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First-order transition in the one-dimensional three-state Potts model with long-range interactions
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The first-order phase transition in the three-state Potts model with long-range interactions decaying as
1/r1*7 has been examined by numerical simulations using the recently proposed LuijteraRjorithm. By
applying scaling arguments to the interface free energy, the Binder's fourth-order cumulant, and the specific
heat maximum, the change in the character of the transition through variation of parameter studied.
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[. INTRODUCTION sizes in spite of the long-range interactions. Our intention is
. . . . to use this approach here in order to perform a more system-
The critical behavior of models with long-ranger) in- a}ic analysis of several quantitiggnterface free energy,

teractions has been considerably less explpred than that 8fi\qer's fourth order cumulant, specific heatvhich serve
the short-rangeSR) ones, especially for discrete models 4q criteria for distinguishing first- from second-order phase
where the nonlocality of interactions makes most of the stanggnsitions.

dard methods ineffective. These models may, however, ex-
hibit rather complicated critical behavior already in one di-

mension[1-5]. Recent attention has been driven to such

models in the context of studying phenomena related to LR The model we consider is defined by the Hamiltonian
interactions[6,7], but also in view of possible equivalence

with SR modeld6,8]. H=-3S

One of the interesting and still not clarified aspects of LR =i
models is the possible onset of the first-order transition. The
question naturally arises for the LR Potts model, which in thewhere J>0, s; ands; denote three-state Potts variables at
SR interaction case is known to undergo a first-order phaseitesi andj, respectively,s is the Kronecker symbol, and
transition when the number of state@sexceeds a certain summation is taken over all pairs of the system.
limiting value which depends on dimensionality,(d) [9— This model has a phase transition at finite temperature for
11]. 0<o=1 [3-5]. No exact results exist for the related critical

We have recently pointed o{it2] that a similar behavior behavior. By analogy with the SR interaction case extended
indeed can be observed in the one-dimensida8l) Potts to arbitrary dimension, one expects to find a first-order phase
model with interactions decaying with distance as'if  transition for low values ofr and a crossover to a second-
and illustrated it on special casgs=5, 0=0.2 andq=3, order phase transition above a certain threshold valyue
o=0.8 characteristic of the two regimes. On the basis offThis has been confirmed by our preliminary MC res{ig]
these preliminary Monte CarldMC) results on small chains in the 1D LR Potts model, which lead to the conclusion that
for =3 andq=5, we have concluded on the existence of afor q>2 the transition is of the first order when<o(q)
g-dependent threshold value,(q) separating the first- and and of second order above it. The thresheigdq) is ex-
the second-order transition regime. pected to depend og. Forq=3, theo, was estimatedl12]

In the present paper, we focus on a more detailed study db lay aboveoy=0.5, the point separating the mean-field
the 1D three-state Potts model with<@<1. As is well (MF) from the nontrivial critical regime in the Isingq(
known, the first-order phase transitions are rather difficult to=2) case[where the transition, by symmetry reasqsse,
detect and study13]. Most of standard renormalization e.g., Ref[9] and references thergirremains of the second
group (RG) approaches do not distinguish them from theorder[16] in both regime$ Above the thresholdr., the
second-order transitions. model undergoes a second-order transition with nonclassical

On the other hand, Monte Carlo simulations, which incritical exponents depending an Several renormalization
combination with finite-size scalin(FS9 represent an effi- group approaches yield approximate values of these expo-
cient tool[14] to solve this problem, are limited when the nents, within continuous Ginzburg-Landau functional for-
first-order transition is weak, so that the correlation lengthmalism[17] or in real spac3,5,7. These latter approaches,
although finite, exceeds the considered system size. Thisowever, appear to be insensitive to detect a first-order tran-
problem is even more pronounced when dealing with LRsition.
interactions, where MC simulations become much more time In the present approach we shall be using the MC algo-
consuming, no matter whether Metropolis or different clusterrithm, recently introduced by Luijten and B [15], de-
algorithms are used. signed for models with LR interactions. It is based on

Recently, Luijten and Bl [15] have proposed a rather Wolff's cluster algorithm 18] and was applied to several MF
efficient algorithm which permits considering quite large related problems in the specidsing) caseq=2 [8,19].

II. MODEL AND METHOD

J
W&Si i), (1)
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The basic idea of the method is the use of cumulativewvhile for the first-order one it simply scales as volume,
bond probabilities in building the cluster of connected bondswhich in the present case means linear dependende on
which drastically reduces the number of operations required.

The results coincide with those obtained with the simple CiLmax~L. (7)
Wolff algorithm, but the CPU time can be reduced by several ) ) )
orders of magnitude. The calculation of the fourth moment gives Binder's

The basic quantity in our calculations is the energy probfourth-order cumulanf20] defined as
ability distribution defined by

V¥=1-U"r3, (8
1
PL(E)=—— N (E)e KE, 2)  where
4
where K=1/T is the inverse temperaturd=kg, Z is the U <E2>§ (9)
partition function, V. (E) denotes the number of spin con- (E9L
figurations corresponding to the energy andL is the sys-

tem size. In the present study, for practical reasons it is easier to deal

Several quantities used for the determination of the temWith U(,_“)- In the thermodynamlc I|m|U](_4) tends to..l’ when
perature driven first-order transition can be deduced fronKk# Kc. At K=K it still tends to one if the transition is of
P_(E). We concentrate here on three most important onedhe second_order, while it fce_:nds toa dlfferept constant in the
the interface free energy, the Binder's fourth-order cumulanf@se of a first-order transition. Together witF, U ap-
[20], and specific heat. pears as one of the most sensitive criteria for determination

The interface free energy is obtained from the shape off first-order phase transitio20,22.
the energy probabability distributid®, (E). For temperature
driven first-order transitions, at the transition temperature, The special casar=—1
PL(E) has two maxima, corresponding to the coexisting or- - gefore proceeding to the presentation of our numerical
dered and disordered phases. The interface free energy isqits; let us summarize the only analytical results available
then defined by for the considered model. They can be obtained in the limit

o= —1 of model(1), where all the interactions are of equal
' (3) strength and the coupling constant is redefined so khat
PLmin K, —K/L. This is the mean-field limit, which has been exten-
sively studied in literaturésee, e.g.[9]) and solved in the
where the finite-chain transition temperatu(él has been limit L—« by the saddle point methd@3].
defined by requiring that the two maxima are of equal height The energyE and the entropyS of this model to the
Pimax- PLmin denotes the minimum oP, (E) between leading order inL writes

l:)LMax

AFLZIn

them.

The scaling analysis oAF, can be used to identify the E_ 1 L2 10
first-order phase transition, even in the case of a weak first- L 24&,\L)" (19
order transition, where the correlation length, though finite,
is large and comparable to the system gi2&]. When the S a-l | L
transition is of the first orderAF, increases with size. For [=- > Tmln(fm) (11)

m=0

systems with SR interactions the interface free energy has
the dimension of surface and scalesMs, ~L% 1. In the
present model with LR interactions it is expected to scale a
a volume.

The other two quantities can be derived from the highe
energy momenta oP, (E), defined as

wherel y's, the numbers of particles in theth Potts state,
satisfy the conditiorLy+---+L4_;=L. The transition tem-
jperature, the order parameter jump, and the latent heat are
known[23] for the above model.

To the best of our knowledge, the results for the charac-
teristic quantitied) {7}, andCy,, were not cited in literature.
(EM =2 E"PL(E). (49 In order to obtain them, we have used the Lee and Kosterlitz
: [22] prescription for the energy probability distribution

The specific heaC, (defined per spin in the remaining P_(E) in the vicinity of the first-order transition temperature

-1
text) is related to the second moment and defined for thé<c - for largeL,

system size. by (L S(E—Eq)+ S(E—Eqo)

K? 2 2 PuLB)= f(Lt)+1 ’
CL:UI«E W—(E)D). ©)

(12

wheret=(K—-K.)/K;, andE, andE4, are the energies of
According to the FSS theory, in the case of a second-ordegrdered and disordered phases, respectively. The weight
phase transition its maximum scales as function f(Lt) which contains the entire temperature dnd
dependence o (E) is not given explicitly. Only the lim-
Cimax~ L, (6) iting behavior of f(Lt), f(x——%)—0 and f(x—%)—
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+o, is required, in order to have only ong function in ' ' o
thermodynamic limit for temperatures above or below the 0.0015 |- =
transition temperature, while for finite the two 6 functions . °
coexist. MaximizingJ (L"') andC, with respect to temperature d
fixes the value of the functioh(Lt) and leads to r__,_,_,L,// c=02
0.0010 - B
|
@-2* =
lim U= 1+ 13 'S .
- LMax Z(q_l)(q2_3q+3) ( ) < L a4 - +» 0=03
0.0005 1
and e
Aa0=04
. Cimax [Q—2 2 DR S
lim L Wln(q—l) . (14 0.0000 vey ©=08 , 4 0=05
L—oo 0.000 0.001 1L 0.002 0.003

For finiteL, the exact calculations may be performed nu-
merically for very large sizesL(=100 000 is easily at-
tained. They match well with the analytical result3) and
(14) and justify the conjectur€l2) from which they were
derived.

FIG. 1. Interface free energy divided by size vs inverse size.
Data for c=0.1 to 0.6 are included. Lines are obtained by linear
regression.

regime. The other two quantities}{*) and C .y, derived

from momentd Egs.(5) and(9)], have been calculated in the
IIl. NUMERICAL RESULTS entire region & o<1.

By using the Luijten-Blite cluster algorithm, we have .
been able to reach sizes up to 5000 with reasonable comput- B. Binder’s fourth-order cumulant
ing time. The systematic simulations were performed for |n order to find out whether in the thermodynamic limit

sizesL ranging from 200 to 3000, with periodic boundary (4} will tend to 1 or to a different value, we analyze the
conditions. The parameterwas taken with the increment of maxima ofo_‘”(K) as functions of.. The results fOU(LAI\zlax

0.1 in the interval &Zo<1, where the nontrri%/ial transition is are summarized in Fig. 2, where the= — 1 results are also
to be expected. For each set of parametersclsters WEre  raced for comparison. For low values of U(L“,\}lax is non-
generated. Let us also point out that the characteristic tem- . o B .
peratures related to the three quantities considered are diffe nonotonic in 1L, S'm"af o theo=—1 case, so t_hat in the
ent until the thermodynamic limit is reached. Consequently —eo limit it is clearly dlffer_ent_ from unity. For h'gh?r val-
an independent numerical effort was needed for Iocalizing‘;s ofo, where t{f behet\i;or 'S morlotonous, the fit to the
the characteristic temperatures for each of those quantitid®Wer-law formULManUe +constL” was made. The ex-
for everyL ando considered. By combining the Ferrenberg- trapolated results fOU_fe_) are presented in Fig. 3. One can_
Swendsen histogram methd@4] and direct calculations, obserye that the transition betweep the two regimes occurs in
these temperatures have been calculated with numerical pr@-continuous and smooth way with the changerof-or o
cision up to the fourth decimal digit i, , which implies a <0.6 we obtainU{"#1 outside the estimated error bars
numerical error of approximately 0.1%. We did not go be-(given by the size of the pointsAlso, for =0.7 we con-
yond this precision irk, since the aspect of the calculated clude that, within the error barkl? has reached unity. The
distribution P, (E) is much rougher than the one obtained

with the Metropolis algorithm, when using a comparable
number of steps. Resulting numerical error in calculated
quantities themselves varies from 1-5% Ry(E) andAF, 115
to 1-2% forC yax andU).. .

A. Interface free energy 110
In Fig. 1 are presented the results for the interface freevg
energy divided by size versusLl/Only sizesL=400 are =
included. Points of different shapes correspond to data with
different ¢. It ranges from 0.1 to 0.6, where, within consid- 105
ered sizes, the two maxima &f, (E) could be discerned
beyond the error limits. Foor=0.6 this occurs only when
L=2000. 1.00 o333 : .
The lines represent the fit &fF, /L to linear form and 0.000 0.001 0.002

illustrate the leading correction to the expected scaling form 1L

AF~L, and show good agreement with it. The weakening of F|G. 2. Fourth-order cumulant as a function of inverse size.
the transition is manifested by the fact tiief, /L becomes Points connected with dotted lines correspondrte0.1, 0.2, 0.3,
smaller with increasingr. This dependence is almost linear 0.4, 0.5, 0.6, 0.65, 0.7, 0.8, 0.9, from top to bottom. The solid line
unlesso gets close to the assumed onset of the second ordeenotes the results for the=—1 limit.
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FIG. 3. Extrapolated values of the fourth-order cumulant as a 5 5 Log-log plot of the maxima of the specific heat vs in-

function ofs. The constant line at unity is drawn to guide the €Y€. verse size. The points connected by solid lines represent the results

for 0=0.5, 0.6, 0.65, 0.7, 0.8, 0.9, from top to bottom. The dotted
additional point 0.65 can be attributed to both regimes. Thesknes denote the fit to the straight line by linear regression.
results are consistent with the above onesXér.

CiLmax/L versus 1L are given fore=0.5. The curves for
C. Specific heat 0.5 and 0.6 clearly leave the straight line. Linear fit is very
The data for the specific heat maxirGay,, are summa- 900d for 0=0.65, indicating the second-order transition.
rized in Fig. 4 in the form ofC, yax/L Vversus 1. Accord-  1he corresponding critical exponeat v following from the
ing to Egs.(6) and(7) and by taking into account that/ v is f!t for 0'2_0.6.5, _0.7, 0.8,0.9is 0.36,_0.33, 0.26, 0.19, respec-
much smaller than unity in the region of intereSt,yay/L t|vely, WhICh is in poor agreement with yalues e>_<pected from
should tend to a constant or to zero value, depending offe finite-range scaling=RS [5] calculations, which for the

whether the transition is of the first or second order, respeci@me values OlfTV\_/OU|d givea/y=0_3_2,_0_27, 0.15;-0.02.
tively. One should mention, however, that it is generally a difficult

Similar toU(L“), the curves are nonmonotonic and tend tot@sk to extract critical exponents with good precision from

a nonzero value in the= — 1 case and for low values of.  the Specific heat maxim5].
For higher values ofr the convergence to limit —o was
examined by the fit to the forn€ ya,/L =Co+constL™
The constant, is nonzero in the first-order regime, while in - The three different characteristic temperatures arise in
the second-order org =0 andx=1—a/v. This means also cajculation of AF, and maxima OfU(L4)(K) and C,(K),
that the log-log plot of the curves of Fig. 4 should have awhich all should tend to the critical temperature in the ther-
linear shape in the latter case, while it will deviate from themodynamic limit. TheL —c extrapolations of these quanti-
straight line in the former case. In Fig. 5 log-log plots of ties made by assuming power-law corrections in (1/L) are
presented in Table |, compared to the existing earlier results
' obtained by FR$5] and RG[7]. The extrapolation errors are
estimated to be in the limits%0.01), which is also compa-

D. Critical temperature

0.015
TABLE 1. Inverse critical temperatures (C), Ko (U®),

K¢(AF), obtained by extrapolation df, compared to FRS ex-
trapolated value& (FRS)[5] and RG resultK(CM) [7].

Z' 0.010 1
g T KeC)  Ke(U¥)  Ko(AF) K (FRS) K(CM)
o 0.1 0.16 0.15 0.16 0.14 0.15
0.005 1 0.2 0.28 0.28 0.27 0.270
0.3 0.38 0.38 0.37 0.386 0.43
0.4 0.49 0.49 0.48 0.494
0.000 ‘ . 0.5 0.58 0.60 0.59 0.601 0.71
0.000 0.001 L 0.002 0.6 0.71 0.71 0.71 0.714
1/ 0.65 0.78 0.77 0.774
FIG. 4. Maxima of the specific heat divided by size vs inverse 0.7 0.84 0.84 0.837 1.05
size. The solid line denotes the case — 1. Points connected with 0.8 0.98 0.99 0.977
dotted lines correspond ®=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.65, 0.7, 0.9 1.14 1.13 1.144 1.64

0.8, 0.9, from top to bottom.
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rable to the difference between the extrapolations obtainethree considered quantities give the first-order transition for
from different characteristic temperatures. The agreement<0.6. The transition becomes gradually weaker with in-
with the FRS results is quite good; discrepancy does notreasings and changes smoothly to a second-order transition
exceed 5%, except for=0.1, where the convergence of by continuous variation ot For the sizes examined here
FRS is weakest, and the extrapolation errors in both methods!p to 3000 and within the estimated error bars, we obtain a
are largest(For o=0.1 all the calculations were thus per- Sécond-order transition far=0.7. o _
formed up to the sizek =5000.) The RG results appear to _1he present approach has, however, limitations to precise
be systematically larger than ours, and the discrepancy witfétermination of the threshold. Since the transition close to
them varies from 7—33%. A similar discrepancy is obtainedhe threshold becomes arbitrarily weak, the finite correlation
for the fit to the functional formK.~ o in the limit 0—0, length, characteristic of th_e first-order transition, will always
conjectured in Ref[6]. be much larger than the size of the considered system, close
enough too.. Thus, the present result far, should be
understood only as a lower limit for the possible onset of the
second-order phase transition. For this purpose rather
We have applied MC simulations in combination with complementary studies should be done, such as the one on
FSS in order to examine the onset of the first-order phasthe dependence of the finite correlation lengthoon
transition in the 1D three-state Potts model with long-range It is interesting to notice at the end that, according to
interactions. The Luijten-Ble advanced algorithm for long- present resultsg.(q=3) falls in the interval between 0.6
range interaction systems allowed us to treat successfullgnd 0.7. If the correspondence between SR and LR models
considerably large sizdsip to 3000 in a reasonable amount [8] would be extended outside the MF regime to the present
of time, in spite of the long range of interactions. The sys-problem and to the Potts model, it would lead to the conjec-
tematic analysis of three quantities, the interface free energyure o.(q=3)=2/d.(g=3)sg, Which would give o.(q
Binder’s fourth-order cumulant, and specific heat, confirms=3) close to and slightly larger than 0.66. However, this line

IV. CONCLUSION

the existence of two regimes in the intervako<1. All of argument would also imply that,=1 already forq=4.
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