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1 Introduction

It is well-known that there are five operations of implication in an ortho-

modular lattice which all reduce to the classical implication in a distributive

lattice. (Kalmbach, 1983) It was therefore believed that implication algebras

for these implications must all be different and such different algebras have

explicitly been defined in the literature. (Clark, 1973; Piziak, 1974; Abbott,

1976; Georgacarakos, 1980; Hardegree, 1981a; Chajda, Halaš, & Länger,

2001)

In a previous paper (Pavičić & Megill, 1998) we have shown that one

can formulate quantum implication algebras with “negation” [(ortho)com-

plementation] with the same axioms for all five quantum implications. We

arrived at such a formulation of implication algebras by using a novel possi-

bility, given in Refs. (Megill & Pavičić, 2001) and (Megill & Pavičić, 2002),

of defining different quantum operations by each other. Implicitly, the latter

possibility provides us a direct way of formulating quantum algebras without

complementation and in this paper we give it.

To do so, we were prompted by a recent formulation of an implication

algebra. (Chajda et al., 2001) The authors formulate an algebra based on the

Dishkant implication previously considered by (Kimble, Jr., 1969; Abbott,

1976; Georgacarakos, 1980) and cited by (Hardegree, 1981a; Pavičić & Megill,

1998). There are also other quantum implication algebras given by (Finch,

1970; Clark, 1973; Piziak, 1974; Hardegree, 1981a, 1981b; Georgacarakos,

1980; Pavičić & Megill, 1998) and others. In this paper we show how are all

these algebras interrelated.

2 Preliminaries

Let us first repeat a definition of an orthomodular lattice. (Megill & Pavičić,

2002)

Definition 2.1. An orthomodular lattice (OML) is an algebraic structure

〈L,∪,⊥ 〉 in which the following conditions are satisfied for any a, b, c ∈ L:
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L1. a ≤ a⊥⊥ & a⊥⊥ ≤ a

L2. a ≤ a ∪ b & b ≤ a ∪ b

L3. a ≤ b & b ≤ a ⇒ a = b

L4. a ≤ 1

L5. a ≤ b ⇒ b⊥ ≤ a⊥

L6. a ≤ b & b ≤ c ⇒ a ≤ c

L7. a ≤ c & b ≤ c ⇒ a ∪ b ≤ c

L8. a →i b = 1 ⇒ a ≤ b (i = 1,..., 5)

where a ≤ b
def⇔a ∪ b = b, 1

def
= a ∪ a⊥. Also

a ∩ b
def
= (a⊥ ∪ b⊥)⊥, 0

def
= a ∩ a⊥.

and the implications a →i b (i = 1, . . . , 5) are defined as follows

a →1 b
def
= a⊥ ∪ (a ∩ b) (Sasaki)

a →2 b
def
= b ∪ (a⊥ ∩ b⊥) (Dishkant)

a →3 b
def
= ((a⊥ ∩ b) ∪ (a⊥ ∩ b⊥)) ∪ (a ∩ (a⊥ ∪ b)) (Kalmbach)

a →4 b
def
= ((a ∩ b) ∪ (a⊥ ∩ b)) ∪ ((a⊥ ∪ b) ∩ b⊥) (non-tollens)

a →5 b
def
= ((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥) (relevance)

The following theorem is well-known.

Theorem 2.1. The equation a⊥ = a →i 0 is true in all orthomodular lattices

for i = 1, . . . , 5.

Proof. The proof is straightforward and we omit it.

There are 6 Boolean-equivalent expressions for implication in an OML.

In addition to the 5 quantum implications above, which are distinguished

by satisfying L8 (also known as the Birkhoff-von Neumann requirement), we

have the classical implication that does not satisfy L8 in every OML:

a →0 b
def
= a⊥ ∪ b (classical)
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3 Implication algebras based on the Dishkant impli-
cation

Two kinds of implicational algebras based on the Dishkant implication →2

have been proposed in the literature: orthoimplication algebras (Abbott,

1976) and orthomodular implication algebras (Chajda et al., 2001). In this

section we summarise the two systems and some of their principle results,

which are proved in their respective articles. As much as is practical we

attempt to use the terminology of the authors of those articles.

Definition 3.1. (Abbott, 1976) An orthoimplication algebra (OIA) is an

algebraic structure 〈A, ·〉 with a single binary operation that satisfies:

OI1 (ab)a = a

OI2 (ab)b = (ba)a

OI3 a((ba)c) = ac

Definition 3.2. (Chajda et al., 2001) An orthomodular implication alge-

bra (OMIA) is an algebraic structure 〈A, ·, 1〉 with binary operation · and

constant 1 that satisfy:

O1 aa = 1

O2 a(ba) = 1

O3 (ab)a = a

O4 (ab)b = (ba)a

O5 (((ab)b)c)(ac) = 1

O6 (((((((((ab)b)c)c)c)a)a)c)a)a = (((ab)b)c)c

We note that the theorem aa = bb holds in both systems, and it can

be proved under OMIA without invoking axiom O1. Thus we may treat

the constant 1 of OMIA as a defined term 1 =def aa (making axiom O1

redundant), or we may extend OIA with a constant 1 (and add an axiom

aa = 1 for it). For ease of comparing the two systems, we choose the first

approach and henceforth shall consider 1 to be a defined term in OMIA.

Both OIA and OMIA are sound for the Dishkant implication in the sense

that if the binary operation · is replaced throughout by →2, each axiom

becomes an equation that holds in all OMLs. Thus each of these systems
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corresponds to a (not necessarily complete) Dishkant implicational fragment

of OML theory.

A join semilattice is a partially-ordered set that is bounded above and in

which every pair of elements has a least upper bound. Both OIA and OMIA

induce join semilattices 〈A,∪, 1〉 under the definitions a ∪ b =def (ab)b and

1 =def aa, with the partial order defined by a ≤ b ⇔def a∪ b = b ⇔ ab = 1.

The algebras OIA and OMIA also induce, respectively, more specialised

associated structures called semi-orthomodular lattices and orthomodular join

semilattices. These are defined as follows.

Definition 3.3. (Chajda et al., 2001) An orthomodular join semilattice

(OJS) is an algebraic structure 〈A,∪, 1, 〈⊥x ; x ∈ A〉〉 where 〈A,∪, 1〉 is a join

semilattice and 〈⊥x ; x ∈ A〉 is a sequence of unary operations, one for each

member x of A, such that the structure 〈Fx,∪, ⊥x 〉 is an orthomodular lattice,

where Fx =def {y|x ≤ y} the principal filter of A generated by x.

Definition 3.4. (Abbott, 1976) A semi-orthomodular lattice (SOL) is an

OJS with the further requirement

C a ≤ b ≤ c ⇒ c⊥b = c⊥a ∪ b.

Theorem 3.1. (Abbott, 1976) (i) Every OIA induces an SOL under the

definition a⊥b =def ab for a ∈ Fb. (ii) Every SOL induces an OIA under the

definition ab =def (a ∪ b)⊥b .

Theorem 3.2. (Chajda et al., 2001) (i) Every OMIA induces an OJS under

the definition a⊥b =def ab for a ∈ Fb. (ii) Every OJS induces an OMIA under

the definition ab =def (a ∪ b)⊥b .

4 Relationship between algebras OIA and OMIA

In this section we show that the axioms of OMIA can be derived from the

axioms of OIA but not vice-versa.

Theorem 4.1. Every OIA is an OMIA.

Proof. To show this, we derive the axioms of OMIA from the axioms of OIA.

O1 is Lemma 1(i) of (Abbott, 1976).

O2 is Lemma 1(v) of (Abbott, 1976).
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O3 is the same as OI1.

O4 is the same as OI2.

O5 can be expressed as (a ∪ b)c ≤ ac. From Th. 2 of (Abbott, 1976),

a ≤ a ∪ b. Therefore from Th. 1 of (Abbott, 1976), (a ∪ b)c ≤ ac.

We can now assume that Lemma 4 of (Chajda et al., 2001), which makes

use of O1—O5 only, holds in OIA.

The associative law a ∪ (b ∪ c) = (a ∪ b) ∪ c is derived as follows. Re-

lations OL1—OL5 of (Megill & Pavičić, 2002) correspond to (v)—(viii) and

(x) of Lemma 4 of (Chajda et al., 2001). In (Megill & Pavičić, 2002) the

associative law L2a is proved using OL1—OL5 only, so it also holds in OIA.

The associative law allows us to omit parentheses and (with the help of OI2)

disregard the order of joins in what follows.

O6 can be expressed as ((((a ∪ b ∪ c)c) ∪ a)c) ∪ a = a ∪ b ∪ c. The OM4

part of Th. 4 of (Abbott, 1976) contains a proof of

x ≤ y & y ≤ z ⇒ y ∪ ((y ∪ (zx))x) = z

or using OI2 and rewriting,

x ≤ y & y ≤ z ⇒ (((zx) ∪ y)x) ∪ y = z

We substitute c for x, a ∪ c for y, and a ∪ b ∪ c for z:

c ≤ a ∪ c & a ∪ c ≤ a ∪ b ∪ c ⇒
((((a ∪ b ∪ c)c) ∪ a ∪ c)c) ∪ a ∪ c = a ∪ b ∪ c

The hypotheses are satisfied by Th. 2 of (Abbott, 1976), so we have

((((a ∪ b ∪ c)c) ∪ a ∪ c)c) ∪ a ∪ c = a ∪ b ∪ c

From (v), (viii), and (x) of Lemma 4 of (Chajda et al., 2001) we have a ≤
b ⇒ a ∪ b = b. By Lemma 1(v) of (Abbott, 1976), c ≤ xc so (xc) ∪ c = xc.

Applying this twice, the above becomes

((((a ∪ b ∪ c)c) ∪ a)c) ∪ a = a ∪ b ∪ c

which is O6.

On the other hand, it turns out that not every OMIA is an OIA.
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Theorem 4.2. There exist OMIAs that are not OIAs.

Proof. Table 1(i) specifies an OMIA, i.e. any assignment to the variables in

the OMIA axioms will result in an equality using the operation values in this

table. On the other hand, this OMIA is not an OIA. To see this, choose a = 5,

b = 2, and c = 0 in Axiom OI3. Then a((ba)c) = 5((2·5)0) = 5(3·0) = 5·2 = 0

but ac = 5 · 0 = 4.

a�b 0 1 2 3 4 5 6 7 8 9 10 11

0 1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 2 3 4 5 6 7 8 9 10 11
2 3 1 1 3 1 3 1 3 1 3 1 3
3 2 1 2 1 4 8 6 10 8 4 10 6
4 5 1 6 3 1 5 6 7 8 3 10 11
5 4 1 10 1 4 1 6 10 1 4 10 6
6 7 1 4 3 4 5 1 7 8 9 10 3
7 6 1 8 1 4 8 6 1 8 4 1 6
8 9 1 10 3 4 3 6 7 1 9 10 11
9 8 1 6 1 1 8 6 10 8 1 10 6
10 11 1 8 3 4 5 6 3 8 9 1 11
11 10 1 4 1 4 8 1 10 8 4 10 1

Table 1: (i) Example of an orthomodular implication algebra (OMIA), with
operation ab, that is not an orthoimplication algebra (OIA). (ii) The bold
entries specify the partial functions a⊥b for the OJS of Figure 1.
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Figure 1: Join semilattice induced by the OMIA of Table 1(i). When com-
bined with the partial functions a⊥b of Table 1(ii), it provides an example
of an orthomodular join semilattice (OJS) that is not a semi-orthomodular
lattice (SOL).
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Theorem 4.2 tells us that the axioms of OIA cannot be derived from

the axioms of OMIA. In particular, this proves that the axioms of OMIA

are incomplete. In other words there exist equational theorems of OML,

expressible purely in terms of the Dishkant implication, that cannot be proved

from the axioms of OMIA. Axiom OI3 of OIA is one such example. Another

example that does not hold in all OMIAs is the “implication version of the

orthomodular law” of (Abbott, 1976):

a ≤ b ≤ c implies c = (ca)b. (1)

The OMIA of Table 1(i) violates this law as can be seen by choosing a = 0,

b = 2, c = 4.

Similarly, not all OJSs are SOLs. The join semilattice of Figure 1 along

with the a⊥b operations specified by Table 1(ii) define an OJS. However, this

OJS violates condition C of Definition 3.4, as can be seen by choosing a = 0,

b = 2, c = 4. [Although this example also happens to be a lattice, we remind

the reader that in general join semilattices are not bounded below.]

In conclusion, we have shown that the axioms of OMIA are not complete,

since in particular they are strictly weaker than the axioms of OIA. On the

other hand, the completeness of the axioms for OIA is apparently not known

(Hardegree, 1981a). Future work towards seeking a complete Dishkant impli-

cational fragment of OML theory might prove more fruitful by investigating

OIA, rather than OMIA, as a starting point.

5 Implication algebra based on the Sasaki implication

Apparently the only other pure implicational fragment of OML theory that

has been studied are “quasi-implicational algebras” based on the Sasaki im-

plication →1 (Hardegree, 1981a, 1981b).

Definition 5.1. (Hardegree, 1981a) A quasi-implication algebra (QSIA) is

an algebraic structure 〈A, ◦〉 with a single binary operation that satisfies:

QS1 (a ◦ b) ◦ a = a

QS2 (a ◦ b) ◦ (a ◦ c) = (b ◦ a) ◦ (b ◦ c)

QS3 ((a ◦ b) ◦ (b ◦ a)) ◦ a = ((b ◦ a) ◦ (a ◦ b)) ◦ b
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QSIA is sound for the Sasaki implication in the sense that if the binary

operation ◦ is replaced throughout by →1, each axiom becomes an equation

that holds in all OMLs.

An important result is that QSIA is also complete in the sense that when

◦ is interpreted as →1, its theorems are precisely those equational theorems

of OML theory where each side of an equation is expressible purely in terms

of polynomials built from →1 (Hardegree, 1981b).

A simple observation also shows that every QSIA induces an OIA (and

an OMIA by Theorem 4.1).

Theorem 5.1. Every QSIA induces an OIA under the definition ab =def

(b ◦ a) ◦ (a ◦ b).

Proof. In any OML, a →2 b = (b →1 a) →1 (a →1 b). Since OIA is sound

for →2 in OML, we can replace →2 for · throughout the axioms of OIA, then

express them in terms of →1 per this equation, to obtain equations built

from →1 that hold in all OMLs. By the completeness of QSIA, each of these

equations is provable under QSIA after substituting ◦ for →1.

The converse, that every OIA induces a QSIA, is not obtainable with a

simple substitutional definition since it is impossible to express→1 in terms of

a polynomial built from →2. Thus there is a sense in which QSIA is “richer”

than OIA. Whether there exists a more indirect isomorphism between OIA

and QSIA is unknown.

6 The relationships among the various implications

From the observation in the previous section that →2 can be expressed in

terms of →1, we were led to investigate the other ways of expressing one

implication in terms of another.

With the assistance of the computer programs beran.c and bercomb.c

(obtainable from the authors), we exhausted the possibilities and obtained

the results in Table 2, where we show shortest expressions for each implication

that can express other ones. For completeness we also include the classical

implication →0.

Any OML polynomial with two generators (variables) corresponds to one

of 96 possible expressions (Beran expressions). For brevity, we label Beran
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a →i b a →i b expressed in terms of other implications
a →0 b = ((b →1 a) →1 a) →1 b, a →3 (a →3 b),

((a →4 b) →4 b) →4 b, (b →5 a) →5 (a →5 b),
a →5 ((b →5 a) →5 b)

a →1 b = a →5 (a →5 b)
a →2 b = (b →1 a) →1 (a →1 b), (b →3 a) →3 (a →3 b),

((a →3 b) →3 a) →3 b, a →4 (a →4 b),
((a →5 b) →5 b) →5 b, ((b →5 a) →5 a) →5 b,
((a →5 b) →5 a) →5 b

a →3 b = (a →1 (b →1 a)) →1 ((b →1 a) →1 (a →1 b)),
(a →5 (b →5 a)) →5 (a →5 b)

a →4 b = ((b →1 a) →1 a) →1 (a →1 b),
(((b →5 a) →5 b) →5 b) →5 (a →5 b)

a →5 b = [none other than a →5 b itself]

Table 2: The shortest expressions of the implications in terms of others.
(When there are more than one shortest, all are shown.)

→i Beran numbers for →i polynomials with two generators
→0 22 28 39 44 93 94 96
→1 22 23 28 29 30 32 38 39 44 45 46 48 54 60 61 62 64 71 76 77 78 80

78 80 86 87 92 93 94 96
→2 22 29 39 46 92 96
→3 22 23 28 29 30 32 38 39 44 45 46 48 86 87 92 93 94 96
→4 22 28 29 32 39 44 46 48 55 60 62 64 70 76 77 80 86 87 92 93 94 96
→5 6 7 12 13 14 16 22 23 28 29 30 32 38 39 44 45 46 48 54 55 60 61 62

64 70 71 76 77 78 80 86 87 92 93 94 96

Table 3: The Beran numbers for all possible polynomials with two generators
built from implications →i.
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expressions with the numbers assigned in (Beran, 1985, p. 82). The Beran

numbers for implications a →i b are 94, 78, 46, 30, 62, and 14 for i = 0, . . . , 5

respectively. We refer the reader to (Beran, 1985, p. 82) for the expressions

corresponding to any Beran numbers we do not show explicitly.

Polynomials built from the →2 operation generate only 6 of the 96 possi-

ble expressions: a (with Beran number 22), b →2 a (29), b (39), a →2 b (46),

a ∪ b (92), and 1 (96).

The other quantum implications →1, →3, →4, and →5 generate respec-

tively 28, 18, 22, and 36 Beran expressions. In Table 3 we show their Beran

numbers. In particular, we note from this table that the intersection of the

sets of Beran numbers for all quantum implications is the same as the set

of Beran numbers for →2, and the union of them is the same as the set of

Beran numbers for →5.

Thus →5 is the “richest” and →2 the “poorest” generator. In particular,

→5 can generate all other implications, and all quantum implications can

generate →2.

7 Quantum implication algebra

In (Pavičić & Megill, 1998) we showed that a single, structurally identical

expression, that holds when its operation is any one of quantum implications,

can represent the join operation:

a ∪ b = (a →i b) →i (((a →i b) →i (b →i a)) →i a) (2)

holds in any OML for i = 1, . . . , 5. This observation allowed us to construct,

by adding a constant 0, an OML-equivalent algebra with an (unspecified)

quantum implication as its only binary operation. Prompted by this result,

we investigated the possibility of a purely implicational system having a single

quantum implication as its sole operation.

In the previous section we observed that the →2 implication is unique

in that it can be generated by any one of the other quantum implications.

It turns out that there exists a single expression with an operation which, if

replaced throughout by any one of the quantum implications →i, i = 1, . . . , 5,

will evaluate to →2.
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Theorem 7.1. The equation

a →2 b = (b →i (b →i a)) →i (((a →i b) →i a) →i b) (3)

holds in any OML, for all i ∈ {1, 2, 3, 4, 5}.

Proof. The verification is straightforward.

This allows us to define an implicational algebra that works when the

binary operation is interpreted as any quantum implication.

Definition 7.1. A quantum implication algebra (QIA) is an algebraic struc-

ture 〈A, •〉 with a single binary operation that satisfies:

Q1 (a ? b) ? a = a

Q2 (a ? b) ? b = (b ? a) ? a

Q3 a ? ((b ? a) ? c) = a ? c

where a ? b
def
=(b • (b • a)) • (((a • b) • a) • b)

Theorem 7.2. QIA is sound for any quantum implication →i, i = 1, . . . , 5

in the sense that if the binary operation • is replaced throughout by →i, each

axiom becomes an equation that holds in all OMLs.

Proof. The axioms of QIA are the same as the axioms of OIA with ? sub-

stituted for ·. Soundness follows from Theorem 7.1 and the soundness of

OIA.

Theorem 7.3. Every QIA induces an OIA under the definition ab =def a?b.

Proof. The axioms of QIA become the axioms of OIA when · is substituted

for ?.

As a corollary, every QIA induces a semi-orthomodular lattice (SOL),

following the proof of (Abbott, 1976). Conversely, every SOL induces a QIA

by Theorem 7.5(ii) below.

Lemma 7.4. The following equation holds in every OIA (and every OMIA):

ab = (b(ba))(((ab)a)b) (4)
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Proof. We show this equation holds in OMIA, and that it holds in OIA

follows from Theorem 4.1. (i) b(ba) = ((ba)b)(ba) = ba using O3 twice. (ii)

((ab)a)b = ab using O3. (iii) ab ≤ (ba)(ab) using O2. (iv) a ≤ ba using O2,

so (ba)(ab) ≤ a(ab) = ab by Lemma 4(ix) of (Chajda et al., 2001) and O3.

(v) From (iii) and (iv), we have ab = (ba)(ab) by Lemma 4(vi) of (Chajda

et al., 2001). Substituting (i) and (ii) into this we obtain the result.

Theorem 7.5. (i) Every OIA induces a QIA under the definition a • b =def

ab. (ii) Every SOL induces a QIA under the definition a • b =def (a ∪ b)⊥b .

Proof. (i) We convert each axiom of OIA by simultaneously expanding each

occurrence of · into the right-hand side of Eq. 4. Substituting • for · through-

out, we obtain the axioms of QIA. (ii) Immediate from (i) and Theorem 3.1(ii).

The system QIA that we have given is not complete. For example, the

equation a• (a•a) = a•a is not a theorem of QIA (by virtue of the structure

of Axioms Q1—Q3) even though it is sound for all quantum implications.

QIA was devised for our purposes to be sufficient to induce an OIA, and

nothing more. What such a complete axiomatisation would look like, and

even whether it can be finitely axiomatised, remain open problems.

8 Unified quantum implication algebras

In the previous section we have shown how one can construct an implication

algebra with the same axioms for all five possible implications. If we are

interested in specific implications, we can construct more specialised algebras

with somewhat shorter axioms if we—in Def. 7.1—chose a?b
def
=a•b (for →2),

or (b • a) • (a • b) (for →1 and →3), or ((a • b) • a) • b (for →3 and →5), or

a • (a • b) (for →4). Another possible choice is a ? b
def
=(at b) • b where at b is

defined as in Def. 8.1. None of these algebras is proven to be complete (and

therefore “maximal”) in the sense of QSIA (see Section 5).

On the other hand, one can take a more direct approach of finding im-

plication algebras which would comply with the following objectives:

1. proving that the algebras are partially ordered sets bounded from above;
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2. proving that the algebras induce join semilattices in which every prin-

cipal order filter generates an orthomodular lattice;

3. proving that the algebras, when they contain a smallest element 0, can

induce orthomodular lattices.

While QIA satisfies these objectives, its axioms are very long. Systems

designed specifically with these objectives as their goal can have shorter

axioms that are easier to work with. Here we give examples of such systems.

Definition 8.1. A unified quantum implication algebras UQIAi are algebraic

structures 〈A, •〉 with single binary operations that satisfy:

UQ1 a • a = bb

UQ2 a • (a t b) = 1

UQ3 b • (a t b) = 1

UQ4 a • 1 = 1

UQ5 a • b = 1 & b • a = 1 ⇔ a = b

UQ6 a • b = 1 & b • c = 1 ⇒ a • c = 1

UQ7 a • c = 1 & b • c = 1 ⇒ (a t b) • c = 1

UQ8 b • a = 1 ⇒ a t (a • b) = 1

UQ9 b • a = 1 ⇒ ((a • b) • b) • a = 1

UQ10 b • a = 1 ⇒ a • ((a • b) • b) = 1

UQ11 b•a = 1 & c•a = 1 & c• b = 1 ⇒ (a• c)• (b• c) = 1

UQ12 c • a = 1 & c • b = 1 & a • b = 1 & a t (b • c) = 1

⇒ b • a = 1

where 1
def⇔a • a and a t b means either (a • b) • b (for either →2 or →5), or

((a • b) • (b • a)) • a (for either →1 or →3), or (a • (a • b)) • b (for →4), or

((((a • b) • (b • a)) • a) • b) • b (for →i, i = 1, . . . , 5).

The above non-unique ways of expressing atb is a consequence of the fact

that in an OML one cannot express a t b in unique ways by using nothing

but implications. (By “unique” we mean that an expression, in an OML,

evaluates to a ∪ b for only one of the five implications and no others.) In an

OML one can use implications and complements in, e.g., the following way:



N. Megill and M. Pavičić Quantum Implication Algebras 15

1. a ∪ b = b⊥ →1 ((b⊥ →1 a⊥)⊥ →1 (b →1 a⊥)⊥)⊥

2. a ∪ b = (b⊥ →2 (b →2 (b⊥ →2 a⊥)⊥)⊥)⊥ →2 a

3. a ∪ b = b⊥ →3 (b⊥ →3 a)

4. a ∪ b = a⊥ →4 (b⊥ →4 a)

5. a ∪ b = (a →5 b⊥) →5 (b⊥ →5 a)

Here, e.g., no one of →i, i = 1, . . . , 5 except →3 would satisfy the 3rd line.

However, one can again express implications by each other, so that, in the

end, ambiguous expressions are equally proper as these ones.

Like QIA, algebras UQIA(i) are fragments of “maximal” algebras for their

respective implications or sets of implications. They are so weak that they

cannot give a single axiom of either OIA, or OMIA, or QSIA (William Mc-

Cune’s program Mace4 easily gives counterexamples to the opposite claim.)

On the other hand they are sufficiently strong to accomplish our objectives

above. Among other possibilities, they could be useful starting points in a

search for maximal algebras (which are currently open problems for all cases

except the →1 of QSIA).

Theorem 8.1. Every unified quantum implication algebra UQIA=< A, • >

determines an associated partially ordered set with an upper bound under:

a ≤ b
def⇔ ab = 1 (5)

Proof. We have to prove

(1) a ≤ a

(2) a ≤ b & b ≤ a ⇒ a = b

(3) a ≤ b & b ≤ c ⇒ a ≤ c

(4) a ≤ 1

(1) follows from the definition of 1 and Eq. (5).

(2) follows from UQ5 and Eq. (5).

(3) follows from UQ6 and Eq. (5).

(4) follows from UQ4 and Eq. (5).
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Theorem 8.2. < A,≤,∪, 1 > in which one defines: a∪ b
def⇔ at b, is a join

semilattice.

Proof. We have to prove that a ∪ b = sup{a, b}, i.e., that the following

conditions are satisfied:

(1) a ≤ a ∪ b

(2) b ≤ a ∪ b

(3) a ≤ c & b ≤ c ⇒ a ∪ b ≤ c

(1) follows from UQ2

(2) follows from UQ3

(3) follows from UQ7

Theorem 8.3. If m ∈ A is a fixed element and one defines:

a⊥m
def⇔ am, (6)

and

a ∩ b
def⇔ ((am) ∪ (bm))m for a, b ∈ Im (7)

then < Im,∪,∩, m, 1, a⊥m >, where Im = {a ∈ A | m ≤ a} is the principal

order filter generated by m, is an orthomodular lattice.

Proof. We have to prove that the following conditions for the above (m ≤ a)

are satisfied:

(1) a ∪ a⊥m = 1 (8)

(2) a⊥⊥mm = a (9)

(3) a ≤ b ⇒ b⊥m ≤ a⊥m (10)

(1) follows from UQ8 since ma = 1 holds for any a.

(2) follows from UQ9, UQ10, and UQ5.

(3) follows from UQ11 by taking c = m since ma = 1 and mb = 1 hold for

any a and b.

Then we have to prove that a ∩ b = inf{a, b}, i.e., that the following

conditions are satisfied:

(1) a ∩ b ≤ a

(2) a ∩ b ≤ b



N. Megill and M. Pavičić Quantum Implication Algebras 17

(3) a ≤ b & a ≤ c ⇒ a ≤ b ∩ c

(1) follows from UQ2 and Eq. (10).

(2) follows from UQ3 and Eq. (10).

(3) follows from UQ7 and Eqs. (10) and (9).

In the end we have to prove the orthomodularity. By taking c = m, we

get ma = 1 and mb = 1, i.e., m ≤ a and m ≤ b for any a and b so that

UQ12 gives us the orthomodularity:

a ≤ b & a ∪ b⊥m = 1 ⇒ b ≤ a

Corollary 8.4. A UQIA with a smallest element 0, i.e. satisfying the axiom

0 • a = 1, induces an OML under the definitions a ∪ b
def
=a t b and a′

def
=a • 0.

A QIA with a smallest element 0 induces an OML under the definitions

a ∪ b
def
=(a ? b) ? b and a′

def
=a ? 0.

Proof. Straightforward.

9 Conclusion

We have investigated implication algebras for orthomodular lattices. We

have first compared the systems previously given by (Abbott, 1976) (OIA,

orthoimplication algebra), (Chajda et al., 2001) (OMIA, orthomodular im-

plication algebra), and (Hardegree, 1981a, 1981b) (QSIA, quasi-implication

algebra).

In Sec. 4 we proved that the axioms of OMIA can be derived from the

axioms of OIA but not vice-versa. In other words, we have shown that the ax-

ioms of OMIA are not complete. In particular, the implication version of the

orthomodular law does not hold in OMIA contrary to its name (orthomodular

implication algebra). Whether OIA is complete in the sense of Hardegree’s

QSIA remains an open problem. For, QSIA’s theorems are precisely those

equational theorems of the OML theory where each side of an equation is

expressible purely in terms of polynomials built from the corresponding OML

(Sasaki) implication. If one wanted to attack the completeness problem along

the way taken by Hardegree, we conjecture that the relevance implication

(i = 5) would be the most promising with respect to Table 2. Also, we would
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like to point out that the first axiom of both OIA and QSIA is the OML

property a ∪ b = b ∪ a expressed by means of implications. Their second

second axiom is the OML property a = a, where the left a is given as its

shortest implication presentation involving two variables. (Megill & Pavičić,

2002)

In Sec. 6 we investigate the other ways of expressing one implication in

terms of another and in Sec. 7 we combined the obtained results to show how

one can formulate quantum implication algebras, QIA’s which keep the same

form for all five possible implications from OML thus capturing an essential

properties that are common to all quantum implications.

In Sec. 8 we formulated unified quantum implication algebras (UQIA’s)

for all implications. They are so week that they do not yield a single axiom of

either OIA or QSIA. Still, their join semilattices with 0 induce orthomodular

lattices.

An open problem is devising a maximal extensions of QIA and UQIA that

are complete, in the sense that its theorems are precisely those equational

theorems of OML theory that hold regardless of which quantum implication

→i, i = 1, . . . , 5 we substitute for •. A complete axiomatisation of QIA and

UQIA would be interesting because it would provide a general way to explore

properties that are common to all quantum implications. It would also pro-

vide a way around philosophical debates about which quantum implication is

the “proper” or “true” implication for quantum logic, since any of its results

immediately apply to whichever one we prefer. And, finally, it might reduce

concerns about being led astray by “toy” systems (Urquhart, 1983) since we

would not be focusing on the specialised properties of any one implication in

particular.
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