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Abstract—The analytical design procedure of low-
sensitivity, low-power, low-pass (LP) 2nd-and 3rd-order 
class-4 active-RC allpole filters, using impedance tapering, 
has already been published [1][2]. In this paper the 
desensitisation using impedance tapering is applied to the 
design of LP 4th-order filters. The numerical design 
procedure was performed by Newton’s iterative method. 
Analytically designed unity-gain LP 4th-order filters [3] can 
provide initial values for Newton’s method. The sensitivities 
of a filter transfer function to passive component tolerances, 
as well as active gain variations are examined by the 
Schoeffler sensitivity and Monte Carlo PSpice simulation. 
Butterworth and Chebyshev 0.5dB filter examples illustrate 
the design method. 

I. INTRODUCTION 
A procedure for the analytical design of low-sensitivity 

class-4 2nd-and 3rd-order Sallen-and-Key [4] active 
resistance-capacitance (RC) low-pass (LP) allpole filters 
was presented in [1], with the realizability constraints in 
[2]. It was shown in [1] that by the use of “impedance 
tapering”, in which L-sections of the RC network are 
successively impedance scaled upwards, from the driving 
source to the positive amplifier input, the sensitivity of the 
filter characteristics to passive component tolerances can 
be significantly decreased.  

In this paper, the design method based on “impedance 
tapering” is extended to the design of 4th-order LP active-
RC filters each with a single operational amplifier 
(opamp). It is also demonstrated that obtaining an 
analytical solution is possible only for lower-than-4th-
order filters and for a special case of 4th-order unity-gain 
filter (β=1) [3]. The examples of Butterworth and 
Chebyshev filters with 0.5dB pass-band ripple illustrate 
optimal filter design with minimum passive and active 
sensitivities. 

II. FOURTH-ORDER ALLPOLE FILTER 
Consider the 4th-order single-amplifier LP filter shown 

in Fig. 1. It is a low-power circuit, insofar as it uses only 
one opamp. Its voltage transfer function T(s), is given by: 
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where coefficients ai (i=0,…,3) as a function of 
components of the circuit are given by (2).  

Transfer function T(s) in (1), can be written in terms of 
pole Q-factors, qpi, and pole frequencies ωpi; (i=1, 2) as 
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Note that the gain for the class-4 circuit is given by: 
 1/1 ≥+=β GF RR . (4) 
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Fig. 1. 4th-order LP filter with single opamp and impedance scaling 

factors ri and ρi; (i=2,3,4). 

Introducing the design frequency ω0 and impedance 
scaling factors ri and ρi as in Fig. 1, defined by 
 1

110 )( −=ω CR , Ri=riR1, Ci=C1/ρi; i=2, 3, 4; (5) 
into (2), and using 
 in

ii a −ω=α 0/ ; i=0, 1, 2, …, n-1; n=4, (6) 
we obtain a system of four equations with eight 
unknowns. To design the 4th-order LP filter we have to 
solve this system, and therefore we must choose four 
variables, and then calculate the remaining four. For 
example, we can calculate the resistive tapering factors ri 
(i=2, 3, 4) and gain β from given coefficients ai (i=0, …, 
3), chosen capacitive factors ρi (i=2, 3, 4) and the design 
frequency ω0. Capacitive scaling factors ρi should 
geometrically progress, providing “capacitive tapering” in 
the filter design. Note that, alternatively, we could have 
started by choosing resistive scaling factors ri, thus 
providing a "resistive tapering" design procedure. We can 
express values of r4 and β explicitely, but we obtain a 
nonlinear relation between r2 and r3. The new system of 
four nonlinear equations is given by: 
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where the constants a to m in the 2nd and 3rd equations can 
readily be calculated from eqs. (2) to (6). The next step, 
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which is the only one that seems to be possible in trying to 
find an analytical solution, is to merge and factorise the 
2nd and 3rd equations of the system (7) in the form given by: 
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The form (8) is obviously impossible for representation 
and we can’t solve the system (7) analytically. Instead, the 
second and third equations in (7) can be solved for the 
values of r2 and r3 only numerically, using, for example 
Newton’s iterative method. Once we have the values of r2 
and r3, the remaining values of r4 and β readily follow 
from the first and last equations of the system, respectively. 

In the following examples, a 4th-order LP active-RC 
filter will be solved using the program "Mathematica". 

III. EXAMPLE 
Consider the Butterworth and Chebyshev filter with a 

pass-band ripple Rp=0.5dB having the coefficients shown 
in Table I. The corresponding amplitude responses 
α(ω)[dB] are shown in Fig. 2. 

TABLE I 
BUTTERWORTH* AND CHEBYSHEV SPECIFICATIONS COEFFICIENTS 

No. Specif. Rp 
[dB] 

a0 
×1022 

a1 
×1017 

a2 
×1011 

a3 
×105 

ωp1 
×105 

ωp2 
×105 

qp1 qp2 

1.* 1.0/40dB; 
50/250kHz 0.0 6.09 3.20 8.42 13.0 4.97 4.97 0.54 1.31

2. 0.5/38dB; 
80/300kHz 0.5 2.42 1.13 4.34 6.02 3.00 5.18 0.71 2.94

We start with the Butterworth transfer function 
coefficients in line 1) of Table I. In the design process, 
various ways of impedance tapering have been applied, 
i.e. capacitive and resistive, and the resulting component 
values are presented in Table II with resistors in [kΩ] and 
capacitors in [pF]. A sensitivity analysis was performed. 
The standard deviations σα(ωp) in [dB] (related to the 
Shoeffler sensitivities) of the variation of the log gain 
∆α=8.68588∆|T(jω)|/|T(jω)|[dB], with respect to zero 
mean and 1% standard deviation of passive components, 
was calculated at the dominant pole frequency ωp=ωp2. This 
is the frequency vicinity in which the magnitude spread is 
the highest; it is shown in the last column of Table II. 

  
Fig. 2. Magnitude of transfer functions for filters in Table I. 

(a) Butterworth. (b) Chebyshev with Rp=0.5[dB].  
TABLE II 

COMPONENT VALUES OF IMPEDANCE-TAPERED 4TH-ORDER LP FILTER 
No. Tap. R1 C1 r2 r3 r4 ρ2 ρ3 ρ4 β σα(ωp)
1) 15.6 100 3.20 5.03 0.17 1 1 1 2.0 2.227
2) 1.59 800 12.6 5.47 5.84 2 4 8 2.0 0.765
3) 

Cap. 
0.46 2700 18.7 10.8 25.1 3 9 27 2.0 0.638

1) 10 193 1 1 1 0.28 2.12 1.43 4.0 1.605
2) 10 149 2 4 8 0.41 7.02 6.68 4.0 1.198
3) 

Res. 
10 134 3 9 27 0.54 14.7 18.1 4.0 1.079

Beside Schoeffler’s sensitivity, Monte Carlo runs (MC) 
are also performed as a double-check and presented in 
Figs. 4 and 6. The corresponding PSpice circuit model of 
a 4th-order LP filter with 1% Gaussian distributed, zero-
mean resistors and capacitors is shown in Fig. 3. Note that 
the opamp is simulated by a voltage-controlled-voltage-
source with high and constant gain value of A=1010. 

 
Fig. 3. PSpice circuit model of 4th-order LP filter for passive 

components MC runs. 

  

  

  
Fig. 4. Passive components Monte Carlo runs of impedance-tapered 4th-
order LP filters as given in Table II. (a) Capacitively. (b) Resistively. 

Observing Fig. 4 we conclude that impedance tapering 
significantly reduces sensitivity to passive components. 
For the next example, we choose 6 different values of ω0 
with tapered capacitors. We obtain 6 different filters with 
the design values in Table III and MC runs shown in Fig. 6. 

TABLE III 
DEPENDENCE OF DESIGN PARAMETERS ON SELECTION OF ω0 

No. Spec. R1 C1 r2 r3 r4 ρ2 ρ3 ρ4 β σα(ωp)
1) 0.531 2700 9.31 53.6 5.67 3 9 27 1.29 0.569
2) 0.526 2700 9.77 30.4 9.91 3 9 27 1.32 0.404
3) 0.519 2700 10.4 23.6 12.7 3 9 27 1.37 0.388
4) 0.457 2700 19.3 10.5 25.4 3 9 27 2.04 0.655
5) 0.398 2700 73.0 4.75 25.8 3 9 27 3.43 1.928
6)

Bu. 

0.390 2700 117 3.72 22.4 3 9 27 3.73 2.756
7) Ch. 0.926 2700 7.89 13.3 6.84 3 9 27 1.56 1.195

Using the Chebyshev transfer function coefficients in line 
2) of Table I, we designed the minimum sensitivity 
circuit, with component values in line 7) of Table III. The 
min. sensitivity filters are marked by a bold rectangle. The 
corresponding curves of the Butterworth and Chebyshev 
filter design parameters in Table III, vs. ω0, are shown in 
Fig. 5 (a) and (b), respectively. 

 
Fig. 5. Design parameters r2, r3, r4 and β in Table III as a function of ω0. 

(a) (b) 

(a) (b) 

(a) (b) 
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Fig. 6. Passive components Monte Carlo runs of amplitude response of 
capacitively-tapered 4th-order LP filter as a function of ω0 (Table III). 
In Fig. 7 we introduced a model of the open-loop gain A 
device (inside dashed rectangle) to use with PSpice for 
active component gain variation in the 4th-order LP filter. 
R7 and R9 are supposed to be tracking resistors, as well as 
R8 and R10. A-variations are performed by variations of 
both R7 and R8 and theirs tracking counterparts. The gain 
A values are log distributed in the range from 1.3⋅102 ÷ 
4.5⋅105. In practice, the gain A changes with temperature 
and at higher frequencies the gain A becomes smaller. 
Note that all passive components take their nominal 
values. The corresponding MC runs of an active 
component are presented in Figs. 8 and 9.  

 
Fig. 7. PSpice circuit model for an active component MC runs. 

  

  

  
Fig. 8. Active component (opamp) MC runs of impedance-tapered 4th-
order LP filters as given in Table II. (a) Capacitively. (b) Resistively. 

  

  

  
Fig. 9. Active component (opamp) MC runs of amplitude response of 
capacitively-tapered 4th-order LP filter as a function of ω0 (Table III). 
Observing all above MC runs one can conclude that the 
impedance tapering significantly decreases sensitivity 
with respect to passive and active component variations, 
compared with the non-tapered standard circuit. The min. 
passive sensitivity of the filter is achieved by capacitive 
tapering and selecting the appropriate value of ω0 (filter 
no. 3). This also corresponds to the min. active sensitivity. 
Finally, MC runs of Chebyshev filter no. 7) is shown in Fig. 10. 

  
Fig. 10. (a) Passive, and (b) active sensitivity represented by MC runs of 
amplitude response of Chebyshev filter no. 7) in Table III. 
From the Chebyshev example in Fig. 10 we conclude that 
for higher pole Qs, qp, both the active and passive 
sensitivities are increased. 

A. Design of 4th-order Filter Starting from β=1 Filter 
We use β=1 filter elements in [3] for the starting values 

in the Newton’s iterative method, when numerically 
solving the set of non-linear eqs. (7). We obtain the filters 
in Table IV and the corresponding MC runs shown in 
Figs. 11 and 12. 

TABLE IV 
DEPENDENCE OF DESIGN PARAMETERS ON SELECTION OF ω0 

No. Tap. R1 C1 r2 r3 r4 ρ2 ρ3 ρ4 β σα(ωp)
1) β=1 0.611 5 1.08 5.24 2.76 1.34 1.0 62.1 1.0 0.168
2) 10 289 1.08 5.24 2.76 1.17 2.47 23.1 1.1 0.258
3) 10 267 1.08 5.24 2.76 0.96 3.60 14.0 1.3 0.406
4)

Res.
10 228 1.08 5.24 2.76 0.63 5.47 7.44 2.0 0.780

5) 1.288 5 0.40 0.70 2.83 1.34 1.0 62.1 1.1 0.342
6)

Cap.
5.780 5 0.06 0.07 0.48 1.34 1.0 62.1 1.3 1.433

We chose resistors as starting values and then increased 
the values of β by changing the design frequency ω0, thus 
obtaining the circuits no. 1)-4). Our goal is to reach, for 
example, the min. active sensitivity (filter no. 3 in Table 
IV, see Fig. 12). Note that for the 4th-order filter, we do 
not have any analytical expression by which we can 
calculate the min. GSP, as is possible for the 2nd-order 
case [5]. 

(a) (b) 

(a) (b) 
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Fig. 11. Passive components Monte Carlo runs of amplitude response of 
capacitively-tapered 4th-order LP filter as a function of β (Table IV). 

  

  

  
Fig. 12. Active component (opamp) MC runs of amplitude response of 
capacitively-tapered 4th-order LP filter as a function of β (Table IV). 

It follows from Table IV that we must be careful not to 
choose capacitors as starting values, because we will then 
obtain bad circuits: no. 5)-6). The corresponding curves 
for design parameters in Table IV, vs. ω0, which can be 
represented by β, are shown in Fig. 13. As follows from 
[3] it is not possible to design the Chebyshev filter starting 
from the β=1 filter. 

  
Fig. 13. Design parameters in Table IV as a function of ω0. Note that the 
abscise-axis is represented by β. (a) R-Tapering. (b) C-Tapering. 
Note that the unity gain circuit no. 1) has min. passive 
sensitivity, but on the other hand, it is very sensitive with 
respect to the gain A. This is evident from the curves in 
Fig. 13, in which the gradients of the component ratios are 
very large in the vicinity of the gain β=1. Unity gain filter 
is even more sensitive for higher pole Q-factors. 

B. Comparison of 4th-order Filter with 2-Biquad CAS 
In this section we compare the performance of the 

single opamp, (1-OA) 4th-order LP filter with a cascade 
(CAS) of two 2nd-order LP filter “biquads” as in [1]. We 
apply capacitive impedance tapering with resistor values 
selected for GSP-minimization, to minimize both passive 
and active sensitivity, to the two biquads in cascade [5]. 
The component values are given in Table V. 

TABLE V 
COMPONENT VALUES OF 2ND-ORDER LP SECTIONS IN CAS 

No. Design Blocks) R1 C1 r2 ρ2 β σα(ωp)
I) 3.506 5 1.58 1.20 1.031) min. 

GSP. II) 5.125 5 2.47 4 1.27 0.208

  
Fig. 14. (a) Passive, and (b) active sensitivity represented by MC runs of 
amplitude response of CAS 4th-order LP filter (Table V). 
To examine sensitivities we perform MC runs as in the 
examples above, and present them in Fig. 14. Clearly, the 
CAS realization is easier to design, and has much lower 
sensitivities than the 1-OA filter. On the other hand the 1-
OA filter has one opamp and two resistors less. Thus, the 
reduction in power and component count achieved with 
the 1-OA filter is obtained at a price: cascading of two 
impedance-tapered biquads is better both with regard to 
passive and active sensitivities. 

IV. CONCLUSION 
In this paper we presented the optimal design of single 

opamp 4th-order LP filters. Unfortunately, the design 
equations for higher-than–third order filters defy any 
analytical solution, thus we presented a numerical design 
procedure. In one example we used unity gain filter 
elements as the starting values. It is shown in numerous 
examples that impedance tapering reduces both passive 
and active sensitivities. The unity gain tapered filter is 
shown to have min. passive sensitivity, but the active 
sensitivity is still too high. Therefore, an optimal design 
procedure is to apply capacitive tapering, and then to 
change the design frequency ω0 to minimize active 
sensitivity, and by that, to keep the passive sensitivity 
reduced, as well. Finally, we compared the tapered single 
opamp 4th-order LP filter to a cascade of two 2nd-order 
tapered LP “biquads”. The latter has substantially reduced 
sensitivities, and the design equations for the min. GSP 
are available in closed form. Thus, the decision on which 
approach o take is typically one of tradeoffs: low power 
and element count vs. low sensitivity and design simplicity. 
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