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First-order transition in the one-dimensional three-state Potts model with long-range interactions

Zvonko Glumac and Katarina Uzelac
Institute of Physics, P.O.B. 304, Bijenicˇka 46, HR-10000 Zagreb, Croatia

~Received 29 December 1997!

The first-order phase transition in the three-state Potts model with long-range interactions decaying as
1/r 11s has been examined by numerical simulations using the recently proposed Luijten-Blo¨te algorithm. By
applying scaling arguments to the interface free energy, the Binder’s fourth-order cumulant, and the specific
heat maximum, the change in the character of the transition through variation of parameters was studied.
@S1063-651X~98!15410-7#

PACS number~s!: 05.50.1q, 64.60.Cn
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I. INTRODUCTION

The critical behavior of models with long-range~LR! in-
teractions has been considerably less explored than tha
the short-range~SR! ones, especially for discrete mode
where the nonlocality of interactions makes most of the st
dard methods ineffective. These models may, however,
hibit rather complicated critical behavior already in one
mension @1–5#. Recent attention has been driven to su
models in the context of studying phenomena related to
interactions@6,7#, but also in view of possible equivalenc
with SR models@6,8#.

One of the interesting and still not clarified aspects of
models is the possible onset of the first-order transition. T
question naturally arises for the LR Potts model, which in
SR interaction case is known to undergo a first-order ph
transition when the number of statesq exceeds a certain
limiting value which depends on dimensionality,qc(d) @9–
11#.

We have recently pointed out@12# that a similar behavior
indeed can be observed in the one-dimensional~1D! Potts
model with interactions decaying with distance as 1/r 11s

and illustrated it on special casesq55, s50.2 andq53,
s50.8 characteristic of the two regimes. On the basis
these preliminary Monte Carlo~MC! results on small chains
for q53 andq55, we have concluded on the existence o
q-dependent threshold valuesc(q) separating the first- and
the second-order transition regime.

In the present paper, we focus on a more detailed stud
the 1D three-state Potts model with 0,s,1. As is well
known, the first-order phase transitions are rather difficul
detect and study@13#. Most of standard renormalizatio
group ~RG! approaches do not distinguish them from t
second-order transitions.

On the other hand, Monte Carlo simulations, which
combination with finite-size scaling~FSS! represent an effi-
cient tool @14# to solve this problem, are limited when th
first-order transition is weak, so that the correlation leng
although finite, exceeds the considered system size.
problem is even more pronounced when dealing with
interactions, where MC simulations become much more t
consuming, no matter whether Metropolis or different clus
algorithms are used.

Recently, Luijten and Blo¨te @15# have proposed a rathe
efficient algorithm which permits considering quite lar
PRE 581063-651X/98/58~4!/4372~5!/$15.00
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sizes in spite of the long-range interactions. Our intention
to use this approach here in order to perform a more syst
atic analysis of several quantities~interface free energy
Binder’s fourth order cumulant, specific heat!, which serve
as criteria for distinguishing first- from second-order pha
transitions.

II. MODEL AND METHOD

The model we consider is defined by the Hamiltonian

H52(
i , j

J

u i 2 j u11s d~si ,sj !, ~1!

where J.0, si and sj denote three-state Potts variables
sites i and j , respectively,d is the Kronecker symbol, and
summation is taken over all pairs of the system.

This model has a phase transition at finite temperature
0,s<1 @3–5#. No exact results exist for the related critic
behavior. By analogy with the SR interaction case exten
to arbitrary dimension, one expects to find a first-order ph
transition for low values ofs and a crossover to a secon
order phase transition above a certain threshold valuesc .
This has been confirmed by our preliminary MC results@12#
in the 1D LR Potts model, which lead to the conclusion th
for q.2 the transition is of the first order whens,sc(q)
and of second order above it. The thresholdsc(q) is ex-
pected to depend onq. For q53, thesc was estimated@12#
to lay abovesMF50.5, the point separating the mean-fie
~MF! from the nontrivial critical regime in the Ising (q
52) case@where the transition, by symmetry reasons~see,
e.g., Ref.@9# and references therein!, remains of the second
order @16# in both regimes#. Above the thresholdsc , the
model undergoes a second-order transition with nonclass
critical exponents depending ons. Several renormalization
group approaches yield approximate values of these ex
nents, within continuous Ginzburg-Landau functional fo
malism@17# or in real space@3,5,7#. These latter approache
however, appear to be insensitive to detect a first-order t
sition.

In the present approach we shall be using the MC al
rithm, recently introduced by Luijten and Blo¨te @15#, de-
signed for models with LR interactions. It is based
Wolff’s cluster algorithm@18# and was applied to several M
related problems in the special~Ising! caseq52 @8,19#.
4372 © 1998 The American Physical Society
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The basic idea of the method is the use of cumulat
bond probabilities in building the cluster of connected bon
which drastically reduces the number of operations requi
The results coincide with those obtained with the sim
Wolff algorithm, but the CPU time can be reduced by seve
orders of magnitude.

The basic quantity in our calculations is the energy pr
ability distribution defined by

PL~E!5
1

ZL~K !
NL~E!e2KE, ~2!

where K51/T is the inverse temperature,J5kB , Z is the
partition function,NL(E) denotes the number of spin con
figurations corresponding to the energyE, andL is the sys-
tem size.

Several quantities used for the determination of the te
perature driven first-order transition can be deduced fr
PL(E). We concentrate here on three most important on
the interface free energy, the Binder’s fourth-order cumul
@20#, and specific heat.

The interface free energy is obtained from the shape
the energy probabability distributionPL(E). For temperature
driven first-order transitions, at the transition temperatu
PL(E) has two maxima, corresponding to the coexisting
dered and disordered phases. The interface free energ
then defined by

DFL5 ln
PLMax

PLmin
U

KL

, ~3!

where the finite-chain transition temperatureKL
21 has been

defined by requiring that the two maxima are of equal hei
PLMax . PLmin denotes the minimum ofPL(E) between
them.

The scaling analysis ofDFL can be used to identify the
first-order phase transition, even in the case of a weak fi
order transition, where the correlation length, though fin
is large and comparable to the system size@21#. When the
transition is of the first order,DFL increases with size. Fo
systems with SR interactions the interface free energy
the dimension of surface and scales asDFL;Ld21. In the
present model with LR interactions it is expected to scale
a volume.

The other two quantities can be derived from the hig
energy momenta ofPL(E), defined as

^En&L5(
E

EnPL~E!. ~4!

The specific heatCL ~defined per spin in the remainin
text! is related to the second moment and defined for
system sizeL by

CL5
K2

Ld ~^E2&L2^E&L
2!. ~5!

According to the FSS theory, in the case of a second-o
phase transition its maximum scales as

CLMax;La/n, ~6!
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while for the first-order one it simply scales as volum
which in the present case means linear dependence onL,

CLMax;L. ~7!

The calculation of the fourth moment gives Binder
fourth-order cumulant@20# defined as

VL
~4!512UL

~4!/3, ~8!

where

UL
~4!5

^E4&L

^E2&L
2 . ~9!

In the present study, for practical reasons it is easier to d
with UL

(4) . In the thermodynamic limitUL
(4) tends to 1, when

KÞKc . At K5Kc it still tends to one if the transition is o
the second order, while it tends to a different constant in
case of a first-order transition. Together withDF, U (4) ap-
pears as one of the most sensitive criteria for determina
of first-order phase transitions@20,22#.

The special cases521

Before proceeding to the presentation of our numeri
results, let us summarize the only analytical results availa
for the considered model. They can be obtained in the li
s521 of model~1!, where all the interactions are of equ
strength and the coupling constant is redefined so thaK
→K/L. This is the mean-field limit, which has been exte
sively studied in literature~see, e.g.,@9#! and solved in the
limit L→` by the saddle point method@23#.

The energyE and the entropyS of this model to the
leading order inL writes

E

L
52

1

2 (
m50

q21 S Lm

L D 2

, ~10!

S

L
52 (

m50

q21
Lm

L
lnS Lm

L D , ~11!

whereLm’s, the numbers of particles in themth Potts state,
satisfy the conditionL01¯1Lq215L. The transition tem-
perature, the order parameter jump, and the latent hea
known @23# for the above model.

To the best of our knowledge, the results for the char
teristic quantitiesUMax

(4) andCMax were not cited in literature.
In order to obtain them, we have used the Lee and Koste
@22# prescription for the energy probability distributio
PL(E) in the vicinity of the first-order transition temperatu
Kc

21 for largeL,

PL~E!5
f ~Lt !d~E2Eo!1d~E2Edo!

f ~Lt !11
, ~12!

wheret5(K2Kc)/Kc , andEo andEdo are the energies o
ordered and disordered phases, respectively. The we
function f (Lt) which contains the entire temperature andL
dependence ofPL(E) is not given explicitly. Only the lim-
iting behavior of f (Lt), f (x→2`)→0 and f (x→`)→
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1`, is required, in order to have only oned function in
thermodynamic limit for temperatures above or below
transition temperature, while for finiteL the twod functions
coexist. MaximizingUL

(4) andCL with respect to temperatur
fixes the value of the functionf (Lt) and leads to

lim
L→`

ULMax
~4! 5F11

~q22!4

2~q21!~q223q13!G
2

~13!

and

lim
L→`

CLMax

L
5Fq22

2q
ln~q21!G2

. ~14!

For finiteL, the exact calculations may be performed n
merically for very large sizes (L5100 000 is easily at-
tained!. They match well with the analytical results~13! and
~14! and justify the conjecture~12! from which they were
derived.

III. NUMERICAL RESULTS

By using the Luijten-Blo¨te cluster algorithm, we have
been able to reach sizes up to 5000 with reasonable com
ing time. The systematic simulations were performed
sizesL ranging from 200 to 3000, with periodic bounda
conditions. The parameters was taken with the increment o
0.1 in the interval 0,s,1, where the nontrivial transition is
to be expected. For each set of parameters, 106 clusters were
generated. Let us also point out that the characteristic t
peratures related to the three quantities considered are d
ent until the thermodynamic limit is reached. Consequen
an independent numerical effort was needed for localiz
the characteristic temperatures for each of those quant
for everyL ands considered. By combining the Ferrenber
Swendsen histogram method@24# and direct calculations
these temperatures have been calculated with numerical
cision up to the fourth decimal digit inKL , which implies a
numerical error of approximately 0.1%. We did not go b
yond this precision inKL since the aspect of the calculate
distribution PL(E) is much rougher than the one obtain
with the Metropolis algorithm, when using a comparab
number of steps. Resulting numerical error in calcula
quantities themselves varies from 1–5% forPL(E) andDFL

to 1–2% forCLMax andULMax
(4) .

A. Interface free energy

In Fig. 1 are presented the results for the interface f
energy divided by size versus 1/L. Only sizesL>400 are
included. Points of different shapes correspond to data w
different s. It ranges from 0.1 to 0.6, where, within consi
ered sizes, the two maxima ofPL(E) could be discerned
beyond the error limits. Fors50.6 this occurs only when
L>2000.

The lines represent the fit ofDFL /L to linear form and
illustrate the leading correction to the expected scaling fo
DF;L, and show good agreement with it. The weakening
the transition is manifested by the fact thatDFL /L becomes
smaller with increasings. This dependence is almost line
unlesss gets close to the assumed onset of the second o
e
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regime. The other two quantities,UL
(4) and CLMax , derived

from momenta@Eqs.~5! and~9!#, have been calculated in th
entire region 0,s,1.

B. Binder’s fourth-order cumulant

In order to find out whether in the thermodynamic lim
ULMax

(4) will tend to 1 or to a different value, we analyze th
maxima ofUL

(4)(K) as functions ofL. The results forULMax
(4)

are summarized in Fig. 2, where thes521 results are also
traced for comparison. For low values ofs, ULMax

(4) is non-
monotonic in 1/L, similar to thes521 case, so that in the
L→` limit it is clearly different from unity. For higher val-
ues ofs, where the behavior is monotonous, the fit to t
power-law formULMax

(4) 5Ue
(4)1const•Lx was made. The ex-

trapolated results forUe
(4) are presented in Fig. 3. One ca

observe that the transition between the two regimes occu
a continuous and smooth way with the change ofs. For s
<0.6 we obtainUe

(4)Þ1 outside the estimated error ba
~given by the size of the points!. Also, for s>0.7 we con-
clude that, within the error bars,Ue

(4) has reached unity. The

FIG. 1. Interface free energy divided by size vs inverse si
Data for s50.1 to 0.6 are included. Lines are obtained by line
regression.

FIG. 2. Fourth-order cumulant as a function of inverse si
Points connected with dotted lines correspond tos50.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.65, 0.7, 0.8, 0.9, from top to bottom. The solid l
denotes the results for thes521 limit.
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additional point 0.65 can be attributed to both regimes. Th
results are consistent with the above ones forDF.

C. Specific heat

The data for the specific heat maximaCLMax are summa-
rized in Fig. 4 in the form ofCLMax /L versus 1/L. Accord-
ing to Eqs.~6! and~7! and by taking into account thata/n is
much smaller than unity in the region of interest,CLMax /L
should tend to a constant or to zero value, depending
whether the transition is of the first or second order, resp
tively.

Similar toUL
(4) , the curves are nonmonotonic and tend

a nonzero value in thes521 case and for low values ofs.
For higher values ofs the convergence to limitL→` was
examined by the fit to the formCLMax /L5c01const•L2x.
The constantc0 is nonzero in the first-order regime, while i
the second-order onec050 andx512a/n. This means also
that the log-log plot of the curves of Fig. 4 should have
linear shape in the latter case, while it will deviate from t
straight line in the former case. In Fig. 5 log-log plots

FIG. 3. Extrapolated values of the fourth-order cumulant a
function of s. The constant line at unity is drawn to guide the ey

FIG. 4. Maxima of the specific heat divided by size vs inve
size. The solid line denotes the cases521. Points connected with
dotted lines correspond tos50.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.65, 0.
0.8, 0.9, from top to bottom.
e

n
c-

CLMax /L versus 1/L are given fors>0.5. The curves for
0.5 and 0.6 clearly leave the straight line. Linear fit is ve
good for s>0.65, indicating the second-order transitio
The corresponding critical exponenta/n following from the
fit for s50.65, 0.7, 0.8, 0.9 is 0.36, 0.33, 0.26, 0.19, resp
tively, which is in poor agreement with values expected fro
the finite-range scaling~FRS! @5# calculations, which for the
same values ofs would givea/n50.32, 0.27, 0.15,20.02.
One should mention, however, that it is generally a diffic
task to extract critical exponents with good precision fro
the specific heat maxima@25#.

D. Critical temperature

The three different characteristic temperatures arise
calculation of DFL and maxima ofUL

(4)(K) and CL(K),
which all should tend to the critical temperature in the th
modynamic limit. TheL→` extrapolations of these quant
ties made by assuming power-law corrections in (1/L)
presented in Table I, compared to the existing earlier res
obtained by FRS@5# and RG@7#. The extrapolation errors ar
estimated to be in the limits (60.01), which is also compa

a
.

FIG. 5. Log-log plot of the maxima of the specific heat vs i
verse size. The points connected by solid lines represent the re
for s50.5, 0.6, 0.65, 0.7, 0.8, 0.9, from top to bottom. The dott
lines denote the fit to the straight line by linear regression.

TABLE I. Inverse critical temperaturesKe(C), Ke(U
(4)),

Ke(DF), obtained by extrapolation ofKL compared to FRS ex-
trapolated valuesK(FRS) @5# and RG resultsK(CM) @7#.

s Ke(C) Ke(U
(4)) Ke(DF) Ke(FRS) Ke(CM)

0.1 0.16 0.15 0.16 0.14 0.15
0.2 0.28 0.28 0.27 0.270
0.3 0.38 0.38 0.37 0.386 0.43
0.4 0.49 0.49 0.48 0.494
0.5 0.58 0.60 0.59 0.601 0.71
0.6 0.71 0.71 0.71 0.714
0.65 0.78 0.77 0.774
0.7 0.84 0.84 0.837 1.05
0.8 0.98 0.99 0.977
0.9 1.14 1.13 1.144 1.64
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rable to the difference between the extrapolations obtai
from different characteristic temperatures. The agreem
with the FRS results is quite good; discrepancy does
exceed 5%, except fors50.1, where the convergence o
FRS is weakest, and the extrapolation errors in both meth
are largest.~For s50.1 all the calculations were thus pe
formed up to the sizesL55000.) The RG results appear
be systematically larger than ours, and the discrepancy
them varies from 7–33%. A similar discrepancy is obtain
for the fit to the functional formKc;s in the limit s→0,
conjectured in Ref.@6#.

IV. CONCLUSION

We have applied MC simulations in combination wi
FSS in order to examine the onset of the first-order ph
transition in the 1D three-state Potts model with long-ran
interactions. The Luijten-Blo¨te advanced algorithm for long
range interaction systems allowed us to treat success
considerably large sizes~up to 3000! in a reasonable amoun
of time, in spite of the long range of interactions. The s
tematic analysis of three quantities, the interface free ene
Binder’s fourth-order cumulant, and specific heat, confir
the existence of two regimes in the interval 0,s<1. All
, J

t-
.

d
nt
ot

ds

th
d

e
e

lly

-
y,
s

three considered quantities give the first-order transition
s<0.6. The transition becomes gradually weaker with
creasings and changes smoothly to a second-order transi
by continuous variation ofs. For the sizes examined her
~up to 3000! and within the estimated error bars, we obtain
second-order transition fors>0.7.

The present approach has, however, limitations to pre
determination of the threshold. Since the transition close
the threshold becomes arbitrarily weak, the finite correlat
length, characteristic of the first-order transition, will alwa
be much larger than the size of the considered system, c
enough tosc . Thus, the present result forsc should be
understood only as a lower limit for the possible onset of
second-order phase transition. For this purpose ra
complementary studies should be done, such as the on
the dependence of the finite correlation length ons.

It is interesting to notice at the end that, according
present results,sc(q53) falls in the interval between 0.6
and 0.7. If the correspondence between SR and LR mo
@8# would be extended outside the MF regime to the pres
problem and to the Potts model, it would lead to the conj
ture sc(q53)52/dc(q53)SR, which would give sc(q
53) close to and slightly larger than 0.66. However, this li
of argument would also imply thatsc51 already forq54.
n
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