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We discuss the transitions that an external time-dependent perturbation can induce upon a quantum
harmonic oscillator in an excited initial state. In particular, we show how to describe transitions of
the oscillator from initial states characterized by statistical distributions. These results should be
useful for interpretations of the properties of weakly dispersive bosonic excitations in quantum
systems whose dynamics is investigated by time or energy resolved spectroscopies. ©2004 American

Association of Physics Teachers.
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I. INTRODUCTION: THE FORCED OSCILLATOR
MODEL

In many areas of quantum physics the forced oscilla
model provides a paradigm for demonstrating exact non
turbative solutions to systems subjected to strong tim
dependent perturbations. Many authors have used this m
as a testing ground for nearly all the many-body techniq
developed during that time.1–5 In addition, a number of real
istic problems can be fruitfully treated within this simp
model5–16 or its generalizations.7,17–21

The present work revisits the same problem once m
with a different agenda. Our primary aim is to describe h
to use the forced oscillator model to calculate the excitat
probabilities for an oscillator whose initial state is charact
ized by a statistical distribution. In Sec. II we first introdu
the forced oscillator model in second quantization notati
We begin with the usual exact solution for the evoluti
operator of the oscillator subject to an external tim
dependent force coupled linearly to the oscillator displa
ment; the corresponding scattering operator is derived b
limiting procedure. We present in Sec. III some useful no
derivations of the expressions for state-to-state transi
probabilities of the oscillator. By observing the symmetr
that these probabilities should satisfy, we are able to dem
strate some interconnections between the present form
and the ones obtained in various earlier treatments of
same problem, giving more insight into the temporal evo
tion of the studied system. In particular, in the last part
Sec. III and Appendix A we show the equivalence of t
results of two alternative operator disentanglements that
pear naturally in the calculation of transition matrix el
ments.

The main body of the paper is in Sec. IV, which gives t
first systematic study of transitions of the forced quant
oscillator whose initial state is characterized by a statist
distribution. We derive two interesting results. The first is t
generating function for the transition probabilities, obtain
using the results of Sec. III. As a by-product, we also find
surprisingly simple shortcut to the spectral density of a p
turbed oscillator initially in thermal equilibrium, derived i
textbooks by a rather involved time-dependent Green’s fu
tion formalism.5 Our second result is a general expression
the transition probabilities as a functional of the initial d
231 Am. J. Phys.72 ~2!, February 2004 http://aapt.org/a
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tribution of oscillator states, which should enable the ta
ling of a wide class of physical problems that can be d
scribed by the forced oscillator model. Although th
expression cannot be generally evaluated in a closed form
efficiently provides a formula for the probability of a trans
tion into any particular final state. All that is required is th
the generating function of the initial distribution be know
As an example, we introduce the two-pulse problem: o
pulse excites the oscillator from its ground state into
known distribution of excited states. The second pulse t
acts on this distribution, and the above-mentioned form
provides the excitation probability of any final state. T
calculation is worked out in some detail, showing for a co
crete example that the result is symmetric with respect to
order of application of the two pulses.

II. PROBLEM AND NOTATION

The Hamiltonian corresponding to the forced oscilla
model can be written in the simple form:

H5H01V~ t !, ~1!

where

H05\v0~a†a1 1
2! ~2!

is the Hamiltonian of an unperturbed quantized harmo
oscillator of massm and characteristic frequencyv0 , with
a† anda denoting the usual creation and annihilation ope
tors of noninteracting bosons, respectively. The eigenst
un& of H0 are the eigenstates of the number operatorN̂
5a†a, that is, they satisfy

N̂un&5nun&, ~3!

and

H0un&5\v0~n1 1
2!un&, ~4!

with the eigenvaluesn50,1,2,..., which are the number o
bosons in the stateun& with the total energyn\v0 .

The perturbationV(t) is taken to describe the linear cou
pling of the oscillator displacement to an external tim
dependent forceF(t):

V~ t !52u0~a1a†!F~ t !, ~5!
231jp © 2004 American Association of Physics Teachers
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whereu05A\/2mv0 is the root-mean-square displaceme
of the oscillator.F(t) may represent the force acting on th
oscillator due to a potential source, such as an external e
tromagnetic field or a massive moving particle.

The final state of an oscillator subjected to an exter
perturbationV(t) is obtained as a result of the action of th
scattering operatorS on the initial oscillator stateuc i&. S is
obtained by a limiting procedure:

S5 lim
t→`, t8→2`

U~ t,t8!5 lim
t→`, t8→2`

e2 iH (t2t8)/\, ~6!

whereU(t,t8) is the evolution operator of the system. Th
transition amplitudes are most conveniently calculated fr
the evolution operator in the interaction or Dirac pictu
UI(t,t8), which is defined by

U~ t,t8!5e2 iH 0(t2t8)UI~ t,t8!. ~7!

As was first published by Dyson22 and is now in many
textbooks,23–26 UI can be represented in the form:

UI~ t,t8!5T expS 2
i

\ E
t8

t

dtVI~t! D , ~8!

whereT stands for Dyson’s chronological or time orderin
operator andVI(t)5eiH 0t/\V(t)e2 iH 0t/\. The scattering op-
erator in the interaction picture is then obtained from
limiting procedure

SI5 lim
t→`,t8→2`

UI~ t,t8!. ~9!

Of particular interest are nonperturbative solutions to
forced oscillator model for which the external perturbatio
vanish in the remote past and in the remote future, tha
solutions that satisfy the scattering boundary conditions:

F~ t→6`!→0. ~10!

It has been shown by many authors using very different
proaches, such as the Green’s function method,1,2 Wick’s
theorem,3,4 the canonical transformation method,6 and nested
commutator expansion,7 that for the particular interaction~5!
and the scattering boundary conditions~10!, the operatorSI
takes the form:

SI5e2 i (G11G2)5e2 i (G11G2)2 iG2, ~11!

whereG15ga† andG25g* a5(G1)† are linear in the bo-
son operatorsa† anda, respectively. The coupling function
are given by

g5
u0

\ E
2`

`

eiv0tF~t!dt, ~12!

and

G252
u0

2

\2 E
2`

`

dtE
2`

t

dt8 F~t!F~t8!sinv0~t2t8!

~13!

is a phase shift which is independent of the operatorsa and
a†. If the initial state of the oscillatoruc i& at the time t
→2` is known, the final stateuc f& at the timet→` is
obtained from

uc f&5SI uc i&. ~14!
232 Am. J. Phys., Vol. 72, No. 2, February 2004
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In practice,uc i& may represent either an eigenstateun& of the
oscillator or a mixed state characterized by a given ini
distribution of the eigenstates. In the following we shall co
sider both cases and find the oscillator final states for sev
initial state distributions.

III. PROBABILITY AMPLITUDES FOR STATE-TO-
STATE TRANSITIONS OF A QUANTUM
OSCILLATOR PERTURBED BY AN EXTERNAL
FORCE

The goal in calculations of various transition probabiliti
involving a perturbed quantum oscillator is the probabil
Pm,n of the transition from an unperturbed oscillator eige
stateun& to another eigenstateum&. Pm,n is given in terms of
the matrix elements ofSI as

Pm,n5uSm,nu25u^muSI un&u2. ~15!

The problem of calculatingSm,n has been extensively treate
in the literature~see, for example, Refs. 1–7, and referenc
therein!. In this section, we shall rederive the basic expr
sion for Sm,n , using a somewhat different approach that
better suited to our purpose.

The calculation ofSm,n starts with the application of the
Weyl or Baker–Hausdorff formula to the right-hand side
Eq. ~11!. This formula states that if the commutator@A,B# of
the operatorsA and B commutes with A and B, the
identity,27

eA1B5eAeBe2 ~1/2![A,B] , ~16!

holds. To apply Eq.~16! to Eq. ~11!, we have to assume
definite order of the operatorsG1 andG2 . If we associateA
with iG1 andB with 2 iG2 , Eq. ~16! yields:

SI5e2(1/2)ugu2e2 iG1e2 iG2, ~17!

where for later convenience we have omitted the phase s
2 iG2 because it does not contribute to the absolute squar
Eq. ~15!.

The derivation ofSm,n for the opposite order of the opera
tors G1 and G2 is also instructive and is discussed in A
pendix A. If we make use of the disentangled form~17!, we
have:

Sm,n5e2(1/2)ugu2^mue2 iga†
e2 ig* aun&, ~18!

which is a standard expression that has been used as a
of departure in calculations of the transition probabilities.2–4

Although these calculations are instructive in their own rig
the simplest and most direct way to proceed is to expand
operatorse2 iG1 ande2 iG2 in Eq. ~18! in a power series. The
propertyau0&50 cuts off the exponential series in2 iG2 or
2 iG1 , that is,

e2 iG2un&5(
s50

n
~2 ig* a!s

s!
un&. ~19!

We assume for definitenessm>n and obtain
232D. K. Sunko and B. Gumhalter
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Sm,n5e2(1/2)ugu2 (
p50

`

(
s50

n S m!n!

~m2p!! ~n2s!! D
1/2

3
~2 ig !p

p!

~2 ig* !s

s!
^m2pun2s&

5e2(1/2)ugu2S n!

m! D
1/2

~2 ig !m2n

3(
s50

n
~2ugu2!sm!

s! ~m2n1s!! ~n2s!!
, ~20!

where we have used the orthogonality of the number sta
that is,^m2pun2s&5dm2n1s,p , to eliminate the sum ove
p. The sum on the right-hand side of Eq.~20! is the associ-
ated Laguerre polynomialLn

m2n(ugu2), and hence:

Sm,n5e2(1/2)ugu2S n!

m! D
1/2

~2 ig !m2nLn
m2n~ ugu2! ~m>n!.

~21!

We could obtain the casem<n in an analogous fashion, bu
we can avoid the additional work by exploiting the proper

~21!m
m!

xm Lm
n2m~x!5~21!n

n!

xn Ln
m2n~x!, ~22!

which means that the scattering matrix is Hermitian. T
property extends Eq.~21! to the casem<n, allowing it to be
written in an alternative form withm and n interchanged,
andg replaced byg* . Consequently,Pm,n5Pn,m .

These results are identical to the ones quoted in R
2–4.28 It should be observed that the appearance of the p
nomials in Eq.~21! is due to the specific order of the oper
tors e2 iG1 and e2 iG2 in SI , because this order introduce
the cutoff in Eq.~19!. If we start from the reverse order o
the operators in Eq.~16!, we must first carry out a resumma
tion of an infinite series in order to retrieve the result~21!
~see Appendix A!.

IV. PROBABILITY AMPLITUDES FOR
TRANSITIONS FROM A STATISTICAL
DISTRIBUTION OF INITIAL STATES

A. Direct method

Let us now assume that before the action ofF(t) in the
remote pastt8→2`, the oscillator was in thermal equilib
rium with a heat bath. In this case the initial state of t
oscillator is determined by a statistical distribution, and
probability that after the action of the external perturbat
the oscillator will end up in a stateum& is given by

Pm5 (
n50

`

Pm,nwn5 (
n50

`

uSm,nu2wn . ~23!

Herewn is the initial thermal distribution:

wn5e2nb\v0Y (
p50

`

e2pb\v05~12e2b\v0!e2nb\v0,

~24!

whereb51/kT, T is the temperature, andk is Boltzmann’s
constant. To evaluate Eq.~23!, we proceed directly by ex
233 Am. J. Phys., Vol. 72, No. 2, February 2004
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ploiting the symmetry of theS-matrix elements arising from
Eq. ~22!, and write

Pm5 (
n50

`

uSm,nu2wn

5~12u!e2ugu2 ~ ugu2!m

m! (
n50

`

n! S u

ugu2D n

@Ln
m2n~ ugu2!#2,

~25!

whereu5e2b\v0. The summation overn can be carried out
using standard tables@see, for example, Ref. 29, Eq
~8.976.1!, and Ref. 30, Eq.~10.12.20!# to yield

Pm5~12u!e2ugu2(12u)umLm~2s!, ~26!

where s5ugu2(u11/u22), andLm(x) is the ordinary La-
guerre polynomial,

Lm~x![Lm
0 ~x!5 (

k50

m
1

k! S m
k D ~2x!k. ~27!

This result goes beyond the immediate physical probl
it solves. For an oscillator in equilibrium with a heat bat
the wn are pure powers, so Eq.~26! also may be interpreted
as a generating function for the probabilities themsel
(k5ugu2):

Fm~k,l![(
n

Pm,nln5(
n

Pn,mln

5e2k(12l)lmLmS 2kS l1
1

l
22D D .

~28!

This interpretation allows a simple calculation of the avera
energy shift:

DE5\v0(
n

~n2m!Pmn

5\v0S ]Fm

]l U
l51

2mFmul51D
5\v0~k1m2m!5ugu2\v0 , ~29!

another well known result.1–4 The fluctuation ofDE is ob-
tained just as easily, which is left to the reader as an exerc

ADE2[\v0A(
n

~n2m!2Pmn2S (
n

~n2m!PmnD 2

5\v0uguA2m11. ~30!

The relative fluctuation decreases as the coupling cons
increases.

A closely related problem, also solvable by the direct a
proach, is the calculation of the spectral function of a p
turbed oscillator that was initially in thermal equilibrium
with a heat bath. Spectral functions of this kind are enco
tered in various spectroscopic studies of the dynamical pr
erties of systems exhibiting nondispersive boso
excitations.5,7,20,31 We are interested in the experimental
observed spectrumNT(DE), so we must collect transition
with a given energy transferDE5 l\v0 , in contrast to tran-
sitions to a fixed final state, that is,
233D. K. Sunko and B. Gumhalter
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NT~DE!5(
l

Al~T!d~DE2 l\v0!, ~31!

where

Al~T!5(
n

Pn1 l ,nwn5~12u!(
n

Pn1 l ,nun, ~32!

in the same notation as before. The energy transfer ma
positive or negative, corresponding to absorption and em
sion spectra, respectively. If we use Eqs.~21! and ~22!, we
have

Pn1 l ,n5ugu2le2ugu2 n!

~n1 l !!
@Ln

l ~ ugu2!#2. ~33!

If we substitute this result in Eq.~32!, the summation can be
carried out by using tabulated expressions@see, for example
Ref. 32, Eq.~5.11.3.7!# to yield:

(
n50

`
n!

~n1 l !!
@Ln

l ~ ugu2!#2un

5
~ ugu2!2 lu2 l /2

12u
e22ugu2u/(12u)I l S 2ugu2A u

12uD , ~34!

whereI l(x) is the modified Bessel function of the first kind
After a little rearrangement, Eq.~34! becomes

Al~T!5expS 2ugu2
11u

12uD I l S 2ugu2
Au

12uD u2 l /2. ~35!

If we replaceu by the Bose–Einstein distribution of the o
cillator states,N5u/(12u)51/@exp(b\v0)21#, we find:

Al~T!5e2(2N11)ugu2S N11

N D l /2

I l~A4N~N11!ugu4!.

~36!

Equation~36! is identical to Eq.~4.3.15! of Ref. 5 and to Eq.
~3.42! of Ref. 31 derived by the method of thermal Green
functions.

B. The operator approach

The obvious disadvantage of the direct method is tha
depends on fortuitous circumstances in that an approp
summation formula was found in tables. Here we constru
more general method that can in principle treat arbitrary
tial distributions once they are characterized by their o
generating functions.

First, we observe that the matrix elements~18! may be
written in the form:

Sm,n5
e2ugu2/2

Am!n!
~2 i !m1nS g2

d

dg* D m

~g* !n, ~37!

which is derived in Appendix B. This form enables us
represent the absolute squares of theS-matrix elements as

uSm,nu25
e2ugu2

m!n! S g* 2
d

dxD
mS g2

d

dyD
mU

x5g,y5g*
~xy!n,

~38!

wherex andy are introduced to ‘‘protect the symbols,’’ be
cause one operator factor should not act on the other.

As our first exercise in using Eq.~38!, we rederive the
generating function obtained previously by the direct a
234 Am. J. Phys., Vol. 72, No. 2, February 2004
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proach. If we substitute Eq.~38! into Eq. ~23! and carry out
the summation, we obtain an expression forPm that is easily
evaluated to yield

Pm5~12u!
e2ugu2

m! S g* 2
d

dxD
mS g2

d

dyD
mU

x5g,y5g*
euxy

5~12u!e2ugu2(12u)umLm~2s!, ~39!

in accord with Eq.~26!. Hence, we have derived the abov
mentioned summation formula for the Laguerre polynomia
In effect, the quantity (xy)n in Eq. ~38! has been summed in
Eq. ~23! to give euxy in Eq. ~39! before the action of the
differential operators. All the information of the initial osci
lator distribution has been coded ineuxy.

The generalization to an arbitrary initial distributionwn is
obvious: if its generating function,W(l)[(n wnln/n!, is
known, the final distribution is

Pm@W#5
e2ugu2

m! S g* 2
d

dxD
mS g2

d

dyD
mU

x5g,y5g*
W~xy!.

~40!

An interesting and illustrative application of the above r
sults is the two-pulse problem mentioned in Sec. I. For
oscillator initially in the ground state,wn5dn0 and W(l)
51, and the derivatives in Eq.~40! vanish, leaving the os-
cillator in a Poisson distribution after the first pulse:

wn5e2ugu2 ugu2n

n!
, ~41!

whereg is the coupling function for the first pulse. By usin
Eq. ~41! as the initial distribution for the second pulse, th
correspondingW(l) is a modified Bessel function of the firs
kind:

W~l!5(
n

ln

n!
wn5e2ugu2I 0~2uguAl!. ~42!

After the second pulse, the probability that the oscilla
ends up in the final stateum& is given by

Pm
Poiss5

e2ugu22ugu2

m! S g* 2
d

dxD
m

3S g2
d

dyD
mU

x5g,y5g*
I 0~2uguAxy!, ~43!

whereg is the coupling function for the second pulse. W
have so far been unable to push this expression further,
note that it easily gives expressions for any givenm with the
aid of a symbolic algebra program. Thus form53,

P3
Poiss5

e2ugu22ugu2

6
@~ ugu6115ugu4ugu2115ugu2ugu41ugu6

14ugu2ugu2!I 0~2uggu!2~6ugu5ugu120ugu3ugu3

16uguugu514uguugu16uguugu3

16ugu3ugu!I 1~2uggu!#. ~44!

The two-pulse problem is always symmetric in the puls
g↔g. This symmetry is obvious in our formulation, becau
it amounts to the successive application of commuting
erators, when iterating Eq.~40!.
234D. K. Sunko and B. Gumhalter
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V. CONCLUSION

In the present study of perturbations of an excited qu
tum oscillator, we have obtained several new results, two
which should be of special interest. The first is the genera
function for the transition probabilities, which arguab
closes the problem of transitions between fixed initial a
final states. As an example, we derived the fluctuation in
average energy transfer, a simple exercise once the gen
ing function is known.

The second result treats the transition problem at the le
of statistical distributions of states. We have obtained an
pression that reduces the studied scattering problem to
action of a differential operator on the generating function
the initial distribution. The process can be iterated, thus p
viding a nontrivial new type of problem, the two-pulse pro
lem. Here the first probe excites the oscillator into a nonth
mal statistical distribution of states, while the second o
acts on this distribution. A closed formula for a particul
final state was given as an example.

In the course of this work, we have also demonstra
some compact new derivations of known results for the tr
sition probabilities and spectral functions of the oscilla
@see the derivation of Eqs.~21! and~36!, respectively#. These
have proven useful in the interpretations of photoemiss
and photoabsorption spectra of solids that support nondis
sive bosonic excitations,5 such as long wavelength optica
phonons or collective electronic excitations~plasmons!. Par-
ticular cases include inelastic neutron scattering from opt
phonons in solids,33 inelastic scattering of electrons from
bulk and surface optical phonons in crystals,31 and inelastic
scattering of atoms from nondispersive surface phonons7

In general, the forced oscillator model is applicable to
study of weakly dispersive bosonic excitations that are
tected in interactions with external time-dependent prob
such as moving semiclassical or classical particles or e
tromagnetic fields. We hope the reader interested in s
problems will find the present work to be a useful referen
that provides new and additional insights into a textbo
example of a simple quantum system perturbed by exte
probes.
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APPENDIX A: ALTERNATIVE DERIVATION OF
THE SCATTERING MATRIX ELEMENTS

In this appendix we present the treatment of operator
entanglement, encountered in the calculation of matrix e
mentsSm,n when starting from the opposite order of bos
operators in the Weyl or Baker–Hausdorff formula, Eq.~16!.
If we substituteA52 iG2 and B52 iG1 in the latter, we
have:

SI5e(1/2)ugu2e2 iG2e2 iG1. ~A1!

In this case,

Sm,n5e(1/2)ugu2 ~2 ig !m2n

Am!n!
(
p50

`
~m1p!!

p! ~m2n1p!!
~2ugu2!p

~m>n!. ~A2!
235 Am. J. Phys., Vol. 72, No. 2, February 2004
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Note the positive sign in the exponent of exp(1
2ugu2) in front

of the now infinite sum on the right-hand side of Eq.~A2!.
An analogous expression can be obtained form,n by inter-
changingm with n and replacingg with its complex conju-
gate. The infinite number of terms in the sum on the rig
hand side of Eq.~A2! means that the creation operato
which now acts first in Eq.~A1!, gives rise to an arbitrary
number of virtual excitations~bosons! in the intermediate
state. This situation is encountered in the treatment of
forced oscillator model by the propagator technique of tim
dependent perturbation theory.7 The infinite series on the
right-hand side of Eq.~A2! sums to an expression involvin
the Kummer or degenerate hypergeometric function,34

(
p50

`
~m1p!!

p! ~m2n1p!!
~2ugu2!p

5
m!

~m2n!! 1F1~m11,m2n11;2ugu2!. ~A3!

If we exploit the functional properties@see, for example, Ref
29, Eqs.~9.212.1! and ~8.972.1!#:

1F1~m11,m2n11;2z!5e2z
1F1~2n,m2n11;z!,

~A4!

and

S m
n D

1
F1~2n,m2n11;z!5Ln

m2n~z!, ~A5!

and substitute them in Eq.~A2!, we again retrieve Eq.~21!.
In effect, the operator disentanglement relating the two w
of calculatingSm,n by using either Eq.~17! or Eq. ~A1! has
been reduced to a transformation of hypergeometric fu
tions.

APPENDIX B: PROOF OF EQ. „37…

We proceed by the direct evaluation of the expression
the right-hand side:

S g2
d

dg* D m

~g* !n5(
k

S m
k Dgk~21!m2k

3
n!

~n2m1k!!
~g* !n2m1k

}~g* !n2mLn
m2n~ ugu2!, ~B1!

and using the symmetry in Eq.~22!, we easily recover Eq
~21!. This derivation can be reduced to the statement tha

xmS 12
d

dxD
m

xn5~21!mm!xnLm
n2m~x!, ~B2!

which, due to Eq.~22!, is symmetric inm andn.
To elucidate this derivation a bit further, we observe th

the boson operators are characterized by their commut
@a,a†#51. Essentially the same commutator is found b
tweenx andd/dx, operating on some functional space. Th
equivalence of the commutators means that all operation
Fock space can be mapped to corresponding operation
functional space. The coherent state formalism is an exp
realization of such a mapping.35 To make a connection with
the forced-oscillator problem, all that is needed is to interp
the matrix elementsSm,n as operations on coherent states.
particular,2
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Sm,n}~2 igu~a1 ig !mun&, ~B3!

where ua) is a coherent state characterized by the comp
numbera. The operator (a1 ig)m maps onto (g2d/dg* )m

up to constant factors, becausea acts as a creation operato
to the left, and creation operators map onto derivatives by
coherent state mapping.35
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