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ABSTRACT

To reduce the low-power allpole active-RC filter’s output 

magnitude sensitivity to passive components, the “impedance 

tapering” design method was used. This design procedure has 

been applied to the design of 2nd- and 3rd-order low-pass (LP) 

(class 4) Sallen-and-Key filters and has already been published 

[1]. In this paper the active sensitivity analysis using 

MATHEMATICA was performed on the same “impedance 

tapered” filter sections as in [1]. The analysis was performed by 

calculation of the real filter’s transfer-function magnitude which 

was denormalized to various cut-off frequencies from low to 

high, using a single-pole model of a real operational amplifier. 

The amount of active and passive sensitivity reduction was 

compared using the same degree of impedance tapering. It was 

demonstrated that both sensitivities, i.e. active and passive, were 

correspondingly reduced for the same filter. Thus, a judicious 

selection of component values accounts for a considerable 

decrease in both passive and active sensitivities. 

1. INTRODUCTION 

It has already been published in [1] that the allpole active-RC

filters of 2nd- and 3rd-order can be designed, using the 

“impedance tapering” technique, for minimum sensitivity to 

passive component tolerances when compared with standard 

designs. In this work and in [1], Sallen-and-Key (S&K) allpole 

filters are considered, which have a passive RC network in the 

positive feedback loop (class-4) [2]. As an active element the 

filters use an operational amplifier (opamp), in order to obtain 

complex-conjugate poles, high gain and low output resistance. 

The passive sensitivity was examined using Schoeffler’s 

sensitivity measure with an ideal opamp.  

Obviously, in practice the opamp is not ideal. It therefore 

influences the overall magnitude response of the filter’s transfer 

function. In what follows it will be demonstrated that the 

influence this non-ideality is very large at high frequencies, and 

with filters with high pole Q factors, it is even larger. The 

question, that now arises is, how the “impedance tapering” 

design technique, which substantially reduces passive sensitivity, 

influences the sensitivity to active component variations? Does 

this special design technique improve the sensitivities to active 

components as well? To find an answer, we shall use various 

impedance tapering techniques to design filter circuits and 

investigate the real opamp influence on their transfer functions. 

It will be shown that the use of “impedance tapering” in active-

RC filter design minimizes passive as well as active sensitivities.

2. SENSITIVITY TO ACTIVE COMPONENT 

2.1 2
nd

-order LP Filter Example 

Consider the 2nd-order class-4 Sallen & Key LP filter in Figure 1. 

The transfer function is given by: 
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Figure 1. 2nd-order LP filter circuit with impedance 

scaling factors (r for resistors and  for capacitors).

where the gain K is given by K= . =1+RF/RG represents the 

positive-feedback gain factor. In what follows consider two 

practical examples of 2nd-order approximations with coefficients: 

K=1, fp=1 (i) Butterworth qp=0.707; and (ii) qp=5. The unity-gain 

normalized transfer function magnitudes (with the cut-off fre-

quencies fd=1Hz) are shown in Figure 2(a) and (b), respectively. 

Using the step-by-step design procedure given in [1], we 

calculate the example (i) and obtain filter circuit element values: 

R1=R2=0.159, R'1=0.252, R''1=0.431, C1=C2=1, RG=1, RF=0.586,

=0.631, =1.586, K= =1. Note that the filter circuit has equal 

capacitors and equal resistor values. This is denoted by =r=1.

Figure 2. Transfer function magnitude of 2nd-order LP filter 

circuit as in Figure 1. (a) Butterworth. (b) High-Q, qp=5.

As a second step in our analysis procedure, we perform a set of 

de-normalizations on the 2nd-order Butterworth LP filter above 

and obtain a family of filter characteristics, which are presented 

in Figure 4(a). The obtained characteristics have their cut-off 

frequencies in the range of 103 to 106[Hz] (i.e. three decades). In 

every decade we produced 10 logarithmically shifted 

characteristics (with fd={1.0, 1.26, 1.59, 1.9, 2.51, 3.16, 3.98, 

5.01, 6.31, 7.94, 10.0} 10n[Hz]; n=3, 4, 5) and consequently we 

have a total of 31 characteristics. 

Note from Figure 4(a) that all characteristics have the same 

shape. This is because of the ideal opamp in the filter circuit in 

Figure 1. In a final step we normalize all curves in Figure 4(a) to 

the frequency 1Hz, and obtain all the curves grouped into a 

single curve, see Figure 2(a). Note that an ideal opamp has 

infinite open-loop gain A, and gain-bandwidth (GB) product, 

while a real opamp has finite A and GB, and finite input and 

output impedances. To investigate the influence of impedance 

(a) (b)
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tapering to active sensitivity in the first approximation of a non-

ideal amplifier, we introduced a single pole model of a real 

opamp as a voltage-controlled-voltage-source (VCVS), as 

presented in Figure 3 into the filter circuit in Figure 1. This 

circuit represents both an average pure CMOS-based opamp and 

a high-performance discrete opamp. 
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Figure 3. Single-pole model of real opamp. 

Figure 4. Family of: (a) denormalized magnitudes with ideal 

opamp (b) the magnitudes normalized to 1Hz with real opamp. 

The VCVS in the model in Figure 3 is defined by: 

ININAggAOUT VVVsAVVsA ;)(/)( 1

0 , (2) 

where A0=2.025 105, g=50[rad/s]. If we normalize the curves 

obtained with a real opamp to the frequency 1Hz we obtain the 

family of frequency responses shown in Figure 4(b). 

Observing Figure 4(b) we conclude that at least 9 characteristics 

of 31 of the filters designed for high frequencies (fd>159kHz)

have deteriorated substantially from their nominal shape. The 

cut-off frequency has shifted to lower frequencies, the gain 

decreases, and the attenuation in the stop-band actually flattens 

out. The influence of the “real opamp” model increases even 

more if the denormalization frequency fd becomes larger, i.e. the 

overall filter's magnitude becomes significantly deteriorated, 

especially at higher frequencies. Note that in the simulation of 

the magnitude response, all passive components take on their 

nominal values, and that there were no variations in real opamp 

characteristics. The above assumptions concentrate only on the 

investigation of the finite GB-product and on the filter’s 

magnitude at higher frequencies, at which the open-loop gain A

is very low and decreases with increasing frequency. Thus, the 

open-loop gain variation A is already inbuilt in our investigation, 

and can assume that the effects of gain A variations will be 

reduced by impedance tapering, in the same way that non-ideal 

opamp effects due to finite GB-product, are reduced. 

Consider now an example with a relatively high pole Q value, 

qp=5. The family of denormalized—normalized magnitudes are 

shown in Figure 5. In Figure 5(a) at least 16 characteristics of 31, 

i.e. the filters designed for fd>31.6kHz have deteriorated. 

Comparing Figures 4(b) and 5(a) we conclude that higher pole-Q 

values of the circuit make them more sensitive to component and 

gain variations under the same design conditions ( =r=1).

2.2 The Gain Sensitivity Product (GSP) 

It is well known that in order to minimize the sensitivity of filter 

characteristics to tolerances of the gain elements, the gain-

sensitivity-product (GSP) of the filter should be minimized [3], 

[4], [5]. In the LP case it is defined by: 

rqASGSP p

q

A

q

A
pp /2 . (3) 

In [3], well-proven biquadratic filter circuits (“biquads”) and the 

corresponding design flow-chart listings are given. We use the 

so-called low-pass medium-Q (LP-MQ) circuit, which 

essentially corresponds to the circuit in Figure 1 (see [3] pp. 52). 

In the design flow-charts, the specification in terms of pole and 

zero frequencies and Q’s is admitted as input, and the circuit 

with the minimum GSP results as output. In most of the circuits, 

at least one additional degree of freedom is available, namely the 

value and ratio of two (or three) capacitors. In the present 

context this permits the implementation of capacitive impedance 

tapering while, at the same time, minimizing the GSP. To design 

a min. GSP LP circuit we choose a value of  and then calculate 

r, or alternatively, we choose r and then calculate the , using 

(see [3]): 
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Figure 5. (a)-(h) Family of normalized magnitudes of 2nd-order LP filters in Table 1 with real opamp, and qp=5.
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In the following example we present different GSP curves with 

tapering factor  varying from 1 to 10 in Figure 6(a) and with 

tapering factor r varying from 1 to 4 in Figure 6(b). The Pole Q 

is qp=5. Note that every GSP curve in Figure 6 has a 

corresponding min. GSP value, which follows from eq. (3). 

Figure 6. Plot of gain-sensitivity-product (GSP) for pole 

Q-factor, qp=5. (a) GSP vs. r. (b) GSP vs. .

The same 2nd-and 3rd-order low-pass filter examples as used in 

[1] for the passive sensitivity analysis, are repeated here for the 

active sensitivity analysis. The 2nd-order filter component values 

are presented in Table 1. The ( p)[dB] column in Table 1 

represents the standard deviation of the variation of the 

logarithmic gain =8.68588 |T(j )|/|T(j ) |[dB], with respect 

to zero mean and 1% standard deviation of the passive 

components, at pole frequency p. To examine active 

sensitivities for the filters in Table 1 families of denormalized—

normalized magnitudes are shown in Figure 5. 

Table 1 Component values of 2nd-order LP filters 

(resistors in [ ], capacitors in [F], ( p) in [dB]). 

No. Filter r R1 C1 GSP ( p)

1. Non Tapered 1 1 0.159 1 2.80 0.36 39.2 1.754

2. Impedance Tapered 4 4 0.169 1 2.05 0.49 21.0 1.146

3. Part. Tapered (r=1) 1 4 0.318 1 1.40 0.71 19.6 0.807

4. Part. Tapered ( =1) 4 1 0.079 1 5.60 0.18 78.4 2.415

5. r=1 and min. GSP 1 5.53 0.374 1 1.28 0.78 19.2 0.665

6. R-Taper, min. GSP 4 13.5 0.292 1 1.26 0.79 14.6 0.558

7. C-Taper, min. GSP 1.85 4 0.234 1 1.58 0.63 18.3 0.891

8. Unity gain ( =1) 1 100 1.590 1 1.00 1.00 50.0 0.106

Considering the standard deviation ( p) of the variation of the 

logarithmic gain  [dB], given in Table 1, we conclude that the 

ideally impedance-tapered filter (no. 2) has considerably 

decreased passive sensitivities, compared to the non-tapered 

standard circuit version (no. 1). Observing Figure 5 the same 

conclusions can be derived for active sensitivities. By tapering 

only the capacitors, while keeping the resistor values equal 

(r=1), (no. 3), both passive and active filter sensitivities are 

decreased even more. The resistively tapered filter (no. 4) has the 

highest sensitivities, for the reason given in [1]. This tracking 

between passive and active sensitivities is significant for the 

design of active filters with overall low sensitivity to active and 

passive component variations.

Note that, the equal-resistor and min. GSP filter (no. 5) and the 

R-tapered and min. GSP filter (no. 6) show somewhat lower 

passive sensitivity, and very reduced active sensitivity 

(especially filter no. 6). When calculating the GSP-minimum 

circuits using [3], we have chosen the values and ratio =4 of 

two capacitors and obtained circuit (no. 7), which has even 

smaller passive and active sensitivities. The best passive 

sensitivity is obtained for the =1 filter (no. 8) but here the 

active sensitivity has deteriorated considerably. 

In summary, for the general 2nd-order allpole low-pass filter, the 

minimum of both passive and active sensitivities is obtained with 

capacitive impedance tapering and resistor values selected for 

GSP-minimization. 

2.3 3
rd

-order LP Filter Example 

Consider the 3rd-order class-4 Sallen & Key LP filter in Figure 7. 
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Figure 7. 3rd-order LP filter circuit with impedance 

scaling factors.  

The transfer function is given by: 
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Consider the 3rd-order Chebyshev approximations with pass-

band ripple 0.5dB as in [1], which has the parameters: 

qp=1.70619; p=1.06885; =0.62646.

Table 2 Component values of 3rd-order LP filters 

(resistors in [ ], capacitors in [F], ( p) in [dB]). 

No. Filter R1 C1 2 3 r2 r3 ( p)

1. C-equal 0.298 1 1 1 1.48 0.14 2.0 0.5 1.220

2. C-taper: C=3 0.391 1 3 9 0.93 2.72 2.0 0.5 0.528

3. C-taper: C=5 0.344 1 5 25 1.66 10.4 2.0 0.5 0.465

4. R-equal 0.413 1 4.64 2.68 1 1 4.0 0.25 1.044

5. R-taper: C=3 0.328 1 12.8 13.3 3 9 4.0 0.25 0.783

6. R-taper: C=5 0.303 1 20.3 30.6 5 25 4.0 0.25 0.734

Figure 8. Family of normalized magnitudes of 3rd-order

LP filters in Table 2 with real opamp. 
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Figure 9. Chebyshev 0.5dB 3rd-order LP filter circuit as in Figure 7. (a) Transfer function magnitude. (b)-(h) Family of 

normalized magnitudes of filters in Table 3 with real opamp. 

The transfer function magnitude is shown in Figure 9(a). 

Capacitive and resistive impedance tapering techniques as in [1] 

are applied, and the obtained filter components are given in 

Table 2.

The corresponding active sensitivity analysis is presented in 

Figure 8. Observing the families of curves in Figure 8, we 

conclude that the impedance tapering has minimized the active 

sensitivity in the same way as it minimized the passive 

sensitivity. Active desensitization is compared with the results of 

passive desensitization in [1], which is presented in the form of 

( p) columns in Table 1-Table 3. 

Finally, we constructed filter circuits applying capacitive 

tapering and using the 10 different design frequencies 

0=(R1C1)
-1 as in [1]. We present 7 of 10 obtained filter circuits 

in Table 3. Note that we use the circuit numbers as in [1]. Note 

that f0= 0/(2 ).

Table 3 Component values of 3rd-order LP filters (f0 in 

[Hz], ( p) in [dB]). 

No. Filter f0 2 3 r2 r3 r3/r2 ( p)

1. 1.34 3 9 0.256 1.4 5.47 3.0 1.016

2. 1.67 3 9 0.382 1.84 4.81 2.71 0.836

4. 2.33 3 9 0.754 2.56 3.4 2.17 0.592

6. 3.0 3 9 1.455 2.82 1.94 1.69 0.418

8. 3.46 3 9 2.604 2.44 0.94 1.41 0.330

9. 3.58 3 9 3.806 1.97 0.52 1.31 0.318

10.

C-taper: C=3

3.88 3 9 8.537 1.03 0.12 1.27 0.521

The corresponding active sensitivity is shown in the curves of 

Figure 9(b) to (h). From these curves, we conclude that the 

deviation from the ideal filter response becomes smallest for the 

filter no. 8, which is a capacitively tapered filter with resistor 

scaling values r2 r3. Considering the correspondence between 

active and passive desensitization using impedance tapering 

demonstrated above, it comes as no surprise that here again the 

filter no. 8 has smallest sensitivity also to passive component 

tolerances (see [1]). 

In summary, for the general 3rd-order allpole low-pass filter, the 
minimum of both passive and active sensitivities is obtained with 

capacitive impedance tapering and resistor values r2 r3.

3. CONCLUSIONS 

A procedure for the design of allpole filters with low sensitivity 

to passive component tolerances was presented in [1]. Here we 

have shown that the same design procedure can be used to 

minimize the influence of gain variation especially at high 

frequencies. From the results obtained, we can summarize that 

for the general 2nd-order LP filter, the minimum of both passive 

and active sensitivities is obtained for capacitive impedance 

tapering with resistor values selected for GSP-minimization. For 

the general 3rd-order LP filter, capacitive impedance tapering 

with close resistor values r2 r3 is also effective in passive and 

active sensitivity minimization. We conclude that impedance 

tapering is a very effective strategy for the comprehensive 

sensitivity minimization of a filter circuit, compared with the 

standard design methods, which are actually given in design 

handbooks. It is also shown that the active sensitivity is 

proportional to the pole Q factor. Thus, as is well known, in filter 

design solutions with lower pole Q-factors, are preferable. 
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