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Abstract –This paper presents the realization of narrow 
high-order band-pass (BP) active resistance-capacitance (RC) 
filters. It was shown that such filters have large sensitivities to 
component tolerances, and if they were built using structures 
with multiple feedbacks, theirs sensitivities are substantially 
decreased. Furthermore, it was demonstrated that 
sensitivities of inner 2nd-order blocks (“biquads”) building the 
structure can be reduced by the “impedance tapering” design 
procedure. Using it we provide an additional decrease of BP 
filter structures sensitivities. As an illustration of the 
efficiency of the proposed design procedure, the sensitivity 
analysis, using Schoeffler’s sensitivity measure, is performed 
for an 8th-order Chebyshev narrow BP filter. The filter was 
realised as: cascade (CAS), follow-the-leader-feedback (FLF), 
cascaded “biquarts” (CBQ) and leap-frog (LF) structure, 
using impedance tapered sub-circuits.  
 

I. INTRODUCTION 
 In [1] and [2] it was shown that the sensitivity of filters 
transfer function magnitude to passive components of the 
filter, such as resistors and capacitors, is proportional to 
filters pole-Q factors. Therefore, high sensitivity to filter 
components is a very important problem in the realization 
of a narrow band-pass filter, because they have very high 
pole Q-factor values. It is well know that by increasing the 
filter order, the pole-Q factors increase even more. 
 Active-RC high-order BP filters with narrow pass-band 
are usually realized by 2nd-order blocks (biquads), which 
are mutually interconnected. The manner in which this 
connection is accomplished is denoted as a filter structure, 
making the resulting BP filter more or less sensible to 
component variations. In [3] it was shown that sensitivities 
of active-RC filters with multiple feedbacks are reduced. 
We investigate sensitivities of various narrow BP active 
filter structures having the same transfer function. 
 In this paper we compare properties of BP filter 
structures having the inner 2nd-order BP blocks realized 
using general purpose (GP) sections, with three 
operational amplifiers (opamps), to those having single-
opamp “biquads”. The latter 2nd-order blocks are simpler, 
since they have less opamps and therefore reduced power 
consumption, but have larger sensitivities than the former. 
However, single-opamp “biquads” can be designed using 
recently introduced design technique in [1] and [2] called 
“impedance tapering”, which reduces theirs sensitivities to 
component tolerances of the circuit and thus decreases this 
unwanted property. 
 In the design of low-sensitivity, 2nd-order class-4 Sallen 
and Key active-RC allpole filters, using “impedance 
tapering” [1] and [2], L-sections of the RC ladder network 
are successively impedance scaled upwards, from the 
driving source to the positive amplifier input, providing 
the significantly decreased sensitivity of the filter 

characteristics to component tolerances. Thus, the 
sensitivity to passive components of multiple feedback BP 
filter can be additionally decreased if it were built using 
“impedance tapered” biquads.  

II. SENSITIVITY OF ACTIVE FILTERS 

A. Definition of sensitivity  
 Component values in electrical circuits can deviate from 
their nominal values due to ageing, temperature, 
tolerances, etc. Sensitivity analysis gives the information 
on network function changes caused by small deviations of 
component values [3]. 
 Given the network function F(s, x1, …,xn), where s is 
complex variable and xk (k=1, …,n) are real parameters of 
the filter, the relative function deviation ∆F/F due to single 
parameter value relative deviation ∆xk/xk, in the first 
approximation, is given by: 

 
k

kF
x x

xS
F
F

k

∆
⋅≅

∆ , (1) 

where F
xk

S  represents the relative sensitivity of a function 
F to a single parameter xk, and equals to 

 
k

kF
x dx

dF
F
xS

k
= . (2) 

 If several components deviate from the nominal value, a 
criterion for assessing function deviation due to change of 
many parameters must be used. Let ∆xk/xk be independent 
normal random variables with zero means and identical 
standard deviations equal to σx. The squared standard 
deviation σ2

F of relative function change ∆F/F is given by: 
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where S2 is so called Schoeffler sensitivity defined as 
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The Schoeffler sensitivity is a reliable measure for 
estimation of different circuits from the sensitivity point, 
and it is used in this paper. 
B. Low sensitive active filter structures 
 Four mostly used filter structures, i.e. cascade (CAS), 
follow-the-leader-feedback (FLF), cascade of biquartic 
sections (CBQ), and leap-frog (LF) are shown in Fig. 1. 
Second-order filter blocks used for the realization of 
structures in Fig. 1 have the BP transfer function given by: 
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where a1i and a0i represent transfer function coefficients. 
Instead, we can use transfer function pole frequencies ωpi 



and pole Q-factors, qpi (i=1,…, N/2; for an even filter order 
N). We suppose that we design even Nth-order BP filters. 

 

 

 

 
Fig. 1 (a) CAS; (b) FLF; (c) CBQ and (d) LF structure 

 In what follows we show that the sensitivity to passive 
components of the transfer function F(s) of an active-RC 
filter structure as in Fig. 1 depends on the structure of the 
filter, and on the realization of 2nd-order building blocks 
Ti(s). Consider the filter transfer function F(s) given by: 
 F=F(Ti), (6) 
where 
 Ti=(s, xi1, xi2, …, xik). (7) 
Arguments xij (j=1,…, k) represent passive components, of 
2nd-order filter blocks Ti(s). The sensitivity of the filter 
transfer function F(s) to the component xij variation is then 
given by: 
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In (8) the first factor F
Ti

S  is called structure-to-block 
sensitivity and it depends on the structure of the filter, 
while the second factor i

ij

T
xS  depends exclusively on the 

way in which the ith block was realized. Note that filters 
having identical transfer functions and the same blocks, 
which are realized by different structures, will not have the 
same sensitivities. 
Furthermore, the second factor in (8) can be represented by: 
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where ak (k=0, 1, 2) represent transfer function coefficients 
in (5). It is shown in [1] that the first factor in (9) is called 
coefficient sensitivity i

k

T
aS  and it depends exclusively on 

the generic filter type (Butterworth, Chebyshev, etc.), i.e. 
on the pole-Q factor values and can't be influenced. On the 
other hand, second factor in (9) represents coefficient-to-
component sensitivity k

ij

a
xS  and depends on the way in 

which some filters were designed. It was shown in [1] and 
[2] that by using “impedance tapering” design techniques 
if the 2nd-order blocks Ti(s) are realized by single-opamp 
“biquads”, the coefficient-to-component sensitivities can be 
reduced, and thus the sensitivity of the structure F

xij
S  to its 

every passive component xij, given by (8), can be 
additionally decreased. 
Consider sensitivities of filter structures as presented in Fig. 1. 
a) CAS Structure: Transfer function of the active filter is 

given by: 
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Using rules for calculating sensitivities, which are given in 
literature (see [3]), the sensitivity of the transfer function 
F(s) to the variation of any Ti(s) is given by: 
 1=F

Ti
S , (11) 

where i=1, …, N/2. The structure-to-block sensitivity for 
the CAS structure is equal to unity and can't be influenced. 
Thus, the sensitivity of the transfer function F(s) to any 
element xij in ith 2nd-order block is given by: 
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Consequently, the sensitivity optimisation of the CAS 
structure reduces to the optimisation of the sensitivities of 
each block in the structure. 
b) FLF Structure: Transfer function of the active filter is 
given by: 
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where βi (i=1,…, N/2) are negative feedback coefficients 
and β0 is the input gain. After some calculation the 
sensitivity of the transfer function F(s) to the variation of 
any building-block transfer function Ti(s) is given by: 
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where k=1,…, N/2. From (14) follows the sensitivity of the 
magnitude F(ω)=F(jω) to the magnitude of the kth 2nd-
order filter block Tk(ω)=Tk(jω), given by: 
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The frequency-dependent functions fk(ω) in (15) are lower 
than unity inside the pass-band of the filter. This reduction 
in sensitivity came as a consequence of negative 
feedbacks. Obviously, because the sensitivity in (15) is 
lower than unity, the FLF filter structure is less sensitive 
than the CAS structure, which has the sensitivity given by 
(11) equal to unity for the whole frequency range. 
Furthermore, from (8) it is obvious that an additional 
sensitivity reduction of the FLF structure can be 
accomplished by the reduction of sensitivities i

ij

T
xS  of each 

2nd-order block Ti(s).  
c) CBQ Structure: This is a cascade of minimal FLF 
structures. The minimal FLF has only two blocks inside 
feedback loop and it is called “biquart”. Transfer function 
of the active filter structure is given by: 
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 [ ] 1

21214 )()(1)()()( −β+⋅= sTsTsTsTsF iiiiii , (17) 
represents the transfer function of an ith “biquart” section. 
Sensitivity of the transfer function F(s) to any element xjim 
in mth block of ith “biquart” section is given by: 
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Note that “biquarts” are cascaded, therefore 1
4
=F

F i
S  and 

the sensitivity optimisation of the cascaded-biquarts 



reduces to the optimisation of one biquart section. In [3] 
and [4] it was shown that if two 2nd-order BP blocks inside 
a biquart section are identical, then the sensitivity of the 
biquart to each of its blocks i

im

F
TS 4  is minimal. Furthermore, 

since a biquart section is a special case of FLF section it 
can be desensitised in the same way. 
d) LF Structure: Transfer function of the active filter is 
given by: 

 
),1(

1)(
nK

sF = , (19) 

where K(1,n) represents continuants defined by: 
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and K(n+1,n)=1; i=1,…, n; n=N/2. The sensitivity of the 
transfer function F(s) to the variation of any building-
block transfer function Ti(s) is given by: 
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Observing (21) note the proportionality of the χ to the 
transfer function of the ith block Ti(s), and that there is no 
Ti(s) in the numerator and denominator of χ. That means, 
at frequencies where Ti(s)→0, the sensitivity F

Ti
S  is equal 

to unity, while at frequencies where Ti(s)→∞, F
Ti

S  is equal 
to zero. Since Ti(s) are 2nd-order BP blocks with infinite 
pole Q-factors, they take infinite values at pole 
frequencies, which are inside pass-band of the filter. This 
is the reason of very low sensitivity of LF filters [3]. 

III. EXAMPLE 
 As an illustration consider an 8th-order Chebyshev 
narrow band BP filter with normalized bandwidth B=0.1, 
center frequency ω0=1, and reflection coefficient ρ=10%, 
which corresponds to the pass-band ripple Rp=0.044dB. 
The filter is realized by structures in Fig. 1. Its transfer 
function magnitude α(ω) = 20logF(jω) dB is shown in 
Fig. 2(a) and (b), in large and small magnification, 
respectively.  

   
Fig. 2. Magnitude of narrow Chebyshev BP-filter used in 

the example. (a) Normal. (b) Magnified. 
Normalized transfer function parameters of structures and 
theirs 2nd-order blocks Ti(s) are given in Table I. The gain 
values ki and feedback values βi (i=1, …, 4) in Table I are 
optimised by the method of D. J. Perry [5], to provide 
maximum dynamic range of the filter. The magnitude at 
the output of every block is equated to the maximally 
allowed level for a given input signal [3]. 
In what follows we present realizations of 2nd-order sub-
circuits Ti(s) and summing devices of structures in Fig. 1. 

Table I Parameters of structures in Fig. 1. 
 i qp ωp k β 
 1 13.202 0.9755 1.0000  

CAS 2 13.202 1.0251 1.4274  
 3 31.919 0.9420 2.1733  
 4 31.919 1.0615 7.1188  
 1 18.665 1.0000 2.5933 0.0000 

FLF 2 18.665 1.0000 2.4669 0.8571 
β0=0.4582 3 18.665 1.0000 2.3572 0.2263 

 4 18.665 1.0000 2.1840 0.1601 
 1 13.198 1.0000 1.4482  

CBQ 2 13.198 1.0000 1.0363 0.2843 
 3 31.862 1.0000 3.8230  
 4 31.862 1.0000 3.4848 1.0880 
 1 9.357 1.0000 1.2085 0.8116 

LF 2 ∞ 1.0000 0.07892* 0.7508 
 3 ∞ 1.0000 0.08267* 0.6810 
 4 9.307 1.0000 1.3737  

*Instead of k the value of kωp/qp is given 
1.) 2nd-order transfer functions in (5) can be realized by a 
general purpose (GP) section [6] shown in Fig. 3.  
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Fig. 3. GP-2 section. 
Definitions of parameters for the section in Fig. 3 are: 
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To design the 2nd-order GP-2 filter section with given ωp, 
qp and k we accomplish the following step-by-step 
procedure: 
i) Select C1, C2, R4, R5 and R6 and calculate R1, R2, and R3: 
 R2=R6/(ωp

2 R4 R5 C1 C2) 
ii-a) If qp<<∞ we calculate R1 and R3 by: 
  R1=R3/k, R3=qp/(C1 ωp). 
ii-b) If qp→∞ instead of k the value of k*=kωp/qp is given. 
 We have R3= ∞ and R1=(k*C1)-1. 
2.) 2nd-order transfer functions Ti(s) in (5) can be realised 
by a single-opamp BP active-RC filter shown in Fig. 4. [2]. 
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Fig. 4. BP active-RC class-4 allpole filter, with single-

opamp (impedance scaling factors are r and ρ). 
Definitions of parameters for that class-4 allpole filter are: 
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To design the 2nd-order BP filter in Fig. 4 with given ωp, qp 
and k we accomplish the following step-by-step procedure: 
i) Select r, ρ and ξ1 and calculate ω0 and β: 
 ρω==ω − /)( 1

0 rRC p ; ]//1/)1(1[1 rqr p ρ⋅−ρ++ξ=β . 

(a) (b) 



 

     
Fig. 5. Sensitivities of filter structures in Fig. 1 realized by: (a) GP2 section. (b) Non tapered single-opamp “biquads”. 

(c) Ideally impedance-tapered single-opamp “biquads”. 
ii) Select C and compute R1, R2, R3, and C2: 
R=(ω0C)-1, R1=ξ1R, ξ2=ξ1/(ξ1-1), R2=ξ2R, R3=rR, C1=C, 
C2=C/ρ. Furthermore R11=R1/µ; R12=R1/(1-µ) where µ=k/β. 
iii) Select RG and calculate RF : RF =RG(β-1). 
Note that in Fig. 4 the impedance scaled L section is inside 
dashed rectangle [2] [6]. 
3.) Summing devices at the input can be readily designed 
by the well-known scheme in Fig. 6 with one opamp. 
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Fig. 6. General summing device configuration. 

We present a general configuration of summing device 
having N negative inputs V-

i (i=1,…,N), M positive inputs 
V+

j (j=1,…,M), and output Vout, where the voltage is given 
by: 
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Note that it is convenient to choose equal total resistances 
connected to the negative (R-) and positive (R+) input of 
the opamp, i.e. R+=R-. 
A. Realization with GP-2 sections 
 For filter examples in Table I we realise 2nd-order sub-
circuits by GP-2 sections in Fig. 3. A sensitivity analysis 
was performed assuming the relative changes of the inner 
2nd-order sub-circuit resistors and capacitors to be 
uncorrelated normal random variables, with zero-means 
and 1% standard deviation. The standard deviation σα(ω) 
dB (related to the Shoeffler sensitivities) of the variation of 
the log gain ∆α=8.68588∆|F(jω)|/|F(jω)|, with respect to 
passive elements, is shown in Fig. 5(a). The influences of 
feedback resistors to the sensitivity are not taken into 
consideration. 
 Observing the standard deviation σα(ω) dB in Fig. 5(a) 
we conclude that structures with feedback loops has 
considerably decreased sensitivities, compared to the CAS 
structure. The LF structure gives the best results. For GP-2 
section we have no design procedure, which can reduce 
the sensitivities of building filter blocks of 2nd-order. 
B. Realization with single-opamp sections 
 A sensitivity analysis was performed for the filter 
examples in Table I, having 2nd-order single-opamp 
biquads in Fig. 4 as sub-circuits. In their design procedure, 
the values of r and ρ represent resistive and capacitive 
impedance scaling factors, respectively. In calculation of 

sub-circuit elements we have used “non-tapered” case 
when ρ=r=1, in building structures having sensitivities 
shown in Fig. 5(b). For an “ideally impedance tapered” 
biquads when ρ=r=4, the structure sensitivities are shown 
in Fig. 5(c).  
 Observing sensitivities in Fig. 5(c), we conclude about 
the significant sensitivity reduction of 8th-order BP filter 
structures using impedance tapered single-opamp 2nd-order 
sub-circuits. The sensitivities of such structures are higher 
but they are approaching sensitivities in Fig. 5(a) of BP 
filter structures, which have GP-2 sub-sections. Note the 
difference in the scale for σα(ω). Although filters using 
GP-2 sections are less sensitive, from the point of power 
consumption the application of single-opamp filter sub-
circuits is preferable because, we considerably reduced the 
number of opamps (in our example by 10). 

IV. CONCLUSIONS 
 This paper presents the design of high-order narrow BP 
filters using multiple feedback filter structures and 
“impedance tapering” design technique applied on theirs 
sub-circuits. The “tapered” component values significantly 
decrease the sensitivity to passive component tolerances 
and the improvement comes free of charge; component 
count and topology remain unchanged. Thus, thank to 
impedance tapering, the application of single-opamp 
“biquads” in building high-order narrow BP filter has 
become realistic, because of additional decrease of 
structure’s magnitude sensitivity. Although structures with 
"tapered" single-opamp “biquads” have larger sensitivity 
than the structures having GP-2 sections, the sensitivity of 
the former approaches to the latter. Main advantage is that 
single-opamp sub-circuits provide low power 
consumption, because the number of opamps in whole 
structure has been significantly reduced. Obviously, the LF 
structure has minimum sensitivity. 
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