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Analytic pulse design for selective population transfer in many-level quantum systems:
Maximizing the amplitude of population oscillations
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State-selective preparation and manipulation of discrete-level quantum systems such as atoms, molecules, or
guantum dots is the ultimate tool for many diverse fields such as laser control of chemical reactions, atom
optics, high-precision metrology, and quantum computing. Rabi oscillations are one of the simplest, yet po-
tentially quite useful mechanisms for achieving such manipulation. Rabi theory establishes that in the two-level
systems resonant drive leads to the periodic and complete population oscillations between the two system
levels. In this paper an analytic optimization algorithm for producing Rabi-like oscillations in the general
discrete many-level quantum system is presented.
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I. INTRODUCTION IIl. THEORETICAL ANALYSIS

During the past 20 years a number of methods has been All calculations in this section are done in a system of
devised for state-selective preparation and manipulation ofinits in which7=1.
discrete-level quantum systemd-5. However, simple
population oscillations, induced by a resonant driving pulse A. Calculation setup
have received negligible attention as a prospective popula- ) , , )
tion manipulation method. This might be attributed to two A guantum system V,V'th N qhscrete stationary Ie_vels.wnh
reasons. The first is that Rabi theory is based on the rotatin%nerg'?fi (i=1,... N) is considered. The system is driven
wave approximatiofRWA), and all attempts to generalize it @Y & time dependent perturbation given in Eg). In the
without RWA (e.g., Refs[6—8]) are mathematically very in- mteractpn picture, _the dynamics of the system obeys the
volved. The second is that no attempt has been made tgchroedinger equation
analytically generalize the original Rabi theory beyond two- d ~
level systems. —a(t) =-iV(talt), (2

In this paper an analytic extension of Rabi theory to tran- dt

sitions in many-level systems is presented. The aim is ©Qunare a(t) is a vector of time-dependent expansion coeffi-

design” a driving pulse of the form cientsay(t), ...,an(t). TheN X N matrix V(t) describes inter-

F(t) = Fom(t)cog w(t)t] (1)  action between the system and perturbation. Explicitly, its
elements are given by

by establishing analytical optimization relations between its

parameters: ma>_<imum pulse amplit_uE@, pulse envelope Vij(t):Mm(t)[ésij{a)(t)-wij}t + gisilorogl 3)

shapem(t), and time dependent carrier frequensit). The 2

goal of this enterprize is twofold. The first is to achieve as . - .

complete as possible transfer of population between two seii 1S the transition moment bgtween .thb and thejth lev-

lected states of the system. The second is to make this tran§'S_induced by the perturbatiors; =sign(E—E;) and

fer as rapid as possible. These two requirements, however, Ei~Ejl are, respectively, the sign and the magnitude of the

are contradictory; population transfer can be accelerated byFSonant frequency for the transition betweenitheand the

using a more intense drive, but at the same time a strongd? IﬁVEI'_ < to ind ati er b
drive increases involvement of remaining system levels in . 1€ @im is to induce population transfer between two ar-

population dynamics and hence deteriorates populatiofitrarily selected levels, designated lay and 3, directly

transfer between a selected pair of levels. coupled by the perturbatioite., such thaj,s# 0). To sim-
In this paper it is shown how, for a pulse of arbitrary plify equatlpns, the time varlable' t is rescaled tpwith

shape and duratiom(t), the drive frequency can be analyti- transformation between the two given by

cally optimized to maximize the population transfer ampli- =

tude between selected two levels. In other words, Rabi oscil- dr= Mm(t)dt. (4)

lation theory is reformulated for the case of a many-level 2

system driven by an arbitrary modulated pulse. Then with the following substitutions:

2
f.. - Q. — t) — w;; , 5
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2 () = R:[efii (DX 4 gmigij(nx(n)]
0,9 =8, =——L0(0) + 0], ®) - W =Rle enmrl o
0Map Initial conditions for the problem of selective population
transfer comprise complete population initiallgt t=7=0)
x(7) = FO/'LaQt(T) 7) contained in only one of the selected levels, eitheor B.
' The other selected level, as well as all the remairihg2
“perturbing” levels of the system are unpopulated at this
time.
Rj= ﬂ. (8) Population evolutior;(t) of theith level is determined
Hap from TT;(t) =[ay(t)|.

Equation(2) transforms into
B. Population oscillations in the two-level system:

d ~ . .
—a(n) =-iW(da(n, 9 Recapitulation
dr N . -
Having in mind thats; =-s;;, the explicit form of the gen-
where eral dynamical Eq(9) in a two-level system is
|

d {aa(fr) } _ { 0 gfap VX7 1 g g IX() } {aa(r) ] 11

— =—] . . .

dr a7 g sV 4 ap7X(7) 0 ag(7) v

Under certain conditionor a thorough discussion see, e.g., $ Fole T
Ref. [9]) this equation may be simplified by introducing the J dr= O—Z‘Qf m(t)dt= . (14)
RWA. Within the RWA, dynamical impact of complex expo- 0 0
nentialse*9«57X7 is neglected and these may be eliminatedThis is a well known result which forms the basismfulse

from the equation. Hencéll) reduces to theory.
dlayn | _ 0 elap™XD || 3 (7)
dr aﬁ(r) =~ g 1fap()x(7) 0 aﬁ(q-) ' C. Population oscillations in the three-level system
(12 As will be shown in subsequent sections, the whole ana-

lytical approach to the maximization of the population oscil-
ation amplitude in a general many-level quantum system
may be reduced to discussion of a three-level system. Along
d|ayn 10 1(la with two “selected” levelsa and B, the system now dis-
drla (1) == 1 0llaym | (13 cgssz_ad contains one addltlo_nal “perturbing” level, de§|gnated
B B with index p. The only requirements on the system internal

As may be easily demonstrated by solving this simplestructure are thafi,g, ug,# 0, and u,,=0. While the first
equation, the resonant perturbation induces complete periwo requirements are necessary, the last one does not reduce
odic transfer of the population between two levels. The timethe generality of the final results to any significant extent and
O (in units of 7) or T (in units of § required for a single it is introduced for calculational convenience.

Finally, adjusting the perturbation frequency to the resonan
value[w(7) = w,g] results inf,45(7)=0, and(12) reduces to

population oscillation is determined from The three-level version of the dynamical K§) is
|
a,(7 0 gfap(MX(1) 4 g7igap(nX(7) 0 a,(7)
0 ag(7) | =—i| e Mapl X 4 ap(mX() | 0 Rgple ™ o™X + a7 |1 g (7) [ (15)
ap(7) 0 Rpp[ €707 4 g710p(74(7)] 0 ay(7)
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1. The adiabatic approach and perturbing level that of a, 4(7) or longer, for otherwise not even a single
population dynamics complete population transfer would be achieved. Hence, in

In order to solve Eq(15) two assumptions shall be made. the interval 7,<7’ <7 such that7-7,<, the optimized
The legitimacy of both of them may be checked retrospecfunctions as(7’'), fz('), and gg,(7') may be considered
tively from the final solution. The first one is that the RWA constant, ag(7)=ag(7), fgp(7')=fgy(7), and ggy(7)
may be applied for transition < 3 so that exponentials con- = 9gp(70). Finally, in this interval(7') may be approximated
taining g,4(7) may be dropped from Eq15). A simple way by X(7')=X(7o) +{1/m[t(70)[}(r' ~ 7). In several simple
to verify this assumption’s legitimacy may be done usingsteps the following result is obtained:

Rabi profile plots, as described in Rg9]. The second is that

the dynamical time scale _of solutions fay, 5(7) is much a(7) = C(r) = Sy m[t(7)] [ _s 1-Ap(7)
longer than that_ foay(7). This er_lables one to .regaag(r) as P O =BT Apq _ Ago(7) Bpq — oA go(7)

a slowly changing parameter in the dynamical equation for

gp(r). The solution to this equation, hence, may be obtained Xe—zisﬁpw(r)t(r):|eifﬁp(r)x(f)aﬁ(T)’ (19)
in terms of a parameter whose value needs not be known

beforehand.

Introducing the first of the assumptions intt6) and re-  where
formulating it slightly, a set of two coupled differential equa-

tions is obtained Forsp

0. = 1
d {aa(r)]_ i{ 0 éfaze(ﬂX(T)Maa(T)} P 2Awap— wgy)
drlagn ] [effas? 0 ag(7)

(20)

) . ) 0 S = M, 21
— iR gl oY) + 9o 7X(7)] [ 1 ] ay(7), PP o+ wpp 2

(16)
Ago(7) = M@ (22)
d = iR [ gD 4 @m0 XD @pp ™ Pap
d—Tap(r)——lRBp[e B +e'9p lag(7).  (17)
The constant ternt(7) includes both thea,(7) and the

Now consider just Eq(17). The formal solution to this integration constant obtained by inserting the lower limit

equation is value 7 into the solution. Its exact value cannot be deter-
. mined since integration cannot be analytically stretched over

a(7) = _iRBpf [elf o7 X() +e—igﬁp(f')x(rﬂ]aﬂ(Tr)de' the Wholg interval fro_mr:O to 7=0. However, sincea,(r
0 =0)=0 this constant is of the order of average value of re-

(18) maining rapid complexly rotating expression, which is very
nearly equal to zero.

This integral cannot be precisely evaluated until the exact If detuning from resonance is assumed small, the pertur-
form of the solutionag(7) and optimized perturbation fre- bation frequency may be approximatedddr) = w,z S0 that
quency w(r)—through whichfz,(7) and gg,(7) are defined  Ag,(7)=0. The obtained solutio(l9) then immediately pro-
[(5) and (6)]—are known. Certainly, these are not known vides an upper limit for the magnitude of perturbing level
before the final solution of the whole optimization procedurepopulation
is obtained. However, introduction of the second assumption
enables one to evaluate the partial contribution to the integral (7| < U% (1+]84))% (23)
in (18) from some intervalky< 7' < 7 within which changes P

in all these functions are so insignificant that functions them, generalsz, <1, so the whole bracket can be reduced to 1
. p 1 1
selves may be approximated by a constant value. and the maximum amplitude of the perturbing level's popu-
_The aim of the optimization procedure is effectively 10 445 i roughlyo?,. Hence, this quantity may be regarded
ehmmat_e the dynamical impact of the perturbing level ONas a parameter determining the effective strength of the per-
population transfer between the two selected levels. If this I$urbation applied to a particular transition: 4, <1, then

. ; _ 7
achieved, then dynamics of subsystém g) will be very  yho Gunamical impact of levad is negligible and the pertur-
similar to the dynamics of the pure two level system. Hencey,4tion may be considered weak'o'rﬁ ~1, the perturbation
the population oscillation period will be abo@=, which 5 yery strong. This result may also be cast into a convenient
is then the dynamical time scale fer, s(r). As optimizing  guantitative form: to keep the “leakage” of the population to
variations of the driving frequency(7) are caused exclu- he perturbing levep below a certain limiting valué,, the

sively by the changes in perturbation envelope amplitudgyreatest drive intensity which may be employed is roughly
mt(7)] it is transparent that dynamical time scales figy(7)

and gg,(7) are of the same order as that foft(7)]. The
dynamical time-scale aft(7)] must be of the same order as

[

2w .- —
Fg‘axz‘—LéP—(“’“ s | (24)

Hpp
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2. Optimized driving frequency
When solution(19) is plugged into Eq.(16) a single

PHYSICAL REVIEW A70, 043413(2004

closed dynamical equation is obtained for a two-level sub-

system(a, B):

E{aa(r)} _ [ 0 gfapl VX0 } [%(T)}
drlag(n ]~ [eitagnn  — x(n) Ilagn |’
(25)
with
) mitn] | 1-Ag(0)
x(7) = SBpUBpRﬁP]_ - Agy(7) {1 Ay - Oppl gp(7)

X e—ZiSBpo)(‘r)t(T):| [1 + eZiSBpa)(T)t(T)] i (26)

Now a transformation of thé«,8) subsystem vector is
sought

be(7) } . ;(T{am ]

{bﬁ(ﬁ ] P @7
with

NG 0}

such that the transformed subsystem vector satisfies

d {ba(r)] _{o 1“%@)]

— =—i .

dr[ bg(7) 1 0]|bg(7)
As this equation is identical tL3), the corresponding solu-
tion would represent complete population transfer oscilla-

tions between levelsr and B. Introducing transformation
(27) into (25), the following equation is obtained:

(29)

d _
— @lfap(MX(D=Lp1(D-p2(D]}
d {ba(f)} N a7 [ba(f)} 0
d7l by(7) il g (DX ~Lp1()=po(D]} d be(7) |
e as ~x(1)+ -paA7)
T
[
If this is to be fitted to form(29), the following conditions g Zisgpo(7 ()
Y . — 5 - ’_
must be fulfilled: BT~ Sy (7 mt(7)]d7 (39

d

E_pl(T) = 01 (31)
d
X() = <pa(7) =0, (32
fap(DX(7) = [p1(7) = po(7)] = 0, (33
which can be compactly written as
d
d—T[fag(T)X(T)] == x(7). (34)

SinceA gy(7) is generally a small quantity, this equation may
be solved iteratively, using\g,(7')=0 as the initial value.
The contribution to the total 5,(7) from the second integral,
containing rapidly rotating complex exponentials, may be
shown to be minor compared to the one from the first, real
integral. However, the very fact that there is an imaginary
contribution to the optimized perturbation frequency indi-
cates that the optimization procedure simply cannot com-
pletely annihilate the dynamical impact of the perturbing
level. Nevertheless, as will be demonstrated in the following
section, it may be done to a very good approximation.
Transforming(35) back to the original time coordinate

Integration of the last equation yields the formal solution forand keeping only the first integral yields the approximate

Agy(7) from which optimized perturbation frequenaey(7)
may be extracted

1
App(7) = (SpaSap) Uzﬁp@
1 - 5Bp

xfo [1 _Aﬁp(T,)][l - 5ﬁpA,Bp(7J)]

1 T
+ (SgaSpp) Uzp@ f . [

m[t(7)]d+’

e2iSBp(u(T’)t(‘r')
1-2,(7)

recurrent solution fol g,(t):

1
App(t) = (SpaSpp) (1 = Opp) %

' [m(t")T?
0 [1 _A,Bp(t’)][l - 5ﬂpAl8p(t,)]

dt’. (36)

Introducing the zeroth-order approximatidn,(7')=0 into
this equation, the analytic expression for the first-order opti-
mized frequency is obtained
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X [ [m(t")]2dt’. (37) = 0-6 n P SN !

0 g : / N !

0.4 ! J N |

For all but the strongest perturbatiofise., such thato%, 0.2 S AN i
~ 1 or greater higher-order corrections are not needed. ) I/’ \\:
Note that the frequency shift i36) and (37) may be o N

either away from the perturbing line or towards it. Which To t T

case it will be depends on the relation between the energies _ - _

of the three system levels: if lev@l has either the highest or ~ FIG. 1. Pulse envelope profiles. Tintés on the abscissa and
the lowest total energy, so that both transitighs> & and m(t) is on the ordlngte. The dgsh-dotted line correspond§ toa square
B— p are energy-wise either “downwardes, =sg,=+1) or g:hsaeré:jhiazzhidhc!nguﬁeaiss 'Ziv.?é‘r'é% c?rr:(;;hea?\gttlzgtlsmjntt?lta o
upwarQS (Tc’ﬂ“__sﬁp__l) then the Shlﬂ wil betowardsthe =T. In all three cases, the maximum value (;Jf the perturbing field
perturblng line; on the other han.d’ if the energy of legeab intensity field,Fq, achieved at tim@ -Ty/2 is the same. In the case

in between the other two energies so that these two transj e three-level system, it is such thag —2.0 while in case of
tions are in the opposite directioss,=-Sg,), the shift will o many-level syster2,=0.2. P

be away from the perturbing line.

- m 2

D. Population oscillations in the many-level system w(t) Qap [qul (waq waﬁ)(saﬁsaq)oaq(l 5aq)

The approach presented in Sec. Il C can be easily ex- + 3" — 2 (1= ]
tended to include multiple perturbation levels. The perturba- Epzl(wﬁp ap) (S5aSe0) Tpl 1 = )
tion now couples each of the selected levels to a certain t
number of perturbing levels, and each of perturbing levels’ xf [m(t")]2dt’. (42
dynamics is calculated independently from all the others. 0
This may be done as long as the perturbation due to each
single perturbing level is kept reasonably sm@khuged by
standards of the three-level systemccordingly, the many-
level analog of Eq(25) is

1
t

The total perturbation intensity for the case of a many-
level system may be estimated by considering the maximum
total population of all perturbing levels

m

d {aa(r)] [ (D) &l X } {aa(r)} o= 2 Max(TI,(t; To <t < T)]
- = . =1
drlay(n) eifas ™Dy i(n) | ag(n) o
(39) + X Max(I,(t; Ty < t < T)]
. p=1
with m N
n =2 0%t 2 % (43)
1-5,4 =1 p=1

X 7) =MD Suq0aqRa :
1 L = A (DL = SaqA (7] Hence, ifo2,<1 the perturbation of the many-level system
(39 is small; otherwise it is large. In the following section it shall
be demonstrated théd43) provides not just a qualitative, but
also an excellent quantitative criterion for determination of
1-54, the impact of perturbing levels on population oscillation dy-

R , .
Bp[l _Algp(T)][l _ 5,8pABp(T)] namics.
(40) I1l. NUMERICAL SIMULATIONS

. i _In this section numerical simulations of system dynamics
where all quantities are defined analogously to the ones ig,, resonant(i.e., unoptimizeyl and optimized[determined

th_e previous section, and complex rotating terms have beegy, (36) and (42)] perturbation frequencies are presented
eliminated. _ , and compared. Several pulse envelope shapes are considered:
The many-level equivalent aB4) is square pulsém(t)=1], sine pulselm(t)=sin(Qt)] and sine
squared pulsém(t)=[sin(Qt)]?} (Fig. 1).

n

Xp(7) = mit(n)]> Sgp0 gp
p=1

d
First a simple three-level system is considered. In this
and the first-order solution is case a full iterative solution for the optimizing driving fre-
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FIG. 2. Optimized frequency plots for the three-level case. Time L
t is on the abscissa, the perturbation frequesaty on the ordinate. T ¢ T
The total pulse duration is 7.25 ns. Two straight solid lines indicate
the two resonant frequencies of the systew, (uppe) and wgy,
(lower). The remaining three lines are optimized frequencies for the ©.8
three types of pulse: the dash-dotted for a square pulse, the dashe 4.

line for a sine pulse, and the dotted for a sine squared pulse. %0 .

guency is easy to calculate from E(B5) (with complex 0.2

contributions neglectgdSystem parameters have the follow-
ing values(a.u.=atomic unit$: wg,=0.017 671 a.usﬁazl
'L_L o=0.073a.U., wg,=0.017611au., sg=-1, FIG. 4. Optimized population dynamics of the two targeted lev-
=0.098 a.u.. These system parameters Correspond to tl@?s in the many-level system. Tintdés on the abscissa, populations
I, 4(t) are on the ordinate. The top graph corresponds to a square
pulse, the middle to a sine pulse and the bottom one to a sine
squared pulse. In all caseg,=0.2 and the total duration of the
pulse is 4.84 ns. The dotted line on each graph indicates the func-
tion 1-m(t)o2,.

To t T

aiii]
]

three rovibrational levels of the HF molecule in the ground
electronic state: a=(v=0,j=2,m=0), B=(@w=1,j=1,m
=0), p=(v=2,j=2,m=0). System parameters are such that
the optimizing frequency shift is away from the perturbing
line. In all cases, the total pulse duratidn-T, equals
7.25 ns.

In order to present clearly the improvement that optimi-
zation of driving frequency induces in population transfer
between the two selected levels, the perturbation strength in
following examples is set to an extreme valné' =2.0. Fig-
ure 2 compares evolution of optimized frequenaft) with
two resonant frequencies of the system,, and wgy,. In Fig.

3 resonant and optimized population dynamics are shown for
each of envelope shapes. The increase in the amplitude of the
population transfer between the selected two levels is obvi-

T[]

ou
FIG. 3. Comparison of the resonant and optimized population
dynamics. Graphs on the left side present numerical solution to
system dynamics for each of pulse types with a resonant perturba- B. Many-level system

tion applied,w(t)=wg,. Graphs on the right-hand side present op- .
timized dynamics. The top row corresponds to a square pulse, the As an example of a many-level system, the set of rovibra-

middle to a sine pulse, and the bottom row to a sine square pulsé'onaI states of the HF molecule in the electronic ground
For the sake of clarity, onlyr (solid line) and B (dashed ling  State is considered. The numerical model used for the calcu-
populations are plotted while population is omitted. Although the lation of the system dynamics includes 310 levels
optimization clearly does not produce clean two-level dynamics, thd 31 rotationak 10 vibrationa. It is based on the HF inter-
increase in the amplitude of population oscillation is neverthelesiuclear potential data and electric dipole moment data from
evident. [10,11, respectively. The targeted transition {®=1,j
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=1,m=0)— (v=0,j=0,m=0). In all cases, the total pulse selective population manipulation of complex discrete-level
durationT-T, equals 4.84 ns. gquantum systems. The main aims of such manipulation are as
It was demonstrated in the previous subsection that optigreat as possible population transfer and at the same time as
mization indeed leads to improvement of the populationshort as possible population transfer time. From the simple
transfer dynamics, even when the perturbation is very larg&yyo-level theory it is well known that the an increase in drive
However, as in such conditions complete population transfef, oty vields a reduction in population oscillation period.

is unattainable, these examples were more of a qualitativ : .
nature from the standpoint of population transfer control.,. owever, the same theory can neither fully disclose all the

The many-level system considered now is more realistic thaHmitations of this result that arise from the complexity of the
the previous three-level one and the focus is shifted to quariiternal structure of a many-level system, nor can it handle
titative predictions. Hence, the employed drive intensity will the unavoidable loss of population to the rest of the system.
be much smaller so that results can be directly applied t&Results presented in this paper fill this gap: they enable one
population transfer control. Pulse envelope shapes are tie determine the maximum possible drive intensignd
same as in the three-level ca@ee Fig. 1. Maximum am-  hence the lower limit of timewith which oscillations of
plitudes of electric field are likewise equal in all three casespreselected amplitudsay 99% may be achieved, and at the
but now they are chosen so that,=0.2. Since the pertur- same time to minimize unavoidable losses of the population
bation is relatively small, the optimized frequency may beiy npontargeted system levels. Finally, the method of Rabi
determined from the first-order approximate solutid@). spectrasee Ref[9]) presents a simple, yet useful conceptual
In Fig. 4 the optimized dynamics of two target SyStemsupplement to the analysis presented in this paper.

levels is shown for each of three pulse envelopes. In all cases . X : ;
two things should be noted. First, the general shape of th In order to achieve the quickest poss_|l?le population trans-
optimized dynamics of each of the two selected levels id€ between two preselected levels, driving pulse should be

fairly close to pure sinusoidal oscillations. This is more so tailored so that it produces only a single half oscillation of
the smaller the perturbation strength paramefgris. How-  the population. However, during research for this paper it has
ever, the complete population transfer is again not achievetdeen noted that for strong fields standarghulse theory see
because a certain share of the population unavoidably end®y. (14) and Ref.[12] is also deficient when it comes to the
up in perturbing levels. Second, the actual instantaneous log®mplex many-level systems. Work is currently in progress
of population transfer is close {@nd actually smaller than on analytical extension of standard-pulse theory that
m(t)o2, as indicated by dotted line in each of the plots. Thisyould resolve this issue.
shows thato?, indeed is a good quantitativ@nd not just
qualitative indicator of relative drive strength. The argument
which led to relation(24) may, hence, again be applied to
determine the maximum intensity of the driving radiation to
be employed if population losses to perturbing levels are to
be smaller than some predefined amount. The author is very grateful to Dr. Nadja DdasSlior in-
sightful discussions and assistance during work on problems
IV. CONCLUSION explored in this paper. The author is also grateful to Dr.
As was stated in the introduction, the aim of this paper isDanko Bosanac for providing the initial idea from which the
to explore and refine the use of Rabi oscillations as a tool ifopic of this research developed.
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