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Ž. Mihajlović, L. Budin, J. Radej

University of Zagreb, Faculty of Electrical Engineering and Computing,
Department of Electronics, Microelectronics, Computer and Intelligent Systems,

Unska 3, 10000 Zagreb, Croatia�
zeljka.mihajlovic, leo.budin, josko.radej � @fer.hr

phone: (+385) 1 612 99 44; fax: (+385) 1 612 96 53

Abstract— This paper deals with surface reconstruction
and the gradient reconstruction in the volume rendering. In
the volume rendering procedure, reconstruction according
to the discrete set of samples is required. Due to the recon-
struction procedure alias artifacts, in the final image, could
not be neglected. In this paper we focus our attention on the
gradient reconstruction based on the surface reconstruction.
For the surface reconstruction we use the cubic B-splines and
for the gradient reconstruction corresponding derivative.

If the noise is present in the input data the approxi-
mation B-spline is used, and the interpolation B-spline is
used for the input signal without the noise. The shading
procedure requires normal estimation. Two approaches
are used for normal estimation. The classic approach for
normal estimation is central difference calculation, and we
propose derivative calculation of the reconstruction B-spline
function. We show that calculation of the normal vector has
important influence on the alias artifacts in the result.

I. INTRODUCTION

In the volume visualization, input data are sampled on
the regular rectilinear grid. Computer tomography (CT),
magnetic resonance (MR), ultrasound slices, and numer-
ically generated data are examples of data acquisition
for volume visualization. Volume visualization enables
visual insight in the object. This noninvasive technique
is important for medical purposes, fluid visualization,
engine visualization and numerous other applications. It
is very important to reduce the errors introduced by the
visualization procedure and to render the reconstructed
object as accurately as possible. The alias artifacts in the
result can cause incorrect interpretation of the object.

The volume rendering [4] is one of the visualization
techniques. In the volume rendering rays are cast from
the viewer through the projection plane in the volume
element space. Along the rays, at arbitrary positions in
the volume element space, reconstruction is required.
The reconstruction is done using the samples that are
positioned at the regular rectilinear grid. According to
reconstructed value, intersection of the ray with the object
surface is defined. At that intersection, illumination is
calculated. For the illumination calculation, normal vector
on the surface is required. Since the surface of the object
is implicitly defined, definition of normal vector is not
straightforward.

For the reconstruction purpose it is best to find the
continuous function �������
	����� according to the given set
of samples. When continuous function is defined, one can
easily find the value at the arbitrary position in the three-
dimensional space, at the resampling points as well as

derivatives at this points. But, the intersection point of
the ray with the surface is still implicitly defined.

The normal vector of the tangent plane on the B-spline
surface ��������������� ������������	����������������������! #" in the
parametric form coincides with the normal to the surface
at ����������� for some parameter combination ��������� .

The normalized normal is:

$ � �&%(')�&*+ �&%(')�&* + � (1)

where ' is cross product and ��% , �&* are partial derivatives
[2]. The tangent vector is defined by ,-�.��/ , and the
main normal 0 as ,1/2�4350 . The surface of the object
in the volume element space is implicitly defined by the
threshold value �76 . The frontier of �������98:�76 defines
surface, where the � is any point in the volume element
space. At these circumstances we approximate the normal
vector on the surface with the gradient at that point.

The reconstruction problem appears in various algo-
rithms in computer graphics e. g. texture mapping image
rotation, ray tracing, scan conversion. The derivative cal-
culation is useful for edge detection in image processing.
The basic ideas and experience in volume reconstruction
are also applicable on similar problems in other fields and
vice versa.

Much work has been done toward design of the re-
construction filters and error characterization [5], [6], and
[9]. Simple approaches are nearest neighbor and trilinear
interpolation, but continuity of the reconstructed function
is only ; 6 and ;=< respectively. Better approaches for
reconstruction are cubic spline, e. g. BC-splines intro-
duced by Mitchell and Netravali [8], Catmull-Rom spline,
approximation and interpolation B-splines introduced by
Unser, Aldroubi and Eden [11], [12].

Bentum [1] analyses responses of the gradient filters in
frequency domain, but he did not consider interpolation
or approximation B-splines.

The high quality volume rendering of the isosurface
requires continuous and continuously differentiable model
of volumetric discrete and regular data. P. Thvenaz and
M. Unser [10] show that quadratic B-spline is the shortest
support function that maximizes order of approximation
that satisfies the continuity requirements. They also pro-
pose several preprocessing steps that significantly acceler-
ate the rendering. Our approach is based on the cubic B-
spline [3], [7] and we show the artifacts that appear due to
the approximations in normal estimation. Reconstruction
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of the normal vector is based on the filter that includes
higher frequencies, so alias artifacts are very significant.

II. B-SPLINES

In computer graphics B-splines are the most important
for curve and surface interpolation and approximation [2].
Non-uniform rational B-splines (NURBS) enable conic
section representation and more control, but for many pur-
poses simple uniform non-rational B-splines are sufficient.
Uniformly spaced samples in the volume element space
are suitable for periodic uniform B-spline interpolation
and approximation.

The original definition of the B-splines is appropriate
for non-uniform representation, but for the uniform case,
representation of the B-splines as convolution form in
signal processing is more intuitive and useful [11].

A. Approximation B-splines

For a given set of ��� ��� � control points ��� , the
approximation B-spline curve � ��	
� is:

� ��	
� � 
�
� � 6 �������������	
��� (2)

where ����������	
� are the basis or blending functions of
degree � . For the sequence of the points ��� , this formula
defines the continuous curve, where � ��	
� is a point on
the curve, for a given parameter 	 . For uniformly spaces
knots, the basis functions that multiply each control
point become the same, but shifted to the position of
corresponding point. At this circumstances convolution
form is more appropriate. Without lost of generality, we
focus our attention on the cubic case. We can represent
the equation (2) in signal processing terms as circular
convolution:

��� ����� � 	���� � 
�
��� 6 	�������� � ���� !���#" (3)

In signal processing, input is usually one dimensional
	 ����� , but it could be extend to higher dimensions. � � �����
is the filter kernel or the cubic B-spline basis function.
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Fig. 1. B-splines basis functions of degree $ to % .

Fig. 2. Bicubic B-spline reconstruction kernel.

For the cubic case, the filter kernel is [11]:

� � ����� �&� 6 �'" " "(�)� 6 �����* +�, -. 	0/�1324 (4)

where � 6 ����� is a central normalized rectangular pulse.
The B-spline basis functions � 6 ����� , ��<������ , �65 ����� , and� � ����� are shown in Fig. 1. The support width of the cubic
B-spline basis function is �  87��971 and cubic B-spline is:

� � ����� � �:
;< = . � �  ��� � � � �

��7> ��� �?
?A@CB � B 8 �� @CB � B 8&7D 	FE92HGJIK/L4H2 " (5)

For the two-dimensional mesh of uniformly spaced1 'M� control points. Two-dimensional circular convo-
lution with the bicubic B-spline filter kernel is:

��� �����5	�� � 
�
��� 6

N� O
� 6 	 �����QP �0� � ���R !����	� �P ��� (6)

We show in Fig. 2. bicubic B-spline filter kernel. For the
volume rendering this filter kernel is expanded to one
dimension more.

B. Interpolation B-splines

The approximation B-spline is appropriate for the re-
construction if noise is present in the input data, be-
cause lowpass filtering is included in this spline. The
interpolation B-spline produces function that interpolates
the input data, but it requires highpass filtering. This
filtering is preprocessing step and it could be implemented
very efficiently [12]. Frequency response of the highpass
prefilter for the cubic B-spline interpolation is:

S �UT2� � 77 �WVYX[Z �UT2� " (7)

Fig. 3. shows twodimensional frequency response of
the cubic B-spline highpass prefilter.
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Fig. 3. Two-dimensional frequency response of the highpass prefilter
for the cubic B-spline interpolation.

III. NORMAL ESTIMATION

The central difference operator is often used as approx-
imation of the gradient in the volume rendering. For the
unit spacing, the central difference operator is:

� ����� �!� � � ��� � � 	�� �J������	� �
� � � � < 	�� �J���  ��� � �� < 	�� �J������� 7� ��� � � 	�� � < �J���  ��� � � 	��� < �J������� 7� ��� � � 	�� �J� � < �  �
� � � 	�� �J�� < ����� 7�� (8)
The derivative ��� � ����� of the cubic B-spline can be

calculated from (5). Derivatives of the B-splines are
shown in Fig. 4.
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Fig. 4. Derivatives of the B-splines (degree 1 to 3).

The partial derivative of the three-dimensional filter
kernel in direction of parameter 	 is:

� � � ��	 ������I��� 	 � � � � ��	
��� � � ��� ���Y� � ��I�� " (9)

Two dimensional partial derivative filter kernel is
shown in Fig. 5.

To present effect of the gradient reconstruction on the
appearance of the surface, two approaches are applied.

Fig. 5. Partial derivative of the bicubic B-spline.

The first one is based on improved central difference
operator and the second is exact calculation of the deriva-
tive based on the reconstruction kernel. To improve the
central difference operator we use combination of three
one dimensional derivatives ��� � ����� along each axis. For
the exact calculation of the derivative we use partial
derivatives, as in equation (9), of the three-dimensional
filter kernel for parameters 	 , � and I .

IV. RESULTS

The three-dimensional test function is proposed by
Marschner and Lobb [6]. The size of the volume is: . � . This test function is very sensitive on reconstruc-
tion of the object surface as well as on reconstruction
of the derivative. The first row of the Fig. 6. shows
reconstruction of the surface by the cubic approximation
B-spline. The waves are shallow, so this reconstruction
is appropriate when smoothing is preferred. The second
row shows the reconstruction with interpolation B-spline.
This reconstruction is appropriate for interpolation of the
volumetric data.

To show the influence of the gradient reconstruction
two approaches are presented. Improved central difference
operator is applied on the left images in Figure 6. for the
normal reconstruction and derivative of the cubic B-spline
is applied for the derivative reconstruction on the right
images. The artifacts due to the gradient reconstruction
are obvious.

V. CONCLUSION

Estimation of the normal vector in the volume render-
ing is very important for the surface perception. Simple
approaches such as central difference calculation can
introduce alias artifacts in the appearance of the surface
smoothness and that could cause incorrect interpretation.
We propose for the normal estimation calculation of the
derivative for the reconstruction cubic B-spline, because
it provides smooth normal on the reconstructed surface.
Reconstruction with the approximation B-spline is suit-
able when noise is present in the input data and the
interpolation B-spline otherwise.
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Fig. 6. Comparison between gradient estimation with the improved central difference operator and derivative of the B-spline function. First row
shows reconstruction with cubic approximation B-spline (waves are shallow), and the second raw shows reconstruction with interpolation B-splines
(deep waves). Improved central difference is applied for normal estimation (left) and derivative of the cubic B-spline reconstruction kernel (right)
are used to show the effect of the derivative reconstruction.
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