
Abstract -- Data warehousing systems enable managers
and analysts to acquire, integrate and flexibly analyze
information from different sources. Since XML has
become a standard for data exchange over the Internet,
especially in B2B and B2C communication, there is a
need of integrating XML data into warehousing systems.
In this paper we describe our methodology for data
warehouse design, when sources of data are XML
Schemas and conforming XML documents. Special
attention is given to conceptual multidimensional
design. The paper also presents the main features of the
prototype tool we have implemented to support our
methodology.

I. INTRODUCTION

Data warehousing system is a set of technologies and
tools that enable managers and analysts to acquire,
integrate and flexibly analyze information coming from
different sources. The central part of the system is a
database specialized for complex analysis of historical
data, called a data warehouse. The process of building a
data warehouse system includes analysis of different data
sources, design of data warehouse model, definition of
transformation and integration processes, construction of
data warehouse and implementation of tools that users
employ to get the wanted data from the warehouse.

The increasing use of XML in business-to-business (B2B)
applications and e-Commerce Web sites, suggests that a
lot of valuable external data sources will be available in
XML format on the Internet. Large volumes of XML data
already exist in information systems of various companies
and organizations. The possibility of integrating available
XML data into data warehouses will play an important
role in providing enterprise managers with up-to-date and
comprehensive information about their business domain.

Recent research on data warehouse systems has yielded
solutions for the warehouse design from relational
sources. As a lot of data is becoming available in XML
format, and much of database research focus is shifting
from the traditional relational model to semi-structured
data and XML, data warehouse design from XML sources
and integration of XML data into warehousing systems
becomes a hot topic.

In this paper, a methodology for semi-automated design
of data warehouses from XML Schemas [11] and
conforming XML documents is proposed. When
designing data warehouse from XML sources, two main
issues arise: first, since XML models semi-structured

data, not all the information needed can be safely derived;
second, different ways of representing relationships in
XML Schemas are possible, each achieving different
expressive power. Relationships can be specified either by
sub-elements with different cardinalities or by a
mechanism that is similar to the concept concerning keys
and foreign keys in relational databases. To support the
methodology for data warehouse design from XML
sources, a Java-based prototype tool has been developed.

Some approaches concerning related issues have been
proposed in the literature. In [8] DTDs are used as a
source for designing multidimensional schemas (modeled
in UML). Though that approach bears some resemblance
to ours, XML and relational data are not physically stored
into a data warehouse, but fetched on-demand from
respective sources. Furthermore, the unknown
cardinalities of relationships are not verified against actual
XML data, but they are always assumed to be to-one. The
approach described in [9] is focused on populating
multidimensional cubes by collecting XML data, but
assumes that the multidimensional schema is known in
advance (i.e., that conceptual design has been already
carried out). In [10], the author shows how to use XML to
directly model multidimensional data, without addressing
the problem of deriving the multidimensional schema.

In [3], a technique for conceptual design starting from
DTDs is outlined. That approach is now partially outdated
due to the increasing popularity of XML Schema. In [4],
conceptual design from XML Schema, including some
complex modeling situations, has been presented.
However, in [3] and [4] a complete methodology that
includes conceptual, logical and physical design has not
been explained, and the functional architecture of the
system has not been presented.

The paper is structured as follows. After explaining
multidimensional modeling in Section II, in Section III we
show how relationships are modeled in XML Schemas. In
Section IV we propose our methodology and functional
architecture for data warehouse design from XML
sources. Section V shortly describes the prototype tool we
have developed to support the methodology. Finally, in
Section VI the conclusions are drawn.

II. MULTIDIMENSIONAL MODELING

Multidimensional data model [5] is used in data
warehouses in order to make the data accessible to OLAP
and reporting tools and enable efficient analysis of a large
amount of data.

Boris Vrdoljak, Marko Banek, Zoran Skočir

University of Zagreb
Faculty of Electrical Engineering and Computing

Address: Unska 3, HR-10000 Zagreb, Croatia
E-mail: boris.vrdoljak@fer.hr, marko.banek@fer.hr, zoran.skocir@fer.hr

A Methodology for Integrating XML Data into Data Warehouses

In this paper the Dimensional Fact Model [2] is used as a
conceptual multidimensional model, in which a data
warehouse is represented by means of a set of fact
schemes. A fact scheme is structured as a rooted graph
whose root is a fact. The components of fact schemes are
facts, measures, dimensions and hierarchies. A fact is a
focus of interest for the decision-making process. It
typically corresponds to events occurring dynamically in
the enterprise world (such as sales or orders, for example).
Measures are continuously valued (typically numerical)
attributes that describe the fact. Dimensions are discrete
attributes which determine the minimum granularity
adopted to represent facts. Hierarchies are made up of
discrete dimension attributes linked by -to-one
relationship, and determine how facts may be aggregated.
In other words, each hierarchy includes a set of attributes
linked by functional dependences; for instance, city
functionally determines country.

The fact scheme, as a conceptual scheme, can be
implemented either in a relational database or in a
proprietary structure called multidimensional database.
End users of OLAP tools should never be concerned
about the storage of data, and should be able to treat the
resulting database as a conceptually coherent
multidimensional structure. When implementing the fact
scheme in a relational database, the star schema is
typically used. It is composed of one table with a multi-
part key, called the fact table, and a set of tables with a
single-part key, called dimensional tables. Figure 1 shows
the star schema for the sales example. Every element of
the multi-part key in the fact table is a foreign key to a
single dimension table. The dimensions in the sales
example are product, customer and time. In the case of
implementing the fact scheme in a multidimensional
database, data is stored in an array structure similar to the
programming language array.

customerID

date

productID

unitPrice

quantity
productID

prodName

size

date

month

customerID

name

street

TIME

SALES CUSTOMER

PRODUCT zip

city

countryincome

color

dayOfWeek

Figure 1. Star schema

III. EXPRESSING RELATIONSHIPS IN XML SCHEMA

In this paper we focus on using XML Schema and XML
data as a source for designing data warehouses. To be able
to navigate the functional dependencies (i.e. to-one
relationships) and derive a correct multidimensional
representation of the XML data, different ways of

expressing relationships in XML Schema should firstly be
examined.

The structure of XML data can be visualized by using a
schema graph derived from the Schema describing the
data, similarly as it has been proposed in [7] for DTDs.
The schema graph for the XML Schema describing the
sales of different products to different customers is shown
in Figure 2. In addition to the schema graph vertices that
correspond to elements and attributes in the XML
Schema, the operators inherited from the DTD element
type declarations are also used because of their simplicity.
They determine whether the sub-element or attribute may
appear one or more (“+”), zero or more (“*”), or zero or
one times (“?”). The default cardinality is exactly one and
in that case no operator is shown. Attributes and sub-
elements are not distinguished in the graph.

salesData

+
+

invoice

product
invoiceNum

orderDate +

lineItem

customer

quantity price productRef
keyref

prodName

colorsize

FACT

?

productID
key

?

Figure 2. Schema graph

Since our design methodology is primarily based on
detecting many-to-one relationships, in the following we
will focus on the way those relationships can be
expressed. There are two different ways of specifying
relationships in XML Schemas.

 First, relationships can be specified by sub-elements
with different cardinalities. However, given an XML
Schema, we can express only the cardinality of the
relationship from an element to its sub-elements and
attributes. The cardinality in the opposite direction
cannot be discovered by exploring the Schema; only
by exploring the data that conforms to the Schema or
by having some knowledge about the domain
described, it can be concluded about the cardinality in
the direction from a child element to its parent.

 Second, the key and keyref elements can be used for
defining keys and their references. The key element
indicates that every attribute or element value must
be unique within a certain scope and not null. If the
key is an element, it should be of a simple type. By
using keyref elements, keys can be referenced. Not
just attribute values, but also element content and
their combinations can be declared to be keys,
provided that the order and type of those elements

and attributes is the same in both the key and keyref
definitions. In contrast to id/idref mechanism in
DTDs, key and keyref elements are specified to hold
within the scope of particular elements. In the schema
graph presented in Figure 2, the detailed data about
products is stored in a separate sub-graph. However,
the connections between portions of data in the graph
can be made using the key/keyref mechanism.

IV. METHODOLOGY FOR DATA WAREHOUSE
DESIGN FROM XML SOURCES

A design methodology is an essential requirement to
ensure the success of complex data warehousing project.
Basic phases in data warehouse design, when data sources
are either E/R diagrams or relational logical schemes,
have been presented in [6]. However, there are still many
challenges for scientific community in the field of data
warehouse design when data sources are in XML format,
because of semi-structured nature of XML data.

In the following, a methodology for multidimensional
design starting from XML Schema is proposed. The
methodology from [1] and [6] has been adapted in order
to address various issues emerging from the semi-
structured nature of XML data

A. Functional architecture

The functional architecture for data warehouse design
from XML sources is presented in Figure 3. The main
functions of the functional architecture, i.e. the basic
phases of the methodology, are explained in the
following.

B. Preliminary work

 B.1. Analysis

Before starting the data warehouse design, available XML
sources are analyzed, and user requirements are specified.
Designer of the data warehouse analyzes XML Schema
and XML documents conforming to the XML Schema, as
well as available documentation, in order to determine
data semantics, data quality, the number of available
XML documents, etc. Requirement specification involves
designer and final users. User requirements are collected
and filtered. Requirement specification determines the
choice of facts and preliminary workload. As already
explained, each fact is a focus of interest for the decision-
making process and it becomes the root of the fact scheme
in the Dimensional Fact Model. Preliminary workload is a
set of most frequent/interesting queries on fact schemes,
i.e. a set of queries final users will most likely use when
querying the data warehouse.

 B.2. Storing XML

After XML Schemas and XML documents have been
extracted from the Internet, they should be stored locally,
in the way that allows validation and querying of XML
document. A storage that keeps the XML documents as a
whole, and enables validating them against their XML
Schema is needed. The best solutions are native XML
databases or XML-enabled relational databases, which
use Large Object (LOB) data types and other features for
storing and retrieving XML. It is also possible to use file
systems, but in that case the validation should be provided
manually, and the support database systems usually
provide would not be available.

XM L
SCHEM A

XM L
FILES

validation

des igner user

conceptual
des ign

workload
definition,

data volum e

logical
des ign

CONCEPTUAL
SCHEME

LOGICAL
SCHEME

XML
STORAGE

WORKLOAD,
DATA

VOLUME

re
qu

ire
ments

qu
er

ie
s

XQuery

SQL-DDL

validation

XQuery

 Figure 3 - Functional architecture for DW design from XML
sources

C. Design

Figure 3 shows the main steps of data warehouse design
starting from XML sources: conceptual design, workload
definition, and logical design. To complete the design
process, ETL (Extraction, Transformation and Loading)
design and physical design should also be included. All
the design phases are explained in the following.

 C.1. Conceptual design

While conceptual design from E/R diagrams or relational
logical schemes has already been explored [1], conceptual
design from XML sources brings a large number of
specific challenges to be solved. The challenges emerge
from the semi-structured nature of XML data. As the
hierarchies included in the multidimensional schema
represent many-to-one relationships, the main problem
when building a conceptual multidimensional model is to
identify those relationships. It has already been shown
that two different ways of specifying relationships in
XML Schemas exist; relationships can be specified either
by sub-elements with different cardinalities or by defining
keys and their references.

We propose a methodology for conceptual
multidimensional design starting from XML sources that
consists of the following steps:

1. Preprocessing the XML Schema.

2. Creating a schema graph.

3. Choosing facts.

4. For each fact:

4.1 Building a dependency graph from the schema
graph.

4.2 Rearranging the dependency graph.

4.3 Defining dimensions and measures.

4.4 Creating the fact scheme.

After a schema graph that represents the structure of the
simplified XML Schema has been automatically created
(steps 1 and 2), and the designer has chosen a fact as a
focus of interest for analysis (step 3), a dependency graph
is built in a semi-automated way (step 4). The dependency
graph is an intermediate structure used to provide a
multidimensional representation of the data describing the
fact. In particular, it is a directed rooted graph initialized
with the fact vertex. The vertices of the dependency graph
are a subset of the element and attribute vertices of the
schema graph, and its arcs represent associations between
vertices. The dependency graph is enlarged by recursively
navigating the functional dependencies between the
vertices of the schema graph. The navigation goes in three
directions:

 “direction down” (towards the descendants of the fact).

 direction up” (towards the ascendants of the fact),

 following the key/keyref mechanism.

Relationships in the direction from the fact to its
descendants (“direction down”) are expressed by arcs of
the schema graph, and the cardinality information is
expressed either explicitly by “?”, “*” and “+” vertices, or
implicitly by their absence. The dependency graph is
enlarged by recursively navigating parent-child
relationships in the schema graph. After a vertex v of the
schema graph is inserted in the dependency graph, it
should be decided which of its children will be included in
the dependency graph. The algorithm for the “direction
down” is presented as follows.

For each vertex w that is a child of v in the schema graph:

 If w corresponds to an element or attribute in the
schema, it is added to the dependency graph as a child
of v.

 If w is a “?” operator, its child is added to the
dependency graph as a child of v.

 If w is a “*” or “+” operator, the cardinality of the
relationship from u, child of w, to v is checked by
querying the XML documents using the XQuery
language [12]. Designer chooses the identifiers for v
and u. If the relationship is to-many, the designer
decides whether the many-to-many relationship
between v and u is interesting enough to be inserted
into the dependency graph or not.

In the direction from the fact to its ascendants (“direction
up”) the schema yields no information about the
relationship cardinality. The dependency graph is
enlarged in this direction by recursively navigating child-
parent relationships in the schema graph. After a vertex v
of the schema graph is inserted in the dependency graph,
the algorithm for examining whether a parent vertex z will
be added to the dependency graph is described in the
following.

For each vertex z that is a parent of v in the Schema
graph:

When examining relationships in this direction,
vertices corresponding to “?”, “*” and “+”
operators are skipped as they only express the
cardinality in the opposite direction. Since XML
Schema offers no possibility to define the occurrences
in this direction, it is necessary to examine the actual
data by querying the XML documents conforming to
the schema. Before the relationship in the direction
from the v to z is examined, the designer chooses the
identifiers of both vertices. If a -to-many relationship
is detected, z is not included in the dependency graph.
Otherwise, we still cannot be sure that the cardinality
of the relationship from v to z is -to-one. In this case,
only the designer can tell, leaning on her knowledge of
the business domain, whether the actual cardinality is
-to-one or -to-many. Only in the first case, z is added
to the dependency graph.

The third part of the algorithm is concerning the case that
a vertex referencing a key vertex is reached in the schema
graph. It is specified as follows.

Let k and r be vertices of the schema graph SG, each of
them corresponding to an attribute or a simple type
element in the schema S, where k is specified as a key, and
r as a keyref referencing k. Let z be a vertex of the
dependency graph DG that corresponds to the vertex r in

the SG. When building the dependency graph DG,
whenever the vertex r is reached in the SG:

 the navigation algorithm “jumps” to the vertex k,

 the vertex k is swapped with its parent vertex p,

 the descendants of k in SG become the descendants
of the z in DG.

The usage of the key/keyref mechanism will be shown on
the sales example. The schema graph for sales has been
presented in Figure 2. The lineItem vertex has been
chosen as a fact. Following functional dependences
represented by –to-one relationships, vertices quantity,
price and productRef are added to the dependency graph,
as shown in Figure 4.

lineItem quantity

price

size
colorproductName

productRef

invoice

customer

shipDate

orderDate

invoiceNum

Figure 4. Dependency graph for sales

Since productRef is referencing productID, the algorithm
“jumps” to productID, which is swapped with product,
and product is then eliminated since it carries no value.
prodName, size, and color become children of productID
in the schema graph. Those vertices are then added to the
dependency graph. The operation of replacing the foreign
key vertex with the primary key vertex and its sub-graph
is similar to the natural join in the relational model, and it
prevents from losing the schema graph vertices that can
be interesting for a more precise and detailed description
of the chosen fact, and therefore for making useful
aggregations of data.

When navigating in the direction from the lineItem fact
vertex to its parent vertex invoice, the relationship
between those vertices should be examined. After the
examination, the invoice vertex and its children
(invoiceNum, orderDate, shipDate and customer) are
included in the dependency graph.

After deriving the dependency graph from the schema
graph, it may be rearranged (step 4.2); typically, some
uninteresting attributes are dropped. This phase of design
necessarily depends on the user requirements and cannot
be carried out automatically. After the designer has
selected dimensions and measures among the vertices of
the dependency graph (step 4.3), the dependency graph

can easily be translated into a fact scheme as a conceptual
multidimensional scheme (step 4.4).

 C.2 .Workload definition and data volume acquisition

This phase can be divided in two parts. First, the
preliminary workload (i.e. set of most frequent/interesting
queries) is refined, by reformulating it in deeper detail.
The workload is checked against the conceptual scheme,
and this way the conceptual scheme is validated. Second,
XQuery is used to query XML data sources in order to
determine the current data volume.

Both the query workload and the data volumes will have
an important role in logical and physical design; they
represent key considerations in tuning a data warehouse.

 C.3. Logical design

Logical design includes a set of steps that lead to the
definition of a logical scheme starting from the previously
defined conceptual scheme. We use relational logical
model, using star schemas and their derivations. The
reason for this choice is that relational databases are
scalable, standardized, widely known, and flexible for
advanced design problems. For each fact scheme defined,
and taking both the workload and the data volume into
account, SQL DDL (Data Definition Language)
statements will be generated in order to define a star (or
similar) schema, such as the one presented in Figure 1.

 C.4. ETL design

After dimensional tables and fact tables have been
created, they should be populated. Data is extracted from
XML documents by using XQuery. Necessary data
transformations and cleansing are provided. After the
initial data loading, additional data is loaded into data
warehouse periodically.

 C.5. Physical design

Physical design deals primarily with the optimal selection
of indices, which plays a crucial role in optimization of
data warehouse performance.

V. PROTOTYPE TOOL

In order to test and verify the proposed methodology, a
Java-based prototype tool (Figure 5) has been developed.
The prototype reads an XML Schema and conforming
XML documents. Schema graph is created automatically
from the source XML Schema and shown in the graphical
interface. The fact is chosen using the graphical interface
and the corresponding dependency graph created semi-
automatically. In some cases source XML documents are
examined using XQuery language to get information

about relationships. Designer can manually rearrange the
dependency graph according to its semantics. Finally the
star schema is produced in output.

Figure 5 – Prototype tool

VI. CONCLUSION

In this paper we have proposed a methodology for data
warehouse design, when sources of data are XML
Schemas and conforming XML documents. Special
attention is given to conceptual multidimensional design,
which is the biggest challenge because of semi-structure
nature of XML data. Once a conceptual scheme has been
obtained, the logical and physical schemes for the
warehouses are derived.

The algorithm has been implemented within a prototype
tool which thus acts as a valuable support for the proposed
methodology.

REFERENCES

[1] M. Golfarelli, D. Maio, and S. Rizzi, “Conceptual design of
data warehouses from E/R schemes”, Proc. HICSS-31, vol.
VII, Kona, Hawaii, pp. 334-343, 1998.

[2] M. Golfarelli, D. Maio, S. Rizzi, “The Dimensional Fact
Model: a Conceptual Model for Data Warehouses”,
International Journal of Cooperative Information Systems,
vol. 7, n. 2&3, pp. 215-247, 1998.

[3] M. Golfarelli, S. Rizzi, and B. Vrdoljak, “Data warehouse
design from XML sources”, Proc. Data Warehousing and
OLAP (DOLAP’01), Atlanta, USA, 2001.

[4] B. Vrdoljak, M. Banek, S. Rizzi, “Designing Web
Warehouses from XML Schemas”, Proc. Int’l Conf. on
Data Warehousing and Knowledge Discovery (DaWaK),
Prague, Czech Republic, 2003.

[5] M- Blaschka, C. Sapia, G. Hofling, and B. Dinter, “Finding
Your Way through Multidimensional Data Models”, Proc.
DWDOT, Wien, 1998.

[6] M. Golfarelli, S. Rizzi. Designing the data warehouse: key
steps and crucial issues. Journal of Computer Science and
Information Management, 2(3), 1999.

[7] J. Shanmugasundaram et al., “Relational Databases for
Querying XML Documents: Limitations and
Opportunities”, Proc. 25th VLDB, Edinburgh, 1999.

[8] M. Jensen, T. Møller, and T.B. Pedersen, “Specifying
OLAP Cubes On XML Data”, Journal of Intelligent
Information Systems, 2001.

[9] 8 T. Niemi, M. Niinimäki, J. Nummenmaa, and P.
Thanisch, “Constructing an OLAP cube from distributed
XML data”, Proc. DOLAP’02, McLean, 2002.

[10] J. Pokorny, “Modeling stars using XML”, Proc.
DOLAP’01, 2001.

[11] World Wide Web Consortium (W3C), “XML Schema”,
http://www.w3.org/XML/Schema

[12] World Wide Web Consortium (W3C), “XQuery 1.0: An
XML Query Language (Working Draft)”,
http://www.w3.org/TR/xquery/

