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Abstract– This paper deals with reconstruction of 
the gradient in the volume element space that is 
required for shading in the volume rendering. The 
accuracy of the surface reconstruction in the volume 
rendering is very important task as well as 
reconstruction accuracy of the normal vector. The 
central difference operator is often used as 
approximation of the gradient. The gradient 
reconstruction is an essential operation for 
determination of illumination and it has a great impact 
on the appearance of the reconstructed surface of an 
object. Our reconstruction of the gradient is based on 
the cubic approximation or interpolation B-splines. 
Volume rendering is visualization technique with 
widespread applicability in many fields, from the 
medical visualization to the engine visualization. 
Artefacts introduced by the surface reconstruction or 
the gradient reconstruction are of the crucial 
importance for perception of the projected object. 
KEY WORDS – gradient, reconstruction, B-splines, 
volume rendering 

1 Introduction 

One of the most popular visualization technique is volume 
rendering. In the volume rendering, rays are cast in the 
volume element space. Volume data are sampled on the 
regular rectilinear grid and the reconstruction is required at 
arbitrary positions along the ray. Therefore, the 
reconstruction at an arbitrary position in the three-
dimensional space according to the set of the discrete 
samples is required. The best solution is to find a 
continuous function, defined with a set of discrete 
samples. If one finds the continuous function, calculation 
of the new samples (resampling), or calculation of the 
derivative at any position is easy. For two or three 
dimensional extension, separability of the reconstruction 
filter is important property.  
In the signal processing field, a conversion from the 
discrete representation to the continuous representation of 
the signal is usually applied by lowpass filtering. In 
computer graphics, the continuous curve is defined with 
the set of points. Essentially, it is the same problem in both 
fields, but the solutions are different. B-splines are the 
most popular in computer graphics and interpretation of 
the B-splines in the signal processing field brings a new 
light to the reconstruction problem. 
In computer graphics, conversions from continuous to 
discrete representation, and vice versa, are inherited in 
many algorithms. The display devices usually have 
discrete coordinates and objects can be represented using 
discrete or continuous coordinates. Therefore, sampling or 

resampling is necessary in almost every procedure and it 
causes appearance of the alias artefacts on the result. 
Rotation of the image, texture mapping and ray tracing are 
some examples where sampling or resampling is typical. 
Therefore, reconstruction is one of fundamental operations 
in computer graphics. 
To reconstruct a value at the arbitrary position, various 
reconstruction approaches can be applied. Much work has 
been done towards the design of reconstruction filters and 
error characterization [2], [3], [5]. Simple approaches are 
nearest neighbour or trilinear interpolation, but continuity 
of the reconstructed function is only C0 and C1, 
respectively. Better approaches for reconstruction are 
cubic spline, e. g. BC-splines introduced by Mitchell and 
Netravali [5], Catmull-Rom spline [6], or approximation 
and interpolation B-splines [7], [8]. Research of the 
reconstruction filters is done for one or two-dimensional 
case [1-3], [6-8]. The volumetric space is three-
dimensional space, so extension should be made. In the 
volume visualization, one of the fundamental operations is 
reconstruction of the continuous function from a given set 
of samples. 
Conversion from discrete to the continuous representation, 
or resampling, in the volume rendering occurs at several 
levels in the procedure, so aliasing artefacts superpose 
during the procedure and finally reveal in the resulting 
image. A discrete number of rays is cast in the volume 
element space, at the discrete positions on the ray, 
reconstruction is done, and according to the discrete 
samples, values are calculated. Therefore, conversion 
between the continuous and discrete representation is 
significant. Our attention is focused only on the 
reconstruction of the function value and gradient at the 
discrete positions along the ray. Our goal is to enhance the 
influence due to this reconstruction on the result. 
According to the discrete samples in the volume element 
space, it is best to consider real-valued function f(x, y, z) 
defined over real domain R3. From the continuous 
representation, one can find the derivatives at arbitrary 
position. 
Evaluation of the spatial gradient in two dimension space 
is important for an edge detection. Reconstruction of a 
derivative in the volume rendering is required for shading. 
Alias artefacts due to the reconstruction of the derivative 
also superpose to the final image. Bentum [1] presents an 
analysis of gradient estimators in frequency domain for 
cubic spline, but he does not consider interpolation and 
approximation B-splines. Although reconstruction can be 
correct, error in derivative reconstruction has high 
influence on the perception of the projected object. 
In Section 2, we review some essential properties of 
continuous B-spline functions. The central difference 
operator and derivative of B-spline are described in 
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Section 3. Finally, multidimensional extension and results 
are presented in Sections 4 and 5. 

2 B-splines 

For interpolation or approximation curves and surfaces in 
computer graphics, B-splines are the most important. 
Recently [7], [8], B-splines are described in signal 
processing field as the direct and indirect B-splines 
transform.  
The direct B-spline transform determines the spline 
coefficients required for interpolation. It is analogous to 
finding the control points (coefficients) for interpolation 
B-spline. The indirect one determines continuous function 
through a given set of points based on the calculated spline 
coefficients [7]. It is analogous to finding the 
approximation curve for a given set of points. 
When it is important to interpolate a given set of samples, 
the direct B-spline should be applied. In a presence of 
noise in the input signal, low pass prefiltering is required. 
In that case, we can omit the direct B-spline transform, 
because the indirect B-spline transform approximates the 
input sequence and lowpass filtering is included.  
For a given set of (n+1) control points , the 
approximation B-spline curve p  is: 
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where Ni, k are the basis or blending functions of degree k. 
For the sequence of the points r , this formula defines the 
continuous curve, where  is a point on the curve, for a 
given parameter t. Without lost of generality, we will focus 
our attention on the cubic case. The volumetric data are 
sampled on the regular, uniform and rectilinear grid. The 
B-spline with the uniform parameterization is a special 
case of  B-spline that is appropriate for our problem. 
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The cubic uniform B-spline is a special case of (2.1) where 
i-th segment is:  

( ) 33,3 RMTp ⋅⋅= Bi t  (2.2) 

T3 is the parameter matrix, MB,3 is a matrix with constant 
coefficients (transformation matrix) and R3 is matrix of 
four control points. Equation (2.2) in detail is: 
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For the cubic B-spline, only four points have an effect on 
each segment.  
Notice that for t = 0 and for t = 1: 
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From the equations (2.4), we can see that at the boundary 
of i-th segment only three points are involved, but the 
curve does not interpolate any of them. 

 

 
Fig. 1. Cubic bases function. 

 
The basis functions Ni,k (t) of the degree k, from the 
formula (2.1), for the cubic case, become T3MB,3 in the 
formula (2.2). The basis function T3MB,3 is shown on Fig. 
1 as four segments with respect to each control point ri-1, 
ri, ri+1, ri+2, where t∈[0,1]. 
The cubic basis function is symmetric and it is the same 
for all segments i. The special case is only at the boundary 
of the sequence, thus some boundary condition should be 
applied. Phantom points could be added, or we can form 
closed curve by inserting the point rn as the first point r-1 
and the point r0 as the last point rn+1. In that case, even at 
the boundary, the basic function will be the same as (2.3). 
We can represent the equation (2.3) in signal processing 
terms as convolution: 
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n

k
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33 ββ , (2.5) 

where y(k) is a sequence of the input points r  and βi
 3(x) is 

the filter kernel or the cubic B-spline basis function. In the 
signal processing, input is usually one dimensional y(k), 
while, in computer graphics,  is a point in two or three 
dimensions, but we can take each coordinate; e. g. x(t), 
separately.   

ir

The cubic B-spline approximation can be implemented as 
a FIR filter. The cubic B-spline basis function β 3(x) is the 
filter kernel and it can be calculated from the equation 

 or it can be constructed recursively. For the cubic 
case, the filter kernel is [7]: 

( ) (
44 344 21

times

xx
4

003 ... βββ ∗∗= )  
(2.6) 

β 0(x) is a centred, normalized, and rectangular pulse. The 
equation (2.6) is useful in efficiency optimization. 
The same basis function β 3(x) for all segments, even for 
boundary segments, enables the use of circular 
convolution. 
The B-splines β i(x) of the degree 1 to 3 are shown on Fig. 
2. For a larger degree of B-spline, the filter kernel support 
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is wider. For the cubic B-spline, the kernel region of 
support is .  [ ]2,2−

 

 

Fig. 2. B-splines of the degree 1 to 3. 

 
The cubic B-spline basis function β 3(x) is same as T3MB,3 
in Fig. 1, except that four segments are shifted in 
appropriate intervals in the parameter space. 

3 Gradient 

The central difference operator is often used as 
approximation of the gradient. If the distance between 
sampled points is one, the central difference operator in 
three-dimensional space is: 
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At the boundary of i-th segment, only two points are 
involved. At the discrete point, the gradient is the same as 
frequently used discrete approximation of a differentiator, 
like in formula . But, this expression is only 
combination of three one dimensional derivative filters of 
the approximation B-spline at the segments boundaries. In 
the formula , two approximations are made. The first 
one is approximation of the derivative that is defined in the 
continuous domain (3.2), with derivative defined only at 
the boundary . The second approximation is in 
combination of three one-dimensional derivatives, instead 
three partial derivatives of the continuous three- 
dimensional B-spline. 
For our consideration, it is important to have the gradient 
defined over the continuous domain, so it would be better 
to use the continuous case (3.2).  
 

 
Fig. 3. Derivative filter kernels of the B-splines (the degree 1 to 3). 

 
By using the property of B-splines: In the previous chapter, we found the approximation B-

spline function, for the given set of points, defined with 
the expression  or (2.5). The gradient of the function 
is defined with the first derivative. Using , we can 
find the expression for the derivative of the cubic B-spline:  
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the derivative of the input sequence y(k) is from the 
equation  (2.5):  
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Fig. 3 shows the derivative filter kernels β di(x) for the B-
splines that are presented on Fig. 2. 
For the cubic B-spline approximation the continuity of 
derivative filter kernel is C2. The region of support for 
derivative filter kernel is same as for cubic B-spline. 

 Notice that for t = 0 and for t = 1: 
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Let two dimensional mesh of uniformly spaced control 
points have nm×  points. Two-dimensional circular 
convolution with the bicubic B-spline filter kernel is: 

4 Multidimensional extension 

A bicubic uniform surface patch is defined with: 
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where T3 is the parameter matrix, MB,3 is a matrix with 
constant coefficients, same as in (2.3), and R3,3 is two-
dimensional net of control points: 

where we can compute two-dimensional basis B-spline or 
the filter kernel: 
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



















=

+++++−+

+++++−+

++−

+−+−−−−

21,21,2,21,2

21,11,1,11,1

21,1,,1,

21,11,1,11,1

3,3

jijijiji

jijijiji

jijijiji

jijijiji

rrrr
rrrr
rrrr

rrrr

R . (4.2) 
The region of support for this filter kernel is 
[ ] [ ]2,22,2 −×− . The partial derivative filter kernel in the 
direction t for two-dimensional convolution is: 
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operator in two-dimensional space is:  

The two-dimensional partial derivative filter kernel in one 
direction is shown on  Fig. 4. ( ) ( ) ( )
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This concept could be expanded on three-dimensional 
case. The convolution form in three-dimensional space is: 

where 
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where the reconstruction filter kernel is: 
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(4.10)

 
Similarly as for two-dimensional case (4.8), we find the 
gradient of the B-spline function in three-dimensional 
space. The partial derivative filter kernel in the direction t 
for three-dimensional convolution is: 
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The partial derivative of the reconstruction filter kernel for 
the parameter combination (t, u, w) defines the gradient at 
the certain position. We use this gradient for the 
illumination calculation. 

5 Results 

In volume rendering, reconstruction of the surface is 
required along the ray at arbitrary position, as well as 
reconstruction of the gradient. To improve the central 
difference operator , in our application, we use 
combination of three one dimensional derivatives  
along each axis to find the gradient. The parameter 
combination (t, u, w) determines derivative calculation 
with formula  or  along (x, y, z) axis, 
respectively. We compare the improved central difference 
operator with reconstruction using the derivative of the 
three-dimensional approximation cubic B-spline. 

(3.1)Fig. 4. Cubic derivative filter kernel of the B-spline in two dimensions. 
(3.2)

(3.2)

 
For the parameter combination t = 0 and u = 0, the 
derivative is: (3.5)
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Fig. 5. provides a comparison between the gradient 
estimation with the improved central difference operator 
(left) and the gradient that is achieved as the derivative of 
the B-spline function (4.11) (right). The reconstruction 
kernel for surface reconstruction, in both examples, is the 
same  (the approximation B-spline). The difference 
is obvious in perception of smoothness of the surface. 
Despite the same reconstruction procedure, in both 

 
The matrix notation is inappropriate for an extension in 
three dimensions. 
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examples, reconstruction of the gradient has a drastic 
effect on the appearance of the surface.   

6 Conclusion 

The main objective of this paper has been to derive the 
gradient of the three-dimensional B-spline function. The 
gradient is used as the normal vector for illumination 
calculation in volume rendering. We compare our result 
with the result achieved when the gradient approximation 

with the improved central difference operator is used. The 
artefacts due to the gradient reconstruction, introduce 
incorrect information about the surface that is 
reconstructed. 
The artefacts, that appear when the improved central 
difference operator is used, confirm the importance of 
gradient reconstruction. We also show that the B-splines 
are suitable for surface reconstruction as well as for 
gradient reconstruction. 

 
 

  
Fig. 5. Comparison between gradient estimation with the improved central difference operator and the gradient of the B-spline function. 
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