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We consider algebras underlying Hilbert spaces used by quantum information algorithms. We
show how one can arrive at equations on such algebras which define n-dimensional Hilbert space
subspaces which in turn can simulate quantum systems on a quantum system. In doing so we
use MMP diagrams and linear algorithms. MMP diagrams are tractable since an n-block of an
MMP diagram has n elements while an n block of a standard Greechie diagram has 2n elements.
An immediate test for such an approach is a generation of minimal and arbitrary Kochen-Specker
vectors and we present a minimal n ≥ 5-dimensional “state-independent” Kochen-Specker set of
seven vectors.
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I. INTRODUCTION

In this paper we consider an algebra underlying Hilbert
space used by quantum information algorithms and we
explore whether one can use it for quantum computers in
the same way one uses the Boolean algebra for classical
computers. Since the answer is in the negative, we con-
sider the possible modifications of the afore mentioned
quantum algebra which allow general applications of the
algebra in formulating algorithms and simulating quan-
tum systems.

We will first present classical vs. quantum algebras in
the next section stressing that the quantum one has to be
infinite. Since this is in contrast with finite quantum al-
gebras available on quantum computers we proceed with
presenting possible new finite quantum algebras and al-
gorithms in Sec. III. As a result we obtain a general al-
gorithm for obtaining Kochen-Specker vectors and there-
fore an automated proof of the Kochen-Specker theorem
in Sec. IV.

II. ALGEBRAS

Classical computers standardly manipulate two-valued
(0 and 1; bits, binary digits) elements of information us-
ing switches (physical devices) which are called gates.
Their design is based on (a two-valued) Boolean algebra,
also called switching algebra. We should stress here that
a Boolean algebra based on n-valued elements is equiva-
lent to the one based on two-valued elements.

A Boolean algebra is an algebraic structure consisting
of a set of elements together with two binary operations
join, ∪ and meet , ∩ and a unary operation orthocomple-
ment , ⊥, such that the closure property holds, the law of
distributivity, a∩ (b∪ c) = (a∩ b)∪ (a∩ c), associativity,
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and commutativity hold, and the identity and orthocom-
plement exist (so, it is a distributive lattice; a lattice is an
ordered set in which all joins and meet exist). Each of the
operations and their combinations can be implemented in
the form of logic circuits by means of gates. Hence, one
performs a classical task by first digitizing it, then ma-
nipulating bits, and in the end translating bits back to
the original language of the task (no classical computer
can directly mimic a classical physical process). In doing
so, one can access the values of all bits at any stage of
their manipulation.

Quantum computers manipulate qubits (quantum
bits)—elements of quantum information (which are ac-
tually not digits but vectors (states) from Hilbert space)
by means of quantum gates.

Closed subspaces of a Hilbert space form an algebra
called a Hilbert lattice. A Hilbert lattice is an orthomod-
ular lattice which, is by definition a (relaxed) Boolean
algebra in which the distributivity (see above) holds if
b ≤ a and c ⊥ a. In any Hilbert lattice the operation
meet , a ∩ b, corresponds to set intersection, Ha

⋂
Hb,

of subspaces Ha,Hb of a Hilbert space H, the ordering
relation a ≤ b corresponds to Ha ⊆ Hb, the operation
join, a ∪ b, corresponds to the smallest closed subspace
of H containing Ha

⋃
Hb, and the orthocomplement a⊥

corresponds to H⊥
a , the set of vectors orthogonal to all

vectors in Ha. One can define all the lattice operations
on a Hilbert space itself following the above definitions:
Ha ∩ Hb = Ha

⋂
Hb, Ha ∪ Hb = (H⊥

a

⋂
H⊥

b )⊥. Also,
the orthogonality (mentioned above) Ha ⊥ Hb means
Ha ≤ H⊥

b . [1, p. 175], [2, pp. 21-29], [3, pp. 66,67], [4,
pp. 8-16]

Thus, using the properties of Hilbert space one arrives
at a definition of the Hilbert lattice as an orthomodular
lattice which satisfies:

Completeness: The meet and join of any subset of a
Hilbert lattice always exist.

Atomicity: Every non-zero element in an HL is greater
than or equal to an atom. (An atom a is a non-zero lattice
element with 0 < b ≤ a only if b = a.)

Superposition Principle: (The atom c is a superposi-
tion of the atoms a and b if c 6= a, c 6= b, and c ≤ a ∪ b.)
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1. Given two different atoms a and b, there is at least one
other atom c, c 6= a and c 6= b, that is a superposition of
a and b; 2. If the atom c is a superposition of distinct
atoms a and b, then atom a is a superposition of atoms
b and c.

Minimal length: The lattice contains at least three el-
ements a, b, c satisfying: 0 < a < b < c < 1.

One can also prove the other direction and therefore a
Hilbert lattice is isomorphic to the set of closed subspaces
of a Hilbert space. [5] Here comes a result we want to
stress: It can be proved that a Hilbert lattice must con-
tain infinite number of atoms. [6] Moreover, if we wanted
a Hilbert lattice to provide us with a complex field over
which Hilbert space can be defined, we should assume
that the Hilbert lattice contains a countable infinite se-
quence of orthogonal elements.

Infinite dimensionality of a Hilbert space corresponds
to the space continuity, to the integrals instead of sums,
to radial functions and spherical harmonics, etc.; in a
word, to all solutions of the Schrödinger equation we are
used to. Therefore, the usual space distribution of, e.g.,
a wave function of electrons within, e.g., a molecule re-
quires an infinite dimensional Hilbert space. Since we
cannot have infinite dimensionality on a quantum com-
puter we cannot directly simulate quantum mechanics on
a quantum computer. But since both systems are quan-
tum systems, a simulation—as opposed to the classical
case—is nevertheless possible.

III. ALGORITHMS

In the literature simulation of quantum mechanics on
a quantum computer has been approached in basically
two ways. The first approach is to simulate one quantum
system by another which resides in a quantum computer
and might be simpler, e.g., proton spins by electrons in
quantum dots. [7, 8] Or even “universal quantum compu-
tation over continuous variables for transformations that
are polynomial in those variables.” [9] This approach does
not help us, though, since we have to find the algebra of
the quantum computer system itself. The second ap-
proach is to simulate quantum mechanics by means of
quantum gas model. [10, 11] Basically this boils down to
application of the corresponding Schrödinger equation on
points in a grid. As a result the points sit in the grid so
as to fit the continuous wave function. Hence, a discrete
set of points approximates a continuous wave function
but we still do not have a genuine discrete algebra and
discrete Hilbert space. Our aim is to investigate whether
such discretization is possible.

We consider finite orthomodular lattices and filter
them through the conditions stated in Sec. II and investi-
gate properties which hold and which fail in the lattices.
We want to find classes of such lattices which would ap-
proximate lattices with infinite number of atoms and in
the end we want to compare them with lattices we derive
from a finite dimensional Hilbert space.

The most attractive feature of such a procedure is that
one can define finite lattices by algorithms which are not
simply read off from the standard Hilbert space proper-
ties but are derived form highly nontrivial theorems de-
rived in the theory of Hilbert lattices in the last 20 years.
These algorithms also speed up calculations for several
orders of magnitude. It can be shown that finite ortho-
modular lattices can be obtained from MMP diagrams
which are organized as connected blocks of mutually or-
thogonal atoms. MMP diagrams are diagrams that are
defined as follows:

1. Every vertex (i.e., atom when a diagram corre-
sponds to a lattice) belongs to at least one block;

2. If there are at least two vertices then every block is
at least 2-element;

3. Every block which intersects with another block is
at least 3-element;

and then generated by the the isomorph-free generation
procedure according to the following algorithm [12]:

procedure scan (D: diagram; β: integer)

if D has exactly β blocks then
output D

else

for each equivalence class of extensions
D + e do

if e ∈ m(D + e) then scan(D + e,β)

end procedure

Without the latter algorithm MMP diagrams would be
nothing but Greechie diagrams [13] with one of the condi-
tions dropped. The isomorph-free generation procedure
is what make them very different. Greechie diagrams are
a handy way to draw Hasse diagrams but Hasse diagrams
get more and more intrinsically complicated when we en-
large the number of atoms. E.g., a four-atom Greechie
block has 16 elements, a five-atom Greechie block has
32 elements, and an n-atom Greechie block has 2n ele-
ments, so they soon become intractable. MMP diagrams
are however just strings. A five vertex block has 5 ele-
ments, an n vertex block has n elements.

Depending on parameters we use in their generation
(parameters appear as options in our programs) MMP
diagrams can be represented as lattices, but also as par-
tially ordered sets, or as vectors from a Hilbert space
which do not form a lattice; they can even be used for
representing relations between vectors, planes, and sub-
spaces of any n-dim space in classical physics. Which dia-
gram will be appropriate for which purpose is determined
by a selection procedure we use once they are generated.

So, the 3 simple aforementioned conditions imposed
on diagrams gives us all we need to get all finite lattices
of arbitrary complexity: we just eliminate diagrams in
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which Hilbert lattice properties do not hold. We cur-
rently use programs which generate and use lattices with
up to 100 atoms but for all results we have obtained so
far, 15 to 28 atoms suffice.

We were also able to reformulate Hilbert lattice prop-
erties and substitute 3 (conjectured all) classes of poly-
nomial equations of the n-th order for the afore stated
conditions. One such class was known before. [14] And
the other two, the orthoarguesian class of n-th order and
quantum state equation class, we found only recently. [15–
17] As the name of the latter class tells us, it is deter-
mined by the kind of states imposed on any Hilbert lat-
tice of Hilbert space, i.e., by possible evaluation of Hilbert
lattice elements.

Let us see what makes a difference between a classical
and a quantum state.

A state on a lattice L is a function m : L −→ [0, 1] such
that m(1) = 1 and a ⊥ b ⇒ m(a ∪ b) = m(a) + m(b).
This yields m(a) + m(a′) = 1 and a ≤ b ⇒ ((m(a) =
1 ⇒ m(b) = 1).

A nonempty set S of states on L is classical if

(∃m ∈ S)(∀a, b ∈ L)((m(a) = 1 ⇒ m(b) = 1) ⇒ a ≤ b)

and quantum if

(∀a, b ∈ L)(∃m ∈ S)((m(a) = 1 ⇒ m(b) = 1) ⇒ a ≤ b)

Now we are able to prove the following

Theorem. Any orthomodular lattice that admits classical
states is a Boolean algebra.

Theorem. Any Boolean algebra admits classical states
and any Hilbert lattice admits quantum states.

Theorem. An orthomodular lattice that admits quantum
states is still not necessarily a Hilbert algebra (lattice).

The proof of the latter theorem is simple: many of
the orthoarguesian equations (characteristic of any 3 and
more dimensional Hilbert space) fail in many MMP dia-
grams with loops of at least 5 blocks and interpreted as
Hasse diagrams which allow quantum states.

Taken together, we conjecture that an infinite dimen-
sional Hilbert space can be represented by a polynomial
quantum algebra (Hilbert lattice reformulated by means
of orthoarguesian and state equations) of the n-th order
with n → ∞ and for finite n such an algebra can be
implemented on a would-be quantum computer. Qubits
as the elements of the algebra obey superposition princi-
ple but do not allow a fixed evaluation (see above: there
is no state for every element of the algebra). This is
due to particular way in which the orthogonality can be
defined in MMP diagrams, i.e., in Hilbert lattices and
Hilbert space, and this orthogonality turns out to be very
promising in solving problems because it can be reduced
to linear equations as opposed to the standard approach
to the orthogonality which is nonlinear. The details are
presented in the next section.

IV. ORTHOGONALITY, ENTANGLEMENT,
AND KOCHEN-SPECKER THEOREM

In 1993 “[w]e propos[ed] a new experiment employ-
ing two independent sources of spin correlated photon
pairs. Two photons from different unpolarized sources
each pass through a polarizer to a detector. Although
their trajectories never mix or cross they exhibit 4th–
order–interference–like correlations when the other two
photons interfere on a beam splitter even when the lat-
ter two do not pass any polarizers at all” [18, 19], inde-
pendently of [20, 21] and simultaneously with [21]. Later
the obtained results have been verified “experimentally ...
[by] two pairs of polarization entangled photons and sub-
ject[ing] one photon from each pair to a Bell-state mea-
surement. This results in projecting the other two outgo-
ing photons into an entangled state.” [22] The very same
scheme was also used for teleportation. [18–21, 23, 24]

That “entangle[ment] and correlat[ion] in polarization
[of the other two photons] even when we do not mea-
sure polarization on the first two at all” [19] and also
our discovery of a 100% polarization correlation between
unpolarized photons [25] we arrived at by investigating
creation and annihilation operators when acting on or-
thogonal states in the second quantization formalism. We
realized that this orthogonality is crucially different from
the classical orthogonality. In entanglement we make a
tensor product state and then extract just a part of the
state. Since in the obtained Hilbert subspace the or-
thogonality of the one dimensional subspaces containing
relevant vectors means that they are included in the span
of the other one dimensional subspaces of the subspace,
i.e., that the vectors are orthogonal to each other, span
the considered subspace, and make it a Hilbert space.

Exactly this property of the quantum orthogonality en-
ables us to use linear instead of classical nonlinear equa-
tions. To see the meaning of the difference we will con-
sider the old problem of finding finite Kochen-Specker
vectors which prove the Kochen-Specker theorem.

Recently proposed experimental tests of Kochen-
Specker theorem [26, 27] and disputes on feasibility of
such experiments [28–32] prompted a renewed interest in
the theorem and this an additional reason for reconsid-
ering the theorem.

The original Kochen-Specker theorem [33] produced a
set of 117 3-dimensional Hilbert space vectors for which
there is no way to assign 1’s and 0’s to their states and
therefore no way to provide quantum space with a clas-
sical Boolean model. The proof was tedious and subse-
quent attempts to reduce the number of vectors gave the
following minimal results: 33 [34] and 31 [35, p. 114] 3-
dim vectors, 18 [36] and 14 [37] 4-dim vectors, 29, 31, and
34 5-dim, 6-dim, and 7-dim vectors, respectively [38], 36
8-dim vectors [39], etc. Reducing the number of vectors
turn out to be important because a direct connection be-
tween such vectors and an experimental setup can be es-
tablished. [38] However, no general method for construct-
ing sets of Kochen-Specker vectors has been proposed so
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far and here we give one.
The main idea of our approach is to first show that for

particular set of orthogonal Hilbert space vectors one can
impose no 0 -1 state on the vectors. However, we do that
using the Hilbert space orthogonality: a ≤ b∪c∪ . . . , not
the standard one: (a, b) = 0, (a, c) = 0, . . . , which boils
down to a non-linear system: a1b1+a2b2+a3b3+ · · · = 0,
a1c1 + a2c2 + a3c3 + · · · = 0, . . . But even this Hilbert
orthogonality we do not “calculate”—it is “built in” in
the MMP diagrams by its generations algorithm. We
only check whether one can or cannot impose classical
0 -1 state on the diagrams. We then only have to find
the one which does not allow such a state and this is
done by a simple program which follows the definition of
the classical state.

In order to convince the reader we will find a mini-
mal set of vectors from a 5 dim space as an example.
The smallest MMP diagram we find not to allow a clas-
sical state 0 -1 is the following one: abc, cde, efa, egb, dgf
(where, e.g, abc means an orthogonal triple: a ⊥ b, a ⊥ c,
and b ⊥ c). Then we form equations corresponding to the
inner products of 5 dim orthogonal vectors being equal
to 0 and solve the system. We deal with triples and not
with quintuples since we only have to find a set which
does not allow 0 -1 valuation. I.e., we follow the two
Kochen-Specker (actually, Gleason’s [40]) conditions:

1. No two orthogonal rays are both assigned the value
1;

2. In any group of n mutually orthogonal rays, not all
of the rays are assigned the value 0.

Such triples are in principle just a part of a possible
experiment. What is important is that for particular
orthogonalities between chosen vectors we cannot ascribe
0 -1 values to them.

Since only the directions of the vectors (“rays” [34])
are relevant they must be real. Since we did not care to
find “nice looking” vectors some vectors are “big” due
to a recursion procedure. This however do not affect the
main aim of finding the vectors and it is to show that our
approach works. a={608683911, 17315878, -22061625,
-111556858, 20961326}, b={3, 68, -123, 52, 4}, c={1,
3, 5, 7, 11}, d={11, -11, 11, -11, 4}, e={1788, -8663,
-1348, 8223, -2420}, f={5791304343, -304905182408,
-1387655556967, 1686769435032, 7600253389432}, g={1,
1, 1, 1, 0}. The reader can introduce the vectors into,
e.g., Wolfram’s Mathematica and convince her- or himself
that they really are orthogonal and, by simple combina-
torics, that one cannot ascribe 0 or 1 to all of them (in
each triple one element must be 1 and the other two zero
and this is impossible).

Cabello [38] related his Kochen-Specker set of 18 vec-
tors in 9 blocks with his experimental proposal in a four-
dimensional Hilbert space [26] and he deals with 4-tuples.
We deal with triples and leave a problem of finding a re-
lated experiment open. This is because we are first of
all interested in finding a general algorithm for find all

orthogonalities that do not allow 0 -1 states. So, e.g.,
Cabello’s 18 vectors in 9 blocks can form 1430 MMP di-
agrams that do not allow 0 -1 states. but do allow quan-
tum states. Still, none of these examples (therefore not
even the one elaborated in Ref. [38]) by itself correspond
to a Hilbert space because their MMP diagrams do not
correspond to lattices: the smallest triple lattice which
do not allow states are two lattices with 19 atoms and 13
blocks and a quadruple lattice can only have more atoms
and/or blocks. Other smaller cases with 18 vectors which
do not allow 0 -1 states are: 4 diagrams with 8 (quadruple
blocks) blocks. The lowest number of quadruple blocks
and vectors are: 1 4-block case with 10 vectors.

Let us be more specific: one of the obtained 18-9 MMP
diagrams is: abcd, defg, ghij, jklm, mnop, pqra, bikr,
celn, fhoq. And with a=1001̄, b=0110, c=111̄1, d=11̄11,
e=1111̄, f=0101, g=101̄0, h=0101̄, i=11̄11̄, j=1111,
k=111̄1̄, l=11̄00, m=0011̄, n=0011, o=1000, p=0100,
q=0010, r=1001, this is nothing but Cabello’s 18-9 case.
Graphically it means a hexagram with 3 ellipses con-
tained in it. The smallest 4-block 10-5 case is: abcd,
defg, ghia, bfij, cehj. Graphically it means a triangle
with 2 ellipses contained in it (with one common vertex
not contained in the triangle). However, it might turn
out (we still have not checkedt) that so small a diagram
cannot be ascribed real vectors in a 4-dim space and that
we should go to higher dimensions to find real vector sets.

V. CONCLUSION

We have shown that one can build an algebra underly-
ing Hilbert space which could be a universal algebra for
quantum computers in the same way the Boolean algebra
is for classical computers. In our approach the algebra
is based on polynomial series of relations between one
dimensional subspaces of a Hilbert space and linearly de-
fined orthogonality relations between either subspaces or
vectors of a Hilbert space.

Linear orthogonality defined through MMP diagrams
possibly opens a way to substitute a linear for nonlinear
coupling between qubits presently required for universal
quantum computation. On the other hand such linear or-
thogonality defined through MMP diagrams already on
our classical computers enabled speeding up calculations
for more than 5 orders of magnitude on the CPU time
scale and enabled us to find polynomial expressions of the
n-th order representing any Hilbert space and unknown
so far. It also enabled us to find a general approach to
finding Kochen-Specker vectors, some of which we pre-
sented above.
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