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State-selective preparation and manipulation of discrete-level quantum systems such as atoms, molecules, or
quantum dots is the ultimate tool for many diverse fields such as laser control of chemical reactions, atom
optics, high-precision metrology, and quantum computing. Rabi oscillations are one of the simplest, yet po-
tentially quite useful mechanisms for achieving such manipulation. Rabi theory establishes that in the two-level
systems resonant drive leads to the periodic and complete population oscillations between the two system
levels. In this paper an analytic optimization algorithm for producing Rabi-like oscillations in the general
discrete many-level quantum system is presented.
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I. INTRODUCTION

During the past 20 years a number of methods has been
devised for state-selective preparation and manipulation of
discrete-level quantum systems[1–5]. However, simple
population oscillations, induced by a resonant driving pulse
have received negligible attention as a prospective popula-
tion manipulation method. This might be attributed to two
reasons. The first is that Rabi theory is based on the rotating-
wave approximation(RWA), and all attempts to generalize it
without RWA (e.g., Refs.[6–8]) are mathematically very in-
volved. The second is that no attempt has been made to
analytically generalize the original Rabi theory beyond two-
level systems.

In this paper an analytic extension of Rabi theory to tran-
sitions in many-level systems is presented. The aim is to
“design” a driving pulse of the form

Fstd = F0mstdcosfvstdtg s1d

by establishing analytical optimization relations between its
parameters: maximum pulse amplitudeF0, pulse envelope
shapemstd, and time dependent carrier frequencyvstd. The
goal of this enterprize is twofold. The first is to achieve as
complete as possible transfer of population between two se-
lected states of the system. The second is to make this trans-
fer as rapid as possible. These two requirements, however,
are contradictory; population transfer can be accelerated by
using a more intense drive, but at the same time a stronger
drive increases involvement of remaining system levels in
population dynamics and hence deteriorates population
transfer between a selected pair of levels.

In this paper it is shown how, for a pulse of arbitrary
shape and durationmstd, the drive frequency can be analyti-
cally optimized to maximize the population transfer ampli-
tude between selected two levels. In other words, Rabi oscil-
lation theory is reformulated for the case of a many-level
system driven by an arbitrary modulated pulse.

II. THEORETICAL ANALYSIS

All calculations in this section are done in a system of
units in which"=1.

A. Calculation setup

A quantum system with N discrete stationary levels with
energiesEi si =1, . . . ,Nd is considered. The system is driven
by a time dependent perturbation given in Eq.(1). In the
interaction picture, the dynamics of the system obeys the
Schroedinger equation

d

dt
astd = − iV̂stdastd, s2d

whereastd is a vector of time-dependent expansion coeffi-

cientsa1std , . . . ,aNstd. TheN3N matrix V̂std describes inter-
action between the system and perturbation. Explicitly, its
elements are given by

Vijstd =
F0mi j

2
mstdfeisij hvstd−vi j jt + e−isij hvstd+vi j jtg. s3d

mi j is the transition moment between theith and thej th lev-
els induced by the perturbation.sij =signsEi −Ejd and vi j

= uEi −Eju are, respectively, the sign and the magnitude of the
resonant frequency for the transition between theith and the
j th level.

The aim is to induce population transfer between two ar-
bitrarily selected levels, designated bya and b, directly
coupled by the perturbation(i.e., such thatmabÞ0). To sim-
plify equations, the time variable t is rescaled tot, with
transformation between the two given by

dt =
F0mab

2
mstddt. s4d

Then with the following substitutions:

f ijstd = sij
2

F0mab

fvstd − vi jg, s5d
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gijstd = sij
2

F0mab

fvstd + vi jg, s6d

xstd =
F0mab

2
tstd, s7d

Rij =
mi j

mab

. s8d

Equation(2) transforms into

d

dt
astd = − iŴstdastd, s9d

where

Wijstd = Rijfeif ij stdxstd + e−igij stdxstdg. s10d

Initial conditions for the problem of selective population
transfer comprise complete population initially(at t=t=0)
contained in only one of the selected levels, eithera or b.
The other selected level, as well as all the remainingN−2
“perturbing” levels of the system are unpopulated at this
time.

Population evolutionPistd of the ith level is determined
from Pistd= uaistdu2.

B. Population oscillations in the two-level system:
Recapitulation

Having in mind thatsij =−sji , the explicit form of the gen-
eral dynamical Eq.(9) in a two-level system is

d

dt
Faastd

abstd G = − iF 0 eif abstdxstd + e−igabstdxstd

e−i f abstdxstd + eigabstdxstd 0
GFaastd

abstd G . s11d

Under certain conditions(for a thorough discussion see, e.g.,
Ref. [9]) this equation may be simplified by introducing the
RWA. Within the RWA, dynamical impact of complex expo-
nentialse±gabstdxstd is neglected and these may be eliminated
from the equation. Hence,(11) reduces to

d

dt
Faastd

abstd G = − iF 0 eif abstdxstd

e−i f abstdxstd 0
GFaastd

abstd G .

s12d

Finally, adjusting the perturbation frequency to the resonant
value fvstd;vabg results infabstd=0, and(12) reduces to

d

dt
Faastd

abstd G = − iF0 1

1 0
GFaastd

abstd G . s13d

As may be easily demonstrated by solving this simple
equation, the resonant perturbation induces complete peri-
odic transfer of the population between two levels. The time
Q (in units of t) or T (in units of t) required for a single
population oscillation is determined from

E
0

Q

dt ;
F0mab

2
E

0

T

mstddt = p. s14d

This is a well known result which forms the basis ofp-pulse
theory.

C. Population oscillations in the three-level system

As will be shown in subsequent sections, the whole ana-
lytical approach to the maximization of the population oscil-
lation amplitude in a general many-level quantum system
may be reduced to discussion of a three-level system. Along
with two “selected” levelsa and b, the system now dis-
cussed contains one additional “perturbing” level, designated
with index p. The only requirements on the system internal
structure are thatmab ,mbpÞ0, andmap=0. While the first
two requirements are necessary, the last one does not reduce
the generality of the final results to any significant extent and
it is introduced for calculational convenience.

The three-level version of the dynamical Eq.(9) is

d

dt3aastd
abstd
apstd

4 = − i3 0 eif abstdxstd + e−igabstdxstd 0

e−i f abstdxstd + eigabstdxstd 0 Rbpfe−i f bpstdxstd + eigbpstdxstdg
0 Rbpfeif bpstdxstd + e−igbpstdxstdg 0

43aastd
abstd
apstd

4 . s15d
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1. The adiabatic approach and perturbing level
population dynamics

In order to solve Eq.(15) two assumptions shall be made.
The legitimacy of both of them may be checked retrospec-
tively from the final solution. The first one is that the RWA
may be applied for transitiona↔b so that exponentials con-
taining gabstd may be dropped from Eq.(15). A simple way
to verify this assumption’s legitimacy may be done using
Rabi profile plots, as described in Ref.[9]. The second is that
the dynamical time scale of solutions foraa,bstd is much
longer than that forapstd. This enables one to regardabstd as
a slowly changing parameter in the dynamical equation for
apstd. The solution to this equation, hence, may be obtained
in terms of a parameter whose value needs not be known
beforehand.

Introducing the first of the assumptions into(15) and re-
formulating it slightly, a set of two coupled differential equa-
tions is obtained

d

dt
Faastd

abstd G = − iF 0 eif abstdxstd

e−i f abstdxstd 0
GFaastd

abstd G
− iRbpfe−i f bpstdxstd + eigbpstdxstdgF0

1
Gapstd,

s16d

d

dt
apstd = − iRbpfeif bpstdxstd + e−igbpstdxstdgabstd. s17d

Now consider just Eq.(17). The formal solution to this
equation is

apstd = − iRbpE
0

t

feif bpst8dxst8d + e−igbpst8dxst8dgabst8ddt8.

s18d

This integral cannot be precisely evaluated until the exact
form of the solutionabstd and optimized perturbation fre-
quencyvstd—through whichfbpstd and gbpstd are defined
[(5) and (6)]—are known. Certainly, these are not known
before the final solution of the whole optimization procedure
is obtained. However, introduction of the second assumption
enables one to evaluate the partial contribution to the integral
in (18) from some intervalt0,t8,t within which changes
in all these functions are so insignificant that functions them-
selves may be approximated by a constant value.

The aim of the optimization procedure is effectively to
eliminate the dynamical impact of the perturbing level on
population transfer between the two selected levels. If this is
achieved, then dynamics of subsystemsa ,bd will be very
similar to the dynamics of the pure two level system. Hence,
the population oscillation period will be aboutQ=p, which
is then the dynamical time scale foraa,bstd. As optimizing
variations of the driving frequencyvstd are caused exclu-
sively by the changes in perturbation envelope amplitude
mftstdg it is transparent that dynamical time scales forfbpstd
and gbpstd are of the same order as that formftstdg. The
dynamical time-scale ofmftstdg must be of the same order as

that of aa,bstd or longer, for otherwise not even a single
complete population transfer would be achieved. Hence, in
the interval t0,t8,t such thatt−t0!p, the optimized
functions abst8d, fbpst8d, and gbpst8d may be considered
constant, abst8d<abst0d, fbpst8d< fbpstd, and gbpst8d
<gbpst0d. Finally, in this intervalxst8d may be approximated
by xst8d<xst0d+h1/mftst0dgjst8−t0d. In several simple
steps the following result is obtained:

apstd < cst0d − sbpsbp
mftstdg

1 − DbpstdF1 − dbp
1 − Dbpstd

1 − dbpDbpstd

3e−2isbpvstdtstdGeif bpstdxstdabstd, s19d

where

sbp =
F0mbp

2svab − vbpd
, s20d

dbp =
vab − vbp

vab + vbp
, s21d

Dbpstd =
vstd − vab

vbp − vab

. s22d

The constant termcst0d includes both theapst0d and the
integration constant obtained by inserting the lower limit
value t0 into the solution. Its exact value cannot be deter-
mined since integration cannot be analytically stretched over
the whole interval fromt=0 to t=Q. However, sinceapst
=0d=0 this constant is of the order of average value of re-
maining rapid complexly rotating expression, which is very
nearly equal to zero.

If detuning from resonance is assumed small, the pertur-
bation frequency may be approximated byvstd<vab so that
Dbpstd=0. The obtained solution(19) then immediately pro-
vides an upper limit for the magnitude of perturbing level
population

uPpstdu ø sbp
2 s1 + udbpud2. s23d

In generaldbp!1, so the whole bracket can be reduced to 1,
and the maximum amplitude of the perturbing level’s popu-
lation is roughlysbp

2 . Hence, this quantity may be regarded
as a parameter determining the effective strength of the per-
turbation applied to a particular transition: ifsbp

2 !1, then
the dynamical impact of levelp is negligible and the pertur-
bation may be considered weak; ifsbp

2 ,1, the perturbation
is very strong. This result may also be cast into a convenient
quantitative form: to keep the “leakage” of the population to
the perturbing levelp below a certain limiting valueMp, the
greatest drive intensity which may be employed is roughly

F0
max= U2svab − vbpd

mbp
UÎMp. s24d
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2. Optimized driving frequency

When solution(19) is plugged into Eq.(16) a single
closed dynamical equation is obtained for a two-level sub-
systemsa ,bd:

d

dt
Faastd

abstd G = − iF 0 eif abstdxstd

e−i f abstdxstd − xstd GFaastd
abstd G ,

s25d

with

xstd = sbpsbpRbp
mftstdg

1 − DbpstdF1 − dbp
1 − Dbpstd

1 − dbpDbpstd

3e−2isbpvstdtstdGf1 + e2isbpvstdtstdg. s26d

Now a transformation of thesa ,bd subsystem vector is
sought

Fbastd
bbstd G = e−iL̂stdFaastd

abstd G s27d

with

L̂std = Fr1std 0

0 r2std G , s28d

such that the transformed subsystem vector satisfies

d

dt
Fbastd

bbstd G = − iF0 1

1 0
GFbastd

bbstd G . s29d

As this equation is identical to(13), the corresponding solu-
tion would represent complete population transfer oscilla-
tions between levelsa and b. Introducing transformation
(27) into (25), the following equation is obtained:

d

dt
Fbastd

bbstd G = − i3
d

dt
r1std eihfabstdxstd−fr1std−r2stdgj

e−ihfabstdxstd−fr1std−r2stdgj − xstd +
d

dt
r2std 4Fbastd

bbstd G . s30d

If this is to be fitted to form(29), the following conditions
must be fulfilled:

d

dt
r1std = 0, s31d

xstd −
d

dt
r2std = 0, s32d

fabstdxstd − fr1std − r2stdg = 0, s33d

which can be compactly written as

d

dt
ffabstdxstdg = − xstd. s34d

Integration of the last equation yields the formal solution for
Dbpstd from which optimized perturbation frequencyvstd
may be extracted

Dbpstd = ssbasbpdsbp
2 1

xstd

3E
0

t 1 − dbp

f1 − Dbpst8dgf1 − dbpDbpst8dg
mftstdgdt8

+ ssbasbpdsbp
2 1

xstdE0

t Fe2isbpvst8dtst8d

1 − Dbpst8d

− dbp
e−2isbpvst8dtst8d

1 − dbpDbpst8d
Gmftstdgdt8. s35d

SinceDbpstd is generally a small quantity, this equation may
be solved iteratively, usingDbpst8d=0 as the initial value.
The contribution to the totalDbpstd from the second integral,
containing rapidly rotating complex exponentials, may be
shown to be minor compared to the one from the first, real
integral. However, the very fact that there is an imaginary
contribution to the optimized perturbation frequency indi-
cates that the optimization procedure simply cannot com-
pletely annihilate the dynamical impact of the perturbing
level. Nevertheless, as will be demonstrated in the following
section, it may be done to a very good approximation.

Transforming(35) back to the original time coordinatet
and keeping only the first integral yields the approximate
recurrent solution forDbpstd:

Dbpstd = ssbasbpdsbp
2 s1 − dbpd

1

t

3E
0

t fmst8dg2

f1 − Dbpst8dgf1 − dbpDbpst8dg
dt8. s36d

Introducing the zeroth-order approximationDbpst8d=0 into
this equation, the analytic expression for the first-order opti-
mized frequency is obtained

DUJE BONACCI PHYSICAL REVIEW A70, 043413(2004)

043413-4



vstd = vab + svbp − vabdssbasbpdsbp
2 s1 − dbpd

1

t

3E
0

t

fmst8dg2dt8. s37d

For all but the strongest perturbations(i.e., such thatsbp
2

,1 or greater) higher-order corrections are not needed.
Note that the frequency shift in(36) and (37) may be

either away from the perturbing line or towards it. Which
case it will be depends on the relation between the energies
of the three system levels: if levelb has either the highest or
the lowest total energy, so that both transitionsb→a and
b→p are energy-wise either “downwards”ssba=sbp= +1d or
“upwards” ssba=sbp=−1d then the shift will betowardsthe
perturbing line; on the other hand, if the energy of levelb is
in between the other two energies so that these two transi-
tions are in the opposite directionsssba=−sbpd, the shift will
be away from the perturbing line.

D. Population oscillations in the many-level system

The approach presented in Sec. II C can be easily ex-
tended to include multiple perturbation levels. The perturba-
tion now couples each of the selected levels to a certain
number of perturbing levels, and each of perturbing levels’
dynamics is calculated independently from all the others.
This may be done as long as the perturbation due to each
single perturbing level is kept reasonably small(gauged by
standards of the three-level system). Accordingly, the many-
level analog of Eq.(25) is

d

dt
Faastd

abstd G = − iF − xastd eif abstdxstd

e−i f abstdxstd − xbstd GFaastd
abstd G

s38d

with

xastd = mftstdgo
q=1

n

saqsaqRaq
1 − daq

f1 − Daqstdgf1 − daqDaqstdg
,

s39d

xbstd = mftstdgo
p=1

n

sbpsbpRbp
1 − dbp

f1 − Dbpstdgf1 − dbpDbpstdg
,

s40d

where all quantities are defined analogously to the ones in
the previous section, and complex rotating terms have been
eliminated.

The many-level equivalent of(34) is

d

dt
ffabstdxstdg = fxastd − xbstdg, s41d

and the first-order solution is

vstd = vab + foq=1

m
svaq − vabdssabsaqdsaq

2 s1 − daqd

+ op=1

n
svbp − vabdssbasbpdsbp

2 s1 − dbpdg1

t

3E
0

t

fmst8dg2dt8. s42d

The total perturbation intensity for the case of a many-
level system may be estimated by considering the maximum
total population of all perturbing levels

stot
2 ; o

q=1

m

MaxfPqst;T0 , t , Tdg

+ o
p=1

n

MaxfPqst;T0 , t , Tdg

= o
q=1

m

saq
2 + o

p=1

n

sbp
2 . s43d

Hence, ifstot
2 !1 the perturbation of the many-level system

is small; otherwise it is large. In the following section it shall
be demonstrated that(43) provides not just a qualitative, but
also an excellent quantitative criterion for determination of
the impact of perturbing levels on population oscillation dy-
namics.

III. NUMERICAL SIMULATIONS

In this section numerical simulations of system dynamics
for resonant(i.e., unoptimized) and optimized[determined
from (36) and (42)] perturbation frequencies are presented
and compared. Several pulse envelope shapes are considered:
square pulsefmstd=1g, sine pulsefmstd=sinsVtdg and sine
squared pulsehmstd=fsinsVtdg2j (Fig. 1).

A. Three-level system

First a simple three-level system is considered. In this
case a full iterative solution for the optimizing driving fre-

FIG. 1. Pulse envelope profiles. Timet is on the abscissa and
mstd is on the ordinate. The dash-dotted line corresponds to a square
pulse, the dashed line to a sine pulse, and the dotted line to a sine
squared pulse. The pulse is switched on att=T0 and lasts untilt
=T. In all three cases, the maximum value of the perturbing field
intensity field,F0, achieved at timeT−T0/2 is the same. In the case
of the three-level system, it is such thatsbp

2 =2.0 while in case of
the many-level systemstot

2 =0.2.
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quency is easy to calculate from Eq.(35) (with complex
contributions neglected). System parameters have the follow-
ing valuessa.u.;atomic unitsd: vba=0.017 671 a.u.,sba=1,
mba=0.073 a.u., vbp=0.017 611 a.u., sbp=−1, mbp
=0.098 a.u.. These system parameters correspond to the

three rovibrational levels of the HF molecule in the ground
electronic state:a;sv=0,j =2,m=0d, b;sv=1,j =1,m
=0d, p;sv=2,j =2,m=0d. System parameters are such that
the optimizing frequency shift is away from the perturbing
line. In all cases, the total pulse durationT−T0 equals
7.25 ns.

In order to present clearly the improvement that optimi-
zation of driving frequency induces in population transfer
between the two selected levels, the perturbation strength in
following examples is set to an extreme value:sbp

2 =2.0. Fig-
ure 2 compares evolution of optimized frequencyvstd with
two resonant frequencies of the system,vba andvbp. In Fig.
3 resonant and optimized population dynamics are shown for
each of envelope shapes. The increase in the amplitude of the
population transfer between the selected two levels is obvi-
ous.

B. Many-level system

As an example of a many-level system, the set of rovibra-
tional states of the HF molecule in the electronic ground
state is considered. The numerical model used for the calcu-
lation of the system dynamics includes 310 levels
s31 rotational310 vibrationald. It is based on the HF inter-
nuclear potential data and electric dipole moment data from
[10,11], respectively. The targeted transition issv=1,j

FIG. 2. Optimized frequency plots for the three-level case. Time
t is on the abscissa, the perturbation frequencyvstd on the ordinate.
The total pulse duration is 7.25 ns. Two straight solid lines indicate
the two resonant frequencies of the system,vba (upper) and vbp

(lower). The remaining three lines are optimized frequencies for the
three types of pulse: the dash-dotted for a square pulse, the dashed
line for a sine pulse, and the dotted for a sine squared pulse.

FIG. 3. Comparison of the resonant and optimized population
dynamics. Graphs on the left side present numerical solution to
system dynamics for each of pulse types with a resonant perturba-
tion applied,vstd=vba. Graphs on the right-hand side present op-
timized dynamics. The top row corresponds to a square pulse, the
middle to a sine pulse, and the bottom row to a sine square pulse.
For the sake of clarity, onlya (solid line) and b (dashed line)
populations are plotted whilep population is omitted. Although the
optimization clearly does not produce clean two-level dynamics, the
increase in the amplitude of population oscillation is nevertheless
evident.

FIG. 4. Optimized population dynamics of the two targeted lev-
els in the many-level system. Timet is on the abscissa, populations
Pa,bstd are on the ordinate. The top graph corresponds to a square
pulse, the middle to a sine pulse and the bottom one to a sine
squared pulse. In all casesstot

2 =0.2 and the total duration of the
pulse is 4.84 ns. The dotted line on each graph indicates the func-
tion 1−mstdstot

2 .
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=1,m=0d→ sv=0,j =0,m=0d. In all cases, the total pulse
durationT−T0 equals 4.84 ns.

It was demonstrated in the previous subsection that opti-
mization indeed leads to improvement of the population
transfer dynamics, even when the perturbation is very large.
However, as in such conditions complete population transfer
is unattainable, these examples were more of a qualitative
nature from the standpoint of population transfer control.
The many-level system considered now is more realistic than
the previous three-level one and the focus is shifted to quan-
titative predictions. Hence, the employed drive intensity will
be much smaller so that results can be directly applied to
population transfer control. Pulse envelope shapes are the
same as in the three-level case(see Fig. 1). Maximum am-
plitudes of electric field are likewise equal in all three cases,
but now they are chosen so thatstot

2 =0.2. Since the pertur-
bation is relatively small, the optimized frequency may be
determined from the first-order approximate solution(42).

In Fig. 4 the optimized dynamics of two target system
levels is shown for each of three pulse envelopes. In all cases
two things should be noted. First, the general shape of the
optimized dynamics of each of the two selected levels is
fairly close to pure sinusoidal oscillations. This is more so,
the smaller the perturbation strength parameterstot

2 is. How-
ever, the complete population transfer is again not achieved
because a certain share of the population unavoidably ends
up in perturbing levels. Second, the actual instantaneous loss
of population transfer is close to(and actually smaller than)
mstdstot

2 , as indicated by dotted line in each of the plots. This
shows thatstot

2 indeed is a good quantitative(and not just
qualitative) indicator of relative drive strength. The argument
which led to relation(24) may, hence, again be applied to
determine the maximum intensity of the driving radiation to
be employed if population losses to perturbing levels are to
be smaller than some predefined amount.

IV. CONCLUSION

As was stated in the introduction, the aim of this paper is
to explore and refine the use of Rabi oscillations as a tool in

selective population manipulation of complex discrete-level
quantum systems. The main aims of such manipulation are as
great as possible population transfer and at the same time as
short as possible population transfer time. From the simple
two-level theory it is well known that the an increase in drive
intensity yields a reduction in population oscillation period.
However, the same theory can neither fully disclose all the
limitations of this result that arise from the complexity of the
internal structure of a many-level system, nor can it handle
the unavoidable loss of population to the rest of the system.
Results presented in this paper fill this gap: they enable one
to determine the maximum possible drive intensity(and
hence the lower limit of time) with which oscillations of
preselected amplitude(say 99%) may be achieved, and at the
same time to minimize unavoidable losses of the population
to nontargeted system levels. Finally, the method of Rabi
spectra(see Ref.[9]) presents a simple, yet useful conceptual
supplement to the analysis presented in this paper.

In order to achieve the quickest possible population trans-
fer between two preselected levels, driving pulse should be
tailored so that it produces only a single half oscillation of
the population. However, during research for this paper it has
been noted that for strong fields standardp-pulse theory see
Eq. (14) and Ref.[12] is also deficient when it comes to the
complex many-level systems. Work is currently in progress
on analytical extension of standardp-pulse theory that
would resolve this issue.
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