prev

version

VALUE

Child
Or

Next
Prev

header_len

STATIC

Child
Or

Next
Prev

tos_co

IRREG

Child
Or

Next
Prev

ecn

INF-SIZE

Child
Or

Next
Prev

length

NBO

Child
Or

Next
Prev

ip_id_co

FORMAT

Child
Or

Next
Prev

ip_id_co

STATIC

Child
Or

Next
Prev

ip_id_co

VALUE

Child
Or

Next
Prev

ip_id_seq

Child
Or

Next
Prev

LSB

Child
Or

Next
Prev

ip_id_rnd

Child
Or

Next
Prev

IRREG

Child
Or

Next
Prev

Figure 8 – Expanded linear profile

	1. INTRODUCTION
	4.1. Linear profile
	REFERENCES

