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ABSTRACT

In this paper, we present the realization of an adaptive
shift invariant wavelet transform defined on the quin-
cunx grid. The wavelet transform relies on the lifting
scheme which enables us to easily introduce the adapta-
tion by splitting the predict stage into two parts. The
first part of the predict stage is fixed and guarantees the
number of vanishing moments of the wavelet filter bank
while the second part can adapt to the local properties
of the analyzed image. In this paper, we explore the
robustness of the generalized least squares adaptation
algorithm to the noise present in the analyzed image.
The denoising results obtained with the nonseparable
adaptive wavelet transform have been compared with
results obtained with both separable and nonseparable
fixed wavelet transforms. Also, the empirical Wiener fil-
tering in the wavelet domain has been used in order to
further improve the denoising results.

1 INTRODUCTION

In the field of image denoising, wavelets have been
established as a very useful and effective tool. By using
the wavelet transform, smooth regions of the image can
be approximated very well with coarse approximation
wavelet coefficients while most of the detail wavelet
coefficients are zero or close to zero. On the other hand,
edges (which contain most important information) as
sharp transitions in the image are represented with
high-valued detail coefficients. These properties of the
wavelet transform guarantee the effectiveness of the
image denoising procedure called wavelet shrinkage
[1, 2].

When using the wavelet shrinkage to remove noise
from the analyzed image, wavelet coefficients of the
noisy image smaller than a given threshold are set to
zero and the coefficients above the threshold are either
left unchanged (hard thresholding) or reduced by the
value of the threshold (soft thresholding). The higher
the threshold, the more wavelet detail coefficients are
being set to zero and the reconstructed image looks
smoother. The good threshold is one that removes

most of the noisy detail coefficients while still not
oversmoothing the analyzed image, i.e. retaining the
detail coefficients corresponding to the edges in the
image.

The basic motivation of our research was to im-
prove the wavelet transform by making it locally
adaptive to the properties of the analyzed image. Such
an improved wavelet transform would approximate
better important features of the image and the detail
wavelet coefficients would remain dominated with the
noise. Wavelet shrinkage based on such an improved
wavelet transform is expected to give better denoising
results.

We have used the lifting scheme [3] in order to
create an adaptive wavelet filter bank. Since the lifting
scheme automatically guarantees perfect reconstruction
of the resulting filter bank, it is very straightforward to
introduce the adaptivity by simply making some of its
basic building blocks adaptive.

A number of adaptive wavelet transforms based
on the lifting scheme have been proposed in the
literature. In [4], the lifting scheme with the adaptive
prediction step has been used to create an adaptive
filter bank structure. Unfortunately, important proper-
ties of the wavelet transform have been lost because of
the fully adaptive prediction step.
Claypoole et al [5] have proposed locally adaptive
wavelet transform for image coding based on the
lifting scheme where the order of the prediction filter
is being changed in order to avoid prediction across
the discontinuities. In the smooth parts of the image
higher order prediction filters are being used (resulting
in wavelets with more zero moments), while near the
edges lower order prediction filters are being used.
In [6] the update step in the lifting scheme has been
made adaptive based on the local gradient information.
The adaptation algorithm can be perfectly reproduced
on the reconstruction side so that no additional book-
keeping is required.
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Figure 1: The two-channel analysis and synthesis filter banks based on the lifting scheme. Two-dimensional down-
sampling and upsampling is defined with the dilation matrix D.

As a starting point, we have used quincunx in-
terpolating filter bank designed by Kovacevic and
Sweldens [7] based on the lifting scheme. It results
in the biorthogonal wavelet transform defined on the
quincunx grid.
The quincunx sampling was chosen in order to obtain
different orientational properties of the underlying
wavelet decomposition. Such a nonseparable wavelet
decomposition, contrary to the wavelets defined on the
separable grid, is less biased in horizontal and vertical
directions. Also, since the filter bank based on quincunx
sampling consists of only two channels (compared to
the four channels of the separable filter bank), it is
much simpler and straightforward to introduce the
adaptation.

2 ADAPTIVE LIFTING SCHEME

2.1 The Lifting Scheme

The lifting scheme shown in Figure 1 is built using three
basic building blocks: split, predict and update. The
first step is a polyphase decomposition, i.e. an image is
being split into a number of phases (subimages).
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Figure 2: The two sampling schemes: separable (left)
and quincunx (right). Each sampling lattice type is de-
fined with its unit cell (area marked gray). Samples
belonging to the unit cell are bolded. Each sampling
scheme splits an image into as many phases (cosets) as
there are samples in its unit cell.

If the separable sampling is applied we get four phases
(Figure 2). If the quincunx sampling is applied, the
image is being split into two phases (Figure 2 right).
For the case of only two phases, the predict filter P

predicts values of pixels in the second phase based on
the pixels from the first phase (Figure 3). The detail
coefficients are simply calculated as a prediction error.
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Figure 3: White circle marked bold belongs to the sec-
ond quincunx coset. Its value is being predicted based
on a number of nearest samples from the first coset. If
the prediction filter P2 of order two is being used, the
prediction is based on the four samples marked with 1.
If the prediction filter P4 of order four is being used, the
prediction is based on the twelve samples marked with
1 and 2.

The update filter U updates the value of the average
wavelet coefficients based on the values of the previously
obtained detail coefficients.
The synthesis filter bank is built by simply inverting
the order and signs of the predict and update steps and
joining the two phases together into the reconstructed
image.
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Figure 4: Gray circles mark supports of the quincunx-upsampled copies of the P2 filter. From left to right: the P2

filter has been upsampled on the quincunx grid once, twice, three times, and four times. These copies of the P2

filter correspond to the predictors in the undecimated filter bank at decomposition levels one, two, three and four
respectively. It can be seen that the prediction of the white sample marked bold is based on the four gray samples
that are spread more for higher decomposition levels.

2.2 Quincunx Interpolating Filter Bank

In [7], Kovacevic and Sweldens propose the so-called
Neville interpolating filters for various sampling grids as
building blocks for the lifting scheme. For the quincunx
case, they give the simplest prediction filter:

P2(z1, z2) =
1

4
(1 + z−1

1 + z−1
2 + z−1

1 z−1
2 ). (1)

It is the second order prediction filter which can per-
fectly predict values of polynomials of degree smaller
than two. The fourth order prediction filter has wider
support:
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10

32
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−
1

32
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2 + z−1

1 z−2
2
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−1
2 + z−1

1 z2).

(2)

Supports of the P2 and P4 filters in the domain of the
undecimated image are shown in Figure 3. Finally, the
update filter is obtained as half the adjoint of the cor-
responding predict filter.

U2(z1, z2) =
1

2
P ∗

2 (z1, z2) =
1

8
(1 + z1 + z2 + z1z2). (3)

Using P2 and U2 filters results in a biorthogonal wavelet
filter bank with two vanishing moments of a primal
wavelet, and two vanishing moments of a dual wavelet.
Using the P4 prediction filter instead, results in increas-
ing the number of vanishing moments of a dual wavelet
to four.

2.2.1 Undecimated Filter Bank

It has been shown that significantly improved image de-
noising results are obtained when using the undecimated
wavelet transform [8]. For the purpose of image denois-
ing we have used undecimated version of the quincunx

wavelet filter bank. In such a structure decimation oper-
ators are removed, and in every level of the iterated filter
bank structure the appropriately quincunx-upsampled
P and U filters are used. For example, in the N -th
decomposition level, N -times quincunx-upsampled ver-
sions of P and U filters are used. Knowing that the
dilation matrix which defines quincunx upsampling is

D =

[

1 1
−1 1

]

and writing z =

[

z1

z2

]

, the N -times

quincunx-upsampled filter P equals P (zD
N

). For ex-
ample, in the first level of the undecimated filter bank
structure, the second order prediction filter becomes:

P2(z
D) =P2(z1z

−1
2 , z1z2)

=
1

4
(1 + z−1

1 z2 + z−1
1 z−1

2 + z−2
1 ).

(4)

Examples of the support of the upsampled P2 filter are
shown in Figure 4.

2.3 Adaptive Prediction Step

As previously reported in [9], we propose to split the
prediction branch into two parts in order to introduce
the adaptivity (see Figure 5). The first prediction
branch contains the second order prediction filter P2

which is fixed. The second branch contains the filter
P42 = P4 − P2, whose output is multiplied with the p

parameter which can be changed according to the local
image properties.

Although the overall prediction structure is adap-
tive, the polynomial reconstruction property of the
wavelet transform (number of vanishing moments)
is ensured by the fixed prediction branch. Since the
P2 filter is used in the fixed prediction branch, the
two vanishing moments of a dual (analysis) wavelet
are guaranteed no matter what values the adap-
tive parameter p may take. It further means that
the primal (synthesis) scaling function is able to per-
fectly reproduce polynomials of a degree lower than two.
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Figure 5: The first two decomposition levels of the adaptive filter bank. The filter in the adaptive prediction branch
P42 = P4 − P2. In each decomposition level i, for each pixel (j, k), the pi(j, k) parameter has been calculated as the
LS solution that minimizes weighted squared norm ‖di(j, k)‖2

w = ‖yi(j, k) − ŷi(j, k)‖2
w based on a 3x3 pixels wide

neighborhood of (j, k).

The reason for having the two dual vanishing mo-
ments guaranteed although the overall prediction
structure is adaptive lies in the fact that the P42 filter
always has the zero output for the inputs that are
polynomials of order lower than two. So, no matter
what values the adaptive parameter p may take, the
adaptive structure pP42 will not have any effect for
polynomials of order lower than two.

2.3.1 Generalized Least Squares Adaptation

When using the lifting scheme, the wavelet detail
coefficients are obtained as an error of predicting
samples from the second phase based on a number of
samples from the first image phase. We have chosen to
adapt the p parameter in order to minimize the squared
prediction error which actually leads to minimizing
the energy of the detail coefficients. The least squares
(LS) solution for the pi(j, k) parameter in the i-th
decomposition level has been calculated based on a
window 3x3 pixels big that symmetrically surrounds
the point (j, k).

Contrary to the plain windowed LS algorithm used in
[9], we have used generalized LS windowed adaptation
algorithm for the purpose of image denoising. Necessity
of using the generalized LS approach comes from the
fact that the additive zero-mean white Gaussian noise
present in the image has been colored when passing
through the filter bank structure and the signal yi

(Figure 5) contains its high-pass filtered version. The
generalized LS solution for (j, k)-th pixel in the i-th
decomposition level is obtained as

pijk = (AT
ijkR

−1
i Aijk)−1AT

ijkR
−1
i yijk. (5)

where Ri is the the covariance matrix of the colored
noise present in the high-pass signal yi. For simplicity,
we have used Ri that has been calculated for the case
of the fixed filter bank structure with only P2 and U2

filters. The vector yijk = yi(j, k) contains 9 entries
corresponding to 9 samples of the yi signal from the
3x3 window that surrounds the point (j, k). Since the
unknown pi(j, k) is just a scalar, the matrix Aijk =
Ai(j, k) contains only one column with 9 corresponding
values of the output of the P42 filter.

3 IMAGE DENOISING

By using this adaptive approach, the important fea-
tures of the image are expected to be mostly stored in
the locally adapted wavelet functions, defined by the
values of p parameters, while the detail coefficients are
expected to remain dominated with the noise.

We will demonstrate such a behavior by a simple
example in order to give motivation for more realistic
applications of this approach. Gaussian noise has been
added to the two-dimensional sine wave shown in Figure
6(a). The resulting noisy image is shown in Figure
6(b). First, we have used simple wavelet shrinkage
based on the fixed quincunx wavelets (will be explained
in more detail in section 4). Using soft thresholding,
we obtained the result shown in Figure 6(c). After
that, we have calculated the p parameters of the clean
image based on the LS criterion. It is important to
note that in this case the adaptation was perfect - all
detail coefficients have been set to zero. We have used
these p parameters for the decomposition of the noisy
image. It is obvious that the obtained nonzero detail
wavelet coefficients correspond to the noise present
in the image. Setting all the detail coefficients in all
decomposition levels to zero and reconstructing the
image we get the result shown in 6(d) that is almost
the same as the original image.
Of course, in real applications, the clean image is
unknown so we do not have these ”oracle” p parameters
but having the adaptation algorithm that is robust
enough to the presence of the noise should give results
closed to these.
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(c) Quincunx wavelet shrinkage
of Xn
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(d) Oracle quincunx wavelet
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Figure 6: Denoising results of a two-dimensional sine wave image (a). Gaussian noise with zero mean and standard
deviation σ = 20 has been added to the two-dimensional sine wave with amplitude 100 (b). Quincunx wavelet shrinkage
(c) has been performed using soft thresholding with the normalized threshold N = 0.75 (optimal value of N regarding
PSNR).

3.1 Empirical Wiener Filtering in the Wavelet

Domain

Finally, we have experimented by combining our adap-
tive wavelets approach with the empirical wavelet do-
main Wiener filtering. The basic idea is to perform
wavelet shrinkage based on the adaptive wavelet trans-
form and then reuse that result as a pilot estimate for
the Wiener-like thresholding in the separable wavelet
domain. This two-stage empirical Wiener filtering sce-
nario as proposed in [10] is shown in Figure 7. It can
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Figure 7: Empirical Wiener filtering in the wavelet do-
main.

be seen that two transforms are used. In the domain of
the primary transform (DWT1) the wavelet shrinkage is
performed in order to obtain a pilot estimate of the clean
image. Then, the secondary wavelet transform (DWT2)
is used to spread the primary wavelet-domain thresh-
olded coefficients and to reevaluate them by weighting
the noisy wavelet coefficients. This weighting is obtained
with the empirical Wiener filter ĤW as:

θ̂2(i, j) =
θ̂2
21(i, j)

θ̂2
21(i, j) + σ̂2

w2(i, j) = ĤW (i, j)w2(i, j),

(6)

where w denotes the wavelet coefficients of the noisy
image y and σ̂ is the estimated noise deviation [11]. We
have used separable wavelets for the secondary wavelet
transform in order to increase the mismatch between the
two transforms and to obtain a more reliable estimate
of the clean image.

4 RESULTS AND CONCLUSIONS

For the purpose of wavelet shrinkage we have used
eight-level adaptive wavelet decomposition based on the
structure as shown in figure 5. In Figures 8 and 9 this
method is denoted as Qa. Since the employed filter bank
is biorthogonal, different threshold weights have been
applied for each decomposition level. The threshold
value is obtained as a weighted multiple of the noise de-
viation: TQa = NσW . The weights have been obtained
empirically and for levels from 1 to 8 (finest to coarsest)
they are: W = {2.5 1.5 0.9 0.8 0.7 0.6 0.5 0.4}. We
have experimented with both soft and hard threshold-
ing.

Also, wavelet shrinkage has been performed using
the calculated p parameters of the clean image based
on the LS criterion in order to show how good the Qa
method could perform. It will be denoted with Qo, as
wavelet shrinkage based on oracle adapted quincunx
wavelets.

These results will be compared with the ones ob-
tained by using fixed separable (S) and quincunx (Q)
wavelets. First, we have used separable Daubechies
wavelets of order two (db2 ). To obtain comparable
results with quincunx wavelets, we have used four-level
wavelet decomposition and the threshold TS = Nσ has
been tested for various values of N . Next, we have
tested the performance of the fixed quincunx wavelets
based on the P2 and U2 lifting steps.
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Figure 8: Denoising results in terms of peak signal to noise ratio (PSNR) for the Bike image with additive Gaussian
noise with (a) σ = 5 and (b) σ = 20. Both hard thresholding (graphs in first rows) and soft thresholding (graphs in
second rows) results are shown. PSNR values against normalized threshold N are shown in the first column for wavelet
shrinkage based on different wavelet decompositions: S - separable wavelets, Q - quincunx wavelets, Qa - adaptive
quincunx wavelets, Qo - oracle adapted quincunx wavelets. Second column gives denoising results of empirical wavelet
domain Wiener filtering. The previous results obtained with S, Q, Qa and Qo are used as pilot estimates for the
Wiener-like thresholding in the domain of the second separable wavelet transform. So, based on S, Q, Qa and Qo
pilot estimates, the SS, QS, QaS and QoS respectively are obtained. Horizontal solid line represents the PSNR of the
noisy image Xn.



In order to show how much can all these methods
be further improved, we have applied empirical wavelet-
domain Wiener filtering. The previously obtained
denoised images have been used as pilot estimates
and then the Wiener-like thresholding in the domain
of the second separable wavelet transform has been
performed. For the second wavelet transform, we have
used symlet wavelets of order six (sym6 ). The Wiener
filtering-based methods based on S, Q, Qa and Qo pilot
estimates are denoted in the following figures as SS,
QS, QaS and QoS respectively.

When comparing results from Figure 8 it can be
seen that as the noise variance increases, the improve-
ment of wavelet shrinkage based on oracle adapted
quincunx wavelets over the wavelet shrinkage based
on fixed wavelets increases. In Figure 8(b) it can be
seen that as the threshold value increases, the image
denoising performance of nonadaptive wavelet decom-
positions decreases faster than the performance of
wavelet shrinkage methods based on adaptive wavelets.
It proves that the adaptivity incorporated in the
filter bank transferred a part of the important image
information in the adapted wavelet functions defined
by the values of the p parameters and the higher values
of the threshold affects more the noise than the original
image features.

Still, the gain when using adaptive wavelets is not
as big as it might have been expected. Usually, the
gain in terms of peak signal to noise ratio (PSNR) is
not higher than 1.5 dB. As shown in the right columns
of Figures 8(a) and 8(b), more significant improvement
can be obtained by reusing the adaptive denoising
results in the framework of empirical Wiener filtering.

Also, the quincunx adaptive wavelets (Qa) do not
follow the improvement of oracle adaptive wavelets
(Qo). In fact, it is quite opposite: the improvement
of the Qa method over the wavelet shrinkage method
based on fixed wavelets gets smaller as noise variance
increases. It shows that the generalized LS approach is
not able to cope adequately with the noise present in
the image. The problem lies in the fact that generalized
LS solution assumes that the matrix Aijk of equation
5 is noiseless. In our case it is not the fact since the
colored noise is also present at the output of the P42

filter. We expect the solution of this problem to be in
the total least squares approach and errors-in-variables
modelling.

The reason that the oracle adaptive wavelet decompo-
sition does not show such a significant improvement
as it was expected is that the adaptation algorithm
performed on the clean real-world images does not
manage to give a wavelet decomposition that perfectly
models the real-world images. In other words, it

doesn’t manage to turn all the detail coefficients of
the original clean image to zero. Our ongoing research
is focused on solving this problem by changing the
adaptive multiplier p with the adaptive filter with 2x2
coefficients which would be able to reflect better the
directional properties of the original image.
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Figure 9: Denoising results in terms of PSNR for the Bike image with additive Gaussian noise with σ = 20. The pilot
estimates S, Q, Qa and Qo have been obtained by using soft thresholding with different thresholds.


