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We discuss the transitions that an external time-dependent perturbation can induce upon a quantum
harmonic oscillator in an excited initial state. In particular, we show how to describe transitions of
the oscillator from initial states characterized by statistical distributions. These results should be
useful for interpretations of the properties of weakly dispersive bosonic excitations in quantum
systems whose dynamics is investigated by time or energy resolved spectroscof@es. A@erican
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[. INTRODUCTION: THE FORCED OSCILLATOR tribution of oscillator states, which should enable the tack-
MODEL ling of a wide class of physical problems that can be de-
scribed by the forced oscillator model. Although this

In many areas of quantum physics the forced oscillato€Xpression cannot be generally evaluated in a closed form, it
model provides a paradigm for demonstrating exact nonpeﬁfﬁCiently provides a formula for the probability of a transi-
turbative solutions to systems subjected to strong timetion into any particular final state. All that is required is that
dependent perturbations. Many authors have used this mod&le generating function of the initial distribution be known.
as a testing ground for nearly all the many-body techniqueés an example, we introduce the two-pulse problem: one

developed during that tim? In addition, a number of real- pulse excites the oscillator from its ground state into a
istic problems can be fruitfully treated within this simple known distribution of excited states. The second pulse then

modeP~® or its generalization&”~2* acts on this distribution, and the above-mentioned formula
The present work revisits the same problem once mor@rovides the excitation probability of any final state. The
with a different agenda. Our primary aim is to describe howcalculation is worked out in some detail, showing for a con-
to use the forced oscillator model to calculate the excitatiorfrete example that the result is symmetric with respect to the
probabilities for an oscillator whose initial state is character-order of application of the two pulses.
ized by a statistical distribution. In Sec. Il we first introduce
the forced oscillator model in second quantization notationll. PROBLEM AND NOTATION
We begin with the usual exact solution for the evolution N . .
operator of the oscillator subject to an external time- 1he Hamiltonian corresponding to the forced oscillator
dependent force coupled linearly to the oscillator displaceModel can be written in the simple form:
ment; the corresponding scattering operator is derived by a H=Hy+V(t), (1)
limiting procedure. We present in Sec. Il some useful novel
derivations of the expressions for state-to-state transitiod/nere
robabilities of the oscillator. By observing the symmetries _ t 1
Fhat these probabilities should s};\tisfy, we gre ablgto demon- 0=fwo(@at3) @
strate some interconnections between the present formulas the Hamiltonian of an unperturbed quantized harmonic
and the ones obtained in various earlier treatments of thescillator of massn and characteristic frequenay,, with
same problem, giving more insight into the temporal evolu-a' anda denoting the usual creation and annihilation opera-
tion of the studied system. In particular, in the last part oftors of noninteracting bosons, respectively. The eigenstates
Sec. Il and Appendix A we show the equivalence of the n) of H, are the eigenstates of the number operdtor
results of two alternative operator disentanglements that ap-/_+ that is. th i
pear naturally in the calculation of transition matrix ele- =a'a, thatis, they satisfy
ments. o . N[n)=n[n), €)
The main body of the paper is in Sec. IV, which gives the
first systematic study of transitions of the forced quantumand
oscillator whose initial state is characterized by a statistical Holn)=h wo(n+ 3)|n) 4
distribution. We derive two interesting results. The first is the 0 “o 22100
generating function for the transition probabilities, obtainedwith the eigenvaluesi=0,1,2,.., which are the number of
using the results of Sec. lll. As a by-product, we also find aygsons in the statm) with the total energyziwg.
surprisingly simple shortcut to the spectral density of a per- ¢ perturbationV(t) is taken to describe the linear cou-

turbed oscillator initially in thermal equilibrium, derivz’ed in pling of the oscillator displacement to an external time-
textbooks by a rather involved time-dependent Green’s funcaependent forcé (t):

tion formalism® Our second result is a general expression for
the transition probabilities as a functional of the initial dis- V(t)=—ug(a+a)F(t), 5)
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where uy,=\Z/2mwy is the root-mean-square displacementIn practice,|;) may represent either an eigenstiatp of the
of the oscillator.F(t) may represent the force acting on the oscillator or a mixed state characterized by a given initial

oscillator due to a potential source, such as an external eleéistribution of the eigenstates. In the following we shall con-
tromagnetic field or a massive moving particle. sider both cases and find the oscillator final states for several

The final state of an oscillator subjected to an externainitial state distributions.
perturbationV(t) is obtained as a result of the action of the
scattering operato® on the initial oscillator statéy;). S is

obtained by a limiting procedure: IIl. PROBABILITY AMPLITUDES FOR STATE-TO-
S— lm U(tt)= lim e Mt (g  STATE TRANSITIONS OF A QUANTUM
ot ot OSCILLATOR PERTURBED BY AN EXTERNAL
FORCE

whereU(t,t’) is the evolution operator of the system. The

transition amplitudes are most conveniently calculated from The goal in calculations of various transition probabilities
the evolution operator in the interaction or Dirac picture,involving a perturbed quantum oscillator is the probability
U(t,t"), which is defined by Pnn Of the transition from an unperturbed oscillator eigen-
state|n) to another eigenstaten). P, , is given in terms of

U(t't,):eiiHo(tfﬂ)U'(t’t,)' @) the matrix elements df, as
As was first published by Dyséhand is now in many , ,
textbooks>>~2° U, can be represented in the form: Prnn=1Smnl*=Km[S[n)[*. (15
L it The problem of calculating,, , has been extensively treated
Ui(tt )—Texr( T h LdTV'(T)>’ ®) in the literature(see, for example, Refs. 1-7, and references

_ _ ~therein. In this section, we shall rederive the basic expres-
where 7 stands for Dyson’s chronological or time ordering sjon for Sy, Using a somewhat different approach that is
operator and/,(7) =e'"o""V(r)e Mo The scattering op- better suited to our purpose.

erator in the interaction picture is then obtained from the The calculation ofS,, , starts with the application of the

limiting procedure Weyl or Baker—Hausdorff formula to the right-hand side of
S= lm Utt). (9) Eq. (11). This formula states that if the c_ommuta{@r,B] of
tesoot! s — oo the operatorsA and B commutes withA and B, the
identity?’

Of particular interest are nonperturbative solutions to the
forced oscillator model for which the external perturbations A+B_ jABa— (1/2)[A,B]

o . . e e"ee , (16)
vanish in the remote past and in the remote future, that is,

solutions that satisfy the scattering boundary conditions:  p514s. To apply Eq(16) to Eq. (11), we have to assume a

F(t— *£0)—0. (100  definite order of the operatos, andG._ . If we associaté\

] ] with iG, andB with —iG_, Eq. (16) yields:

It has been shown by many authors using very different ap-
proaches, such as the Green’s function methodlyick’s
theorent* the canonical transformation methbdnd nested
commutator expansiohthat for the particular interactiofs)
and the scattering boundary conditiofi®), the operatosS,
takes the form:

S =g (12lg’g=iG g-iG_ (17)

where for later convenience we have omitted the phase shift
—iG, because it does not contribute to the absolute square in
Eq. (15).

S =e (C17C) =g 1(G;+C)~iGz (11 The derivation ofS, , for the opposite order of the opera-
tors G, andG_ is also instructive and is discussed in Ap-

—qa' —g*a— t i i
whereG+—gaT andG_=g*a=(G,)' arelinearinthe bo- ,onqix A If we make use of the disentangled foft), we
son operatora' anda, respectively. The coupling functions paye:

are given by
Up (* Snn=e" (V219 (mle~92'e~10"2|), (18)
9=~ J el“oF(r)dr, (12)

which is a standard expression that has been used as a point
and of departure in calculations of the transition probabilifies.
Although these calculations are instructive in their own right,

u% o0 T ) the simplest and most direct way to proceed is to expand the
Go=—72 f_wde_de' F(m)F(7")sinwg(7—17") operatore ™~ '®+ ande™'®- in Eq.(18) in a power series. The
(13) propertyal0)=0 cuts off the exponential series iniG _ or
—-iG,, thatis,

is a phase shift which is independent of the operasoand

a'. If the initial state of the oscillatofy;) at the timet . " (—ig*a)s

— —o is known, the final statéy;) at the timet—c is e C-|n)y=> —In). (19
obtained from =0 S

| i) =S| ). (14  We assume for definiteness=n and obtain
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o O min! 1/2 ploiting the symmetry of th&-matrix elements arising from
Sma=e 2l X > ( ) Eq. (22, and write

p=0s=0 (m—p)!(n—s)! "
(—ig)® (—ig*)® P = 2
X e (m=pIn—s) m nzo|sm'”| Y
_ -2 M Y :(1_u)e—\g|2(|g|2)m§ n!(%)n[l_mn(wz)]z
=€ H (—ig) m &5 |g| n )

n 2\Sm| (25)
(—lgl*)°m! . _
X 20 sl(m—n+s)!(n—s)!’ (20) whereu=e #"“0, The summation ovem can be carried out
using standard tablegsee, for example, Ref. 29, Eg.
where we have used the orthogonality of the number state$8.976.1, and Ref. 30, Eq(10.12.20] to yield

that is,(m—p|n—Ss)=6y_n+sp. 0 eliminate the sum over ~loPa-uwm

p. The sum on the right-hand side of E&O) is the associ- Pm=(1-u)e UL m(—s), (26)
ated Laguerre polynomialy"(|g|?), and hence: where s=|g|?(u+1/u—2), andL(x) is the ordinary La-
guerre polynomial,

S

n! 1/2
sm,n=e<1’2>g'2(ﬁ) (=ig)™ "Ly "(lgl*)  (m=n).

o1
(21) Ln()=L000= 2, H( T)(—x)k. (27)

We could obtain the cage<n in an analogous fashion, but

we can avoid the additional work by exploiting the property, This result goes beyond the immediate physical problem

it solves. For an oscillator in equilibrium with a heat bath,

m b thew,, are pure powers, so ER6) also may be interpreted
n—m _ m-—n n '

(_1)mxm L "00=(=1)" 7Ly (), (22 as a generating function for the probabilities themselves

n
X

_ _ . N (k=[g[?):
which means that the scattering matrix is Hermitian. This

property extends Eq21) to the casen<n, allowing it to be
written in an alternative form withm and n interchanged,
andg replaced byg*. ConsequentlyP, ,=Py, .

Fn(k,N)=2 Prunh™=2, Py "
n n

These results are identical to the ones quoted in Refs. —ex0Nm | )\+E_2
2—-428|t should be observed that the appearance of the poly- m A :
nomials in Eq.(21) is due to the specific order of the opera- 29)

i iG

torse '®+ ande '®- in S|, because this order introduces _ . _
the cutoff in Eq.(19). If we start from the reverse order of This interpretation allows a simple calculation of the average
the operators in Eq16), we must first carry out a resumma- €nergy shift:

tion of an infinite series in order to retrieve the resiat)

(see Appendix A AE=%wo>, (N—M)Ppy,
n
IV. PROBABILITY AMPLITUDES FOR :ﬁwo(a':_m _m|:m|}\_1)
TRANSITIONS FROM A STATISTICAL 2 A=1
DISTRIBUTION OF INITIAL STATES =hwo(k+m—m)= |g|2ﬁw0, (29)
A. Direct method another well known result.* The fluctuation ofAE is ob-

tained just as easily, which is left to the reader as an exercise:
Let us now assume that before the actionF¢f) in the

i i - 2
remote past’— —c, the oscillator was in thermal equilib- AE?=fiw, \/2 (n_m)zpmn_(E (n_m)pmn>
rium with a heat bath. In this case the initial state of the n n
oscillator is determined by a statistical distribution, and the
probability that after the action of the external perturbation =hwo|g|V2m+1. (30)
the oscillator will end up in a staten) is given by The relative fluctuation decreases as the coupling constant
o w increases.
P — P w.= 20 23 A closely related problem, also solvable by the direct ap-
m ngo maen nZO [Simlwo 239 proach, is the calculation of the spectral function of a per-

turbed oscillator that was initially in thermal equilibrium
with a heat bath. Spectral functions of this kind are encoun-
* tered in various spectroscopic studies of the dynamical prop-
Wn=e‘“/”“"0/ > e PBhwo= (1 — g Bhwo)g Bl erties of systems exhibiting nondispersive bosonic
p=0 excitations> 231 We are interested in the experimentally
(24 observed spectrumit(AE), so we must collect transitions
where 3=1/kT, T is the temperature, andis Boltzmann’s  with a given energy transfexE=I1%wg, in contrast to tran-
constant. To evaluate E@23), we proceed directly by ex- sitions to a fixed final state, that is,

Herew,, is the initial thermal distribution:
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proach. If we substitute E¢38) into Eq. (23) and carry out
N(AE)= EI A(T)S(AE~-Ifw)), (3D the summation, we obtain an expressionRgrthat is easily
evaluated to yield

where ’
o Tl
P — 1_u * o eUXy
AM=Z Pro=(-w S P, @ T e ey
_1al?2(1—
in the same notation as before. The energy transfer may be =(1—we 19 =Vum (—s), (39

positive or negative, corresponding to absorption and emisn accord with Eq(26). Hence, we have derived the above-

sion spectra, respectively. If we use E¢81) and (22, we  mentioned summation formula for the Laguerre polynomials.

have In effect, the quantity Xy)" in Eq. (38) has been summed in
n! | - E_q. (23).to give e in Eq. (39) befo.re the actjo_q of thg

D! [Ln(lgl*)]% (33)  differential operators. All the information of the initial oscil-

_ _ _ _ lator distribution has been coded é1*Y.

If we substitute this result in Eq32), the summation can be  The generalization to an arbitrary initial distribution, is

carried out by using tabulated expressipsse, for example, obvious: if its generating functionV(\)=3, w,\"/n!, is

Ref. 32, Eq.(5.11.3.7] to yield: known, the final distribution is
W(xy).

S d\m d\m
~ale-
dx dy X=g,y=g*

n! | 2\92. n e7‘9|2
> [Ln(lg[*)]%u P [W]=
2y—1,—1/2 40
:(|g| ) u e*2|g|2u/(lfu)| 2|g|2 u (34) - . - - - . ( )
1-u ' Vi—u/’ An interesting and illustrative application of the above re-

n=o (N+1)! m!

sults is the two-pulse problem mentioned in Sec. I. For the
oscillator initially in the ground statey,= 6, and W(\)
=1, and the derivatives in Eq40) vanish, leaving the os-
cillator in a Poisson distribution after the first pulse:

a2
Pn+|,n:|g|2|e o

wherel(x) is the modified Bessel function of the first kind.
After a little rearrangement, E¢34) becomes

a=exd o720 u e s

2n
S Wn=e7w|2ﬂ, (42)
If we replaceu by the Bose—Einstein distribution of the os- n!
cillator statesN=u/(1—u)=1/exp(Bhwy)—1], we find: wherey is the coupling function for the first pulse. By using
L[ N+1\172 Eqg. (41) as the initial distribution for the second pulse, the
A(T)=e~ @N+1)dl T) L(VAN(N+1)|g|*. correspondingV(\) is a modified Bessel function of the first
kind:
(36)
. - . AN
Equation(36) is identical to Eq(4.3.15 of Ref. 5 and to Eq. wn=S Zwo=e (2 )\ 42
(3.42)_ of Ref. 31 derived by the method of thermal Green’s ) ; nt " o(2]] \/_)' (42)
functions. After the second pulse, the probability that the oscillator
B. The operator approach ends up in the final staten) is given by
_nl2_1A12
The obvious disadvantage of the direct method is that it PPoiss:e ol * _ i "
depends on fortuitous circumstances in that an appropriate = ™ m! dx
summation formula was found in tables. Here we construct a g\m
more general method that can in principle treat arbitrary ini- Y
tial distributions once they are characterized by their own |9 dy ngyzg*|°(2|y| \/@)’ (43

generating functions. . . .
First, we observe that the matrix elemerit) may be Whereg is the coupling function for_ the secor_1d pulse. We
written in the form: have so far been unable to push this expression further, but

note that it easily gives expressions for any givemith the

_1nl2
< _°© lof m(—i)”‘“‘(g— d )m(g*)n @7 aid of a symbolic algebra program. Thus for=3,
" Jmin! dg* ’ ~Jof2- |2

e
which is derived in Appendix B. This form enables us to Pgmss:—@; [(|¥/°+157*|g|*+ 15 ¥|*g|*+g]°
represent the absolute squares of $amatrix elements as - . o 13

+4]y/%|91)10(2] vg|) — (6] ¥[°lg[ +20 ¥|*| g

~1gl? m m
, © . d d N 5 3
Sl =rr| 9~ (o) | oo +6/7191°+41//g|+ 6|7l
(38) +6]71°lgD11(2]ygD)]- (44)
wherex andy are introduced to “protect the symbols,” be- The two-pulse problem is always symmetric in the pulses,
cause one operator factor should not act on the other. v+ ¢g. This symmetry is obvious in our formulation, because

As our first exercise in using Eq38), we rederive the it amounts to the successive application of commuting op-
generating function obtained previously by the direct ap-erators, when iterating E@40).
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V. CONCLUSION Note the positive sign in the exponent of e}gf) in front

In the present study of perturbations of an excited quanof the now infinite sum on the right-hand side of E42).
tum oscillator, we have obtained several new results, two ofA\n analogous expression can be obtainedfiern by inter-
which should be of special interest. The first is the generatinghangingm with n and replacingy with its complex conju-
function for the transition probabilities, which arguably gate. The infinite number of terms in the sum on the right-
closes the problem of transitions between fixed initial anchand side of Eq.A2) means that the creation operator,
final states. As an example, we derived the fluctuation in thevhich now acts first in Eq(A1), gives rise to an arbitrary
average energy transfer, a simple exercise once the generatmber of virtual excitationgboson$ in the intermediate
ing function is known. state. This situation is encountered in the treatment of the

The second result treats the transition problem at the levdbrced oscillator model by the propagator technique of time-
of statistical distributions of states. We have obtained an exdependent perturbation thedryThe infinite series on the
pression that reduces the studied scattering problem to théght-hand side of Eq(A2) sums to an expression involving
action of a differential operator on the generating function ofthe Kummer or degenerate hypergeometric functfon,
the initial distribution. The process can be iterated, thus pro- . |
viding a nontrivial new type of problem, the two-pulse prob- s (m+p)!
lem. Here the first probe excites the oscillator into a nontherp=o p!(m—n+p)!
mal statistical distribution of states, while the second one
acts on this distribution. A closed formula for a particular Py (m+1m—n+1;—|g?). (A3)
final state was given as an example. (m—n)!

In the course of this work, we have also demonstratec,f we exploit the functional propertigsee, for example, Ref
some compact new derivations of known results for the tran—29 E 529 212.1 and(8 972 3)]9 ’ Pie, :
sition probabilities and spectral functions of the oscillator=>’ as.(9.clz. R
[see the derivation of Eq&1) and(36), respectively. These JFiim+1m—n+1;,—2z)=e 4Fi(—n,m—n+1;2),
have proven useful in the interpretations of photoemission (A4)
and photoabsorption spectra of solids that support nondispeé—nd
sive bosonic excitatiorssuch as long wavelength optical
phonons or collective electronic excitatiofdasmong Par-
ticular cases include inelastic neutron scattering from optical
phonons in solid$® inelastic scattering of electrons from
bulk and surface optical phonons in crystiignd inelastic ~and substitute them in EGA2), we again retrieve Eq21).
scattering of atoms from nondispersive surface phorions. In effect, the operator disentanglement relating the two ways

In general, the forced oscillator model is applicable to theof calculatingS,, , by using either Eq(17) or Eq. (A1) has
study of weakly dispersive bosonic excitations that are debeen reduced to a transformation of hypergeometric func-
tected in interactions with external time-dependent probegdjons.
such as moving semiclassical or classical particles or elec-
tromagnetic fields. We hope the reader interested in sucAPPENDIX B: PROOF OF EQ. (37)
problems will find the present work to be a useful reference \We proceed by the direct evaluation of the expression on
that provides new and additional insights into a textbookihe right-hand side:
example of a simple quantum system perturbed by external

(—lgl?P

m!

n

m) Fi(—n,m—n+1;2)=L" "(2), (AB)
1

probes. d\" . Y m) m—k
9~ 4g~ (g)—k K9 (=1
ACKNOWLEDGMENTS |
. . L. X n ( *)n—m+k
This work has been supported in part by the Ministry of (n—m+k)! 9
Science and Technology of the Republic of Croatia under
Research Grant Nos. 0119256 and 0035017. <(g*)" "Ly (| gl?), (B1)
_ and using the symmetry in E¢22), we easily recover Eq.
APPENDIX A: ALTERNATIVE DERIVATION OF (21). This derivation can be reduced to the statement that
THE SCATTERING MATRIX ELEMENTS m
In this appendix we present the treatment of operator dis- Xm( 1= o) X"= (=1 mb L), (B2)

entanglement, encountered in the calculation of matrix ele- _ o
mentsS;, , when starting from the opposite order of bosonWwhich, due to Eq(22), is symmetric inm andn.

operators in the Weyl or Baker—Hausdorff formula, ELf). To elucidate this derivation a bit further, we observe that
If we substituteA=—iG_ andB=—iG, in the latter, we the boson operators are characterized by their commutator,
have: [a,a']=1. Essentially the same commutator is found be-
_ (112)[g]2a—iG_ o—iG tweenx andd/dx, operating on some functional space. This
S=e e e . (A1) equivalence of the commutators means that all operations in
In this case, Fock space can be mapped to corresponding operations in

functional space. The coherent state formalism is an explicit

©

2(—ig)™ " (m+p)! realization of such a mappirig.To make a connection with
S, =e(12)dl (—|gl®»P . . - :
m,n Jmint 5o p'(m—n+p)! 9 the forced-oscillator problem, all that is needed is to interpret
o the matrix elements,, , as operations on coherent states. In
(m=n). (A2)  particular?
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