EPIC Lite offline processing

Mia Cizmic’, Tijana Vodopija - Julije Ozegovic
"KRON d.0.0 Split
**PSE—Split Siemens d.d.
“*University of Split, FESB Split
Split, Croatia
E-mail: mia.cizmic@kron.hr, tijana.vodopija@siemens.hr, julije.ozegovic@fesb.hr

Abstract: Header compression has always been an attractive way
of conserving bandwidth over low-speed links. Initially
motivated to improve the performance of dial-up modems at 14.4
or 28.8 kbps, header compression is actual again, due to
proliferation of wireless systems. EPIC Lite is compression
scheme, which instead of being based on protocol-specific
standard, represents unified framework for header compression.
In this paper, based on experience from experimental
implementation, offline processing results are presented and
improvements are proposed.

1. INTRODUCTION

Current research in the field of packet header compression
is focused on robustness and formal specification. The last is
pioneered by Roke Manor Research - Efficient Protocol
Independent Compression (EPIC Lite) scheme [7]. The
packet header and thus compression algorithm are defined as
"profile", using ABNF formal notation [8]. In such a system,
compression is performed in two phases: offline phase to
interpret protocol stack profile, and online phase to actually
compress (and decompress) packets from data flows.

EPIC Lite scheme [7] is experimentally implemented on
University of Split, FESB Split. In this paper, the experience
gained for the offline phase is presented, and improvements
are proposed. The rest of the paper is organized as follows.

Chapter Two gives introduction to header compression and
brief comparison of EPIC Lite and other header compression
schemes. Offline and online processing phases are described
in Chapter Three followed by profile processing description
and proposition of descending sort. Implementation specific
solutions related to offline phase are presented in Chapter
Four, together with a proposition of offline improvements.
Given improvements are related to decreasing time and
memory consumption in offline phase, and have no impact on
compression ratio.

2. HEADER COMPRESSION

The protocol overhead can significantly increase the packet
size of interactive applications that use small packets. It can
sometimes take up to 75% of the total network capacity,
which is unacceptable for mobile networks. Header
compression takes advantage of the precise header format and
known behavior of header fields to achieve significant
reduction of header size.

One of the earliest examples of header compression was
the Thinwire protocol [1], proposed in 1984. It uses a simple
20-bit field to specify which of the packet header’s first 20
bytes have changed. Thinwire was relatively protocol
independent, but was not optimized for most common
protocol headers.

In early 1990, Van Jacobson [2] proposed TCP/IP-specific
compression algorithm with many optimizations taking
advantage of this protocol stack field behavior. Sending
between 3-5 bytes of the 40-byte header in the common case,
Van Jacobson is efficient and the most widely deployed
header compression protocol. However, it works only with
TCP/IP packets, and does not provide robustness.

Since then, compression specifications for a number of
other protocols have been written. Degermark proposed
additional compression algorithms for UDP/IP and TCP/IPv6
[4]. Detailed specifications for compressing these protocols,
as well as others, such as RTP [9] were described in several
subsequent RFCs including 2507 [10], 2508 [3] and 2509
[11]. Each of these descriptions specifies a solution for a
given protocol.

Despite the development of various compression schemes
in recent years, header compression deployment failed.
Former schemes were dominantly purposed for slow serial
lines, where expected error rates are low thanks to the data
link layer protocol functionality. Currently, usage of header
compression is expected in the wireless network area, where
error rates and round trip times are high. More robust
schemes are needed. Development efforts are concentrated

around IETF Robust Header Compression (ROHC) [6]
working group.

Unlike known protocol-specific compression techniques,
EPIC Lite [7] provides protocol independent specification
system for header compression under ROHC framework. It
includes a simple human readable profile language, used to
describe header properties in high-level manner. Profile
language assigns one or more compression methods to each
field in the protocol stack to be compressed. Using this input,
EPIC Lite derives one or more sets of compressed header
formats that can be used to quickly and efficiently compress
and decompress actual headers. Identification code is
appended in front of the compressed header to communicate
used compression format to the decompressor.

3. OFFLINE PROCESSING

3.1 Header processing phases

The idea of header compression is to avoid transferring
redundant information. Compression depends on field
behavior during the lifetime of a connection. For randomly
changing fields, there is not much benefit from the
compression. However, there are fields that remain constant,
or change slightly from the previous packet value. Some can
even be calculated (inferred) from other fields. These fields
can be expressed with fewer bits that transfer only the
difference, or need not to be transmitted at all.

EPIC Lite toolbox consists of primitive compression
procedures called "encoding methods" [7]. One or more
encoding methods, along with the probability of usage, are
applied to each field by profile. Profile is, in fact, a
description of how the chosen protocol stack behaves.

As mentioned before, EPIC Lite header processing has two
main phases. First, considered to be an offline phase, is used
to convert the input profile into one or more sets of
compressed header formats. It is run once. Results are stored
at compressor and decompressor.

Second phase, or online phase, is repeated for each packet
in the stream. The first step for compressor is to determinate
the context relative to which particular packet will be
compressed. After choosing right context, state machine
could be started. EPIC Lite state machine defines three states
(IR, IR-DYN, CO) and determinates which set of header
formats will be used. Three state machine states imply three
kinds of packets. Beside CO (compressed) packet, there are
IR (Initialization and Refresh) and IR-DYN (partially
compressed) packets used to obtain and refresh the context.

Depending of stored context values and the state of the
machine, compressor chooses between various encoding
methods offered by protocol profile. It tries to robustly
transfer header content to the decompressor, using as few bits

as possible. Each choice of encoding methods maps to unique
header format and each header format is represented with
unique identification code (indicator flags). Those flags are
put in front of the compressed header, Figure 1.

1101100 | Compressed Field 1 | Compressed Field 2 | |

Figure 1 — EPIC Lite compressed header

Indicator flags are version of Huffman encoding [13].
When used in EPIC Lite, the encoded set is simply the set of
all possible header formats, where each identifier maps to a
compressed header format and vice versa. The property of
Huffman coding is that more frequent formats are given
shorter identifiers than rarely used ones, which increases
compression ratio.

Decompressor reads the indicator flags to determine which
compressed header format has been used. This allows the
compressed value of each field to be extracted. Using the
compressed value of each field and the context, decompressor
can apply the encoding methods to reconstruct the
uncompressed packet. Fields are decompressed in reverse
order compared to compression procedure. This ensures that
fields, which are inferred from other field values, are
reconstructed correctly. Finally, the decompressor verifies
that correct decompression has occurred by applying the
header checksum. If the packet is successfully verified, it can
be forwarded.

3.2 EPIC Lite input profile

To enable the interoperability between compressor and
decompressor, it is important that the EPIC Lite input profiles
are specified and processed in an unambiguous manner.

Each EPIC (Lite) profile has eight variables that fully
describe profile; three of them (profile_identifier, npatterns,
bit_aligment) are used to negotiate towards ROHC framework
[6], others are as follows:

max_formats
max_sets
CO_packet
IR-DYN_packet
IR_packet

The max_formats parameter controls the number of

compressed header formats to be stored at the compressor and
decompressor.

The max_sets parameter controls the total number of sets
of compressed header formats to be stored. Profile can have
several sets of compressed header formats, but only one set
may be in use at a given time.

CO_packet, IR-DYN_packet, IR_packet are encoding
methods (in the rest of the paper called profiles) used to

generate CO, IR-DYN and IR packets respectively. Profiles
are described using modified BNF (Backus Naur Form)
called Augmented BNF [8]. BNF is a "metasyntax"
commonly used to describe the syntax of protocols and
languages. The language itself is simple consisting of rules
and actions, which allow relatively simple parser
implementation.

Writing profile consists of describing individual header
fields by assigning one or more encoding methods to it.
Multiple methods are given using choice (“”) operator, along
with the probability that indicates how often encoding method
will be used. Encoding method can be one from the toolbox
encoding methods, or can be created from toolbox ones by
writing a new BNF rule. Therefore, profile has tree-based
structure as shown in the Figure 2.

Header = Field_A
new_rule
Field_C
Field_A = STATIC(90%) | IRREGULAR(2,10%)
new_rule = Field_B1
Field_B2
Field_B1 = STATIC(100%)
Field_B2 = VALUE(4,1,80%) | VALUE(4,0,20%)
Field_C = STATIC(70%) | LSB(8,-1,15%) | LSB(16,-1,15%)

Figure 2 — Example of profile writing

3.3 Profile processing

Profile provides multiple formats for a protocol stack,
depending on the choice of toolbox encoding methods for all
fields. For protocol profile introduced in Figure 2, there is a
set of 2*¥1*2*3 = 12 possible header formats. Each header
format has a different probability. Since fields are assumed to
behave independently, format probability is calculated as
product of method probabilities. After all calculations are
done, offline processing assigns appropriate indicator flags to
each header format. Codes are given using ordinary Huffman
algorithm, which assigns the shortest code to most probable
header format.

To reduce the amount of memory needed for storing format
information, only max_formats header formats are stored at
compressor and decompressor per each format set. The
formats with the greatest probability to be used are kept. If
compressor tries to encode the header using the header format
that was discarded because of low probability, state machine
would switch to IR-DYN or IR state. Transition to IR state
increases compressed header size, but is the trade off between
compression efficiency and memory consumption. It is highly
recommended for profile writers not to have more than
max_formats formats for IR set because it would mean that
there are headers which are impossible to compress.

While calculating max_formats header formats, it is not
necessary to calculate all possible header formats and than
keep the most probable ones. Algorithm offered by Roke
Manor is, in fact, tree-recursive algorithm. Formats are
generated following the tree structure of BNF specification.
At each step, which means inclusion of next tree branch,
algorithm combines list of items produced by earlier steps. If
new list exceeds the max_formats number, all items with the
probability lower then last item probability are discarded
because that will not affect the final list order.

During format generation, items are stored in probability
based ascending sorted lists. At each step, combined list must
be resorted, even if new list of items does not increase
number of formats before discarding.

3.4 Descending sort proposition

To apply Roke Manor discarding policy, it is necessary to
have probability-based descending sorted lists of items (to be
able to compute first max_formats ones). Since lists are kept
in ascending order by [7], list must be reversed to descending
order before discarding.

In current profile writing practice, multiple methods for a
header field are listed in descending probability order. This
order is followed when calculating the formats.

Since items enter the list in the way they were written in the
profile, and that is dominantly in probability-based
descending order, it is somehow natural to keep the list in
descending order. This way, number of swapping operations
is reduced. Additionally, list is already prepared for
discarding procedure, which needs the list in descending
order. To optimize offline processing, actually to decrease the
number of operations, we propose to keep sorted lists in
descending probability order.

Change in sorting order has impact on final list of header
formats. As an example, the indicator flags for a set of
compressed header formats for earlier profile are given in
Table 1.

Header formats are represented as zero-based integer
strings. Each integer denotes the enumeration in which
toolbox encoding method used to compress appropriate field
is written in the profile. Thus, header format 1010 marked
with flags 1101100 uses IRREGULAR(2,10%), STATIC(100%),
VALUE(4,0,20%), STATIC(70%) encoding methods to
compress header fields.

It is obvious that for header formats, which have equal
probabilities, computed Huffman codes are the same
regardless which kind of sorting was applied. However, they
do not indicate the same header format.

FESB University’s implementation kept the ascending
order for compatibility reasons. We propose the descending
sorting to enter the standard.

prob(%) formats_ derived by sort_ing Huffman codes
ascending descending

0.3 1011 1012 11011111
0.3 1012 1011 11011110
1.2 1001 1002 1101110
1.2 1002 1001 1101101
1.4 1010 1010 1101100
2.7 0011 0012 110101
2.7 0012 0011 110100
5.6 1000 1000 1100

10.8 0001 0002 1011

10.8 0002 0001 1010

12.6 0010 0010 100

50.4 0000 0000 0

Table 1 — Indicator flags for profile from Figure 2

4. IMPLEMENTATION SPECIFIC SOLUTIONS

4.1 Linear profile

Direct interpretation of BNF input language results with
profile, which itself has a tree structure. Each node of the
profile corresponds to some non-library encoding method,
and leaf nodes are toolbox encoding methods.

Figure 3 depicts tree for example profile from Figure 2.

Header —= Field_a ——» STATICO0%) |
¢ IRREGULAR(Z,10%:)

new_mile —= Figld_B1 —* STATIC100%:)

Field_ B2 —m WALUE(4,1,50%) |
YALUE(4,0,20%:)

Field_C STATIC70%) |
L3B(8,-1,1 5% |

L3E(16,-1,15%)

——

Figure 3 — Tree representation of example profile

Using tree-structured profile, compression is, in fact, tree
traversal. Field is encoded only when toolbox method is
reached. In this activity, inner tree nodes are redundant,
consuming memory and processing time.

To optimize compressor and decompressor operations,
FESB implementation is provided with some kind of linear
profile. It is structured as double-linked list, which consists
from toolbox method’s nodes only. Nodes are linked in the
order they apply to uncompressed header. Linear
representation of example profile is given on Figure 4. More
complex encoding methods can also be represented in this
way [12].

STATIZ90%:) +» STATIZ100%) 4 YALUE(4,1,80%) 4+ STATIC70%)

|
LSE(Sl,-l,lS%_j
LSE(16,-1,1 5%

IRREGLILAR(Z,10%%) YALUE(4,0,20%:)

Figure 4 — Linear representation of a profile

Linear profile is created in the offline phase, in parallel
with computing header formats set(s). That allows definition
of mapping between an integer string and header format as
explained in previous Chapter. One-to-one mapping would be
much more complicated if the tree structure was dealt with.
We propose linear profile to be considered in future
standardization process.

4.2 Pre-processing profile proposition

Parsing the profile written in BNF form and converting it
to one or more sets of compressed header formats, takes time
and processing power due to numerous sorting. Result is a list
of max_formats most probable header formats for each set.

Compressor stores information about retained header
formats and indicator bits mapped to them. To correctly apply
some encoding methods, decompressor needs one extra
information, i.e. the compressed header size.

It turns out that each header format is fully described with
four parameters: header format identification, compressed
header size (in bits), length and value of assigned Huffman
code.

All those parts of information can be pre-processed on any
platform and appended to the profile. There are two benefits
from this approach. First, remaining offline task in
compressor - decompressor will consist of parsing the profile
specification for data structure generation only. This can be
done quickly. Second, the chance to misinterpret indicator
bits and header formats will decrease to minimum. Namely,
indicator bits will not be calculated, but rather red from the
information appended to the profile file.

Proposed format of pre-processed information for the
example profile is shown in Figure 5.

current_set := 0

1011 | 10 | 8 | DF
1012 | 18 |8 | DE
[... [... [...
0000 |0 [1 [0

current_set ;=1
| ... | ... | e

Figure 5 — Proposed pre-processed information format

The keyword current_set denotes the beginning of list of
rows, which actually represent header formats retained for
given set. Each row has four columns: first column is header
format string representation (the same one described before),
second is the size of compressed header in bits expressed
decimal, third column represents length of indicator bits
(decimal), and the last column is the value of indicator bits
(hexadecimal). Arbitrary columns separator can be specified,
the sign “|” is chosen in the example for human readability.

5. CONCLUSION

Using EPIC Lite to compress new protocol stack, the only
needed intervention is to write a suitable protocol profile.
Even it is not specially designed for a particular protocol
stack, compression ratio obtained using EPIC Lite is
comparable to other compression techniques.

Experimental implementation of EPIC Lite, realized at
University of Split, FESB Split, proved that efficient
compression is obtainable with an application derived from
[71.

Experience based on actual implementation motivated
some improvement proposals for offline processing phase.
Proposed improvements leave the main idea of EPIC Lite
unchanged, but could speed up some time-critical parts.

First, descending sort is proposed in the process of
calculating max_formats header formats to spare some item
swapping. Offline phase can be less time consuming,

Second, linear structure of profile is proposed to optimize
online operations (compression and decompression). It
allows integer string format representation.

Third, profile pre-processing is proposed, which should
append format definition strings and related Huffman
indicator bits to the original BNF specification of the profile.
Instead of time consuming calculation of max_formats header
formats and their indicator flags, offline processing in
terminal equipment should only parse BNF file and appended
format information to build internal data structures.
Additional benefit is the lower probability for terminal
equipment to miscalculate formats.

Future work should prove proposed concepts. Current draft
proposal [7] needs to be extended, and experimental
implementation adjusted accordingly.

(1]

(2]

[3]

[4]

[3]

(6]

(7]

[8]

[9]

[10]

[11]

[12]

[13]

REFERENCES

D. Farber, G. Delp, T. Conte, “4 Thinwire Protocol
for connecting personal office computers to the
Internet”, RFC 914, September 1984

V. Jacobson, "Compressing TCP/IP Headers", RFC
1144, January 1990

S. Casner, V. Jacobson, "Compressing IP/UDP/RTP
Headers for Low-Speed Serial Links", RFC 2508,
February 1999

M. Degermark, H. Hannu, L-E. Jonsson, K. Svanbro,
"Evaluation of CRTP Performance over Cellular
Radio Networks", IEEE Personal Communications
Magazine, Volume 7, number 4, pp. 20-25, August
2000

R. Price, A. Surtees, M. West: "4 Formal Notation
for Header Compression", draft-west-rohc-formal-
notation-00.txt, June 2002

C. Bormann, C. Burmeister, M. Degermark, H.
Fukushima, H. Hannu, L. Jonsson, R. Hakenberg, T.
Koren, K. Le, Z. Liu, A. Martensson, A. Miyazaki,
K. Svanbro, T. Wiebke, T. Yoshimura, H. Zheng,
"Robust Header Compression (ROHC): Framework
and four profiles: RTP, UDP, ESP, and
uncompressed", RFC 3095, July 2001

R. Price, R. Hancock, P. Ollis, A. Surtees, M. West,
"Framework for EPIC-lite", draft-ietf-rohc-epic-lite-
01.txt (work in progress), February 2002

D. Crocker, P. Overel, “Augmented BNF for Syntax
Specifications: ABNF”, RFC 2234, November 1997

H. Schulzrinne, S. Casner, R. Frederick, V.
Jacobson, “RTP: A Transport Protocol for Real-Time
Applications”, RFC 1889, January 1996

M. Degermark, B. Nordgren, S. Pink, “/P Header
Compression”, RFC 2507, February 1999

M. Engan, S. Casner, C. Bormann, “/P Header
Compression over PPP”, RFC 2509, February 1999

L. Vidjak, M. Stula, J. Ozegovic: “Program
structures for EPIC-LITE experimental
implementation”, SoftCOM, October 2002

K. Sayood, “Introduction to Data Compression,
Second Edition”, Morgan Kaufmann Publishers,
March 2000

