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Abstract—In this paper, we explore the use of nonseparable 

and adaptive wavelet decompositions for the purpose of image 
denoising. We apply the classical wavelet shrinkage methods on 
the wavelet coefficients obtained by using the adaptive wavelet 
transform defined on the quincunx grid. The wavelet transform 
is pixel-wise adaptive in all decomposition levels. While providing 
more compact representation of the analyzed image, the adaptive 
transform retains some useful properties of fixed transforms, 
such as numbers of vanishing moments of primal and dual 
wavelets. The adaptive wavelet decomposition is realized using 
the lifting scheme. For comparison purposes, the image denoising 
results are presented for both fixed and adaptive wavelet 
transforms. 

Keywords—adaptive wavelets, image denoising,  lifting scheme,  
quincunx, interpolating filters 

I. INTRODUCTION 
Wavelet shrinkage [1], [2] is a very simple, but efficient 

technique for image denoising. It relies on good localization 
and approximation properties of the wavelet transform. Image 
denoising via wavelet shrinkage is performed as follows: 
wavelet coefficients of the noisy image smaller than a given 
threshold are set to zero and the coefficients above the 
threshold are either left unchanged (hard thresholding) or 
reduced by the value of the threshold (soft thresholding). 
Afterwards, the noise-free image estimate is obtained through 
an inverse wavelet transform. The reason for effectiveness of 
such a procedure lies in the fact that in wavelet domain, a 
small number of high-valued detail coefficients represent 
areas around sharp transitions (edges) while the bulk of small 
and close to zero detail coefficients represents the smooth 
image regions. 

In this paper, we employ a locally adaptive wavelet 
transform prior to denoising via wavelet shrinkage. The 
transform adapts itself to the local properties of the image, 
minimizing the energy of the wavelet detail coefficients for 
every pixel of the analyzed image. If the adaptation algorithm 
is robust enough regarding the noise, the adaptive wavelet 
shrinkage preserves better the original features of the image. 

As a starting point, we have used quincunx interpolating 
filter banks designed by Kovacevic and Sweldens [4], based 
on the lifting scheme [5]. The usage of the lifting scheme 
enabled to transform the fixed wavelet filter bank into an 
adaptive wavelet filter bank structure. We have used quincunx 

filter banks in order to have truly nonseparable wavelet 
decomposition that is, contrary to the wavelets defined on the 
separable grid, less biased in horizontal and vertical directions. 
Also, since the filter bank based on quincunx sampling 
consists of only two channels (compared to the four channels 
of the separable filter bank), it is much simpler and 
straightforward to introduce the adaptation. 

II. ADAPTIVE QUINCUNX INTERPOLATING FILTER BANKS  
Properties of a given wavelet decomposition are highly 

affected with the underlying sampling scheme, i.e. with the 
way the image samples are divided into a number of cosets 
(phases). The separable sampling scheme (Fig. 1 left) leads to 
dividing an image into four phases. In a similar manner the 
critically sampled filter bank used to realize the corresponding 
FWT will have four channels leading to one set of 
approximation coefficients and three sets (subimages, 
subbands) of detail coefficients for each decomposition level. 
The three detail subbands correspond to horizontal, vertical 
and diagonal details in the original image. 

In the quincunx sampling scheme (Fig. 1 right) an image is 
being divided in only two distinct cosets. In the Fig. 1, the first 
coset is represented by gray circles and the second coset is 
represented by white circles. Such a sampling scheme is a 
basis for a two-channel critically sampled wavelet filter bank 
which results in one image of approximation coefficients and 
one image of detail coefficients for each decomposition level. 
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Fig. 1. Separable (left) and quincunx (right) sampling lattices. 
The unit cell for each lattice is outlined with a dashed line and 
the corresponding samples are bolded. Samples belonging to 
the first coset for the given sampling scheme are marked with 
gray circles. The number of cosets equals the number of 
samples belonging to the unit cell. 



The lifting scheme typically consists of three stages (see 
Fig. 2): split, predict and update.  
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Fig. 2. Analysis filter bank based on the lifting scheme. The 
operator D↓ represents two-dimensional downsampling. 

In the split stage, an image is being split into a number of 
cosets (phases), depending on the sampling scheme used. For 
the case of quincunx sampling, the split stage divides an 
image into two cosets (phases) as shown in Fig. 1. Then, for 
each pixel in the second phase, the predict stage predicts its 
value based on a number of pixels from the first phase (Fig. 
3). The resulting detail coefficients are calculated as a 
difference of a second image phase and the output of the 
prediction filter. In this way, wavelet detail coefficients are 
obtained as an error of predicting samples from the second 
image phase based on a number of their surrounding samples 
from the first image phase.  
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Fig. 3. A sample from the second quincunx phase (white 
circle marked bold) is being predicted based on a number of 
neighboring samples from the first phase (enumerated gray 
circles). Support of the prediction filter P2 covers only four 
samples marked with 1. Prediction filter P4 (fourth order 
prediction) uses samples marked with 1 together with samples 
marked with 2. 

Finally, in the update stage, the U filter is used to update 
the value of the average wavelet coefficients by using the 
already calculated detail coefficients.  

On the synthesis side, the reconstruction is easily 
performed by just inverting the order and signs of the predict 
and update steps. The first image phase is reconstructed by 

subtracting the output of the update filter from the average 
wavelet coefficients. Then, the reconstructed first image phase 
is filtered with the prediction filter whose output is added to 
the wavelet detail coefficients resulting in the second image 
phase. The reconstructed image is obtained by simply joining 
together the two phases. 

In our adaptive modification of the lifting scheme 
structure, the basic idea is to split the predict step into two 
parts [6]: the fixed prediction part and the adaptive prediction 
part as shown in Fig. 4, where P2 and P4 are the so-called 
Neville interpolating filters [4] of order 2 and 4 respectively: 
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 (1) 
The adaptation in the second branch is introduced through 

the multiplier p whose value is being changed throughout the 
image in order to locally adapt the properties of the filter bank. 
The fixed prediction branch ensures the polynomial 
reconstruction property of the wavelet transform (number of 
vanishing moments), while the adaptive branch enables the 
wavelet decomposition to be tuned to the properties of the 
analyzed image without affecting the number of vanishing 
moments of the synthesis wavelet functions. This important 
property comes from the fact that the adaptive prediction 
branch p(P4-P2) always has the zero output for the inputs that 
are polynomials of order lower than 2, no matter what values 
the adaptive parameter p may take. As shown in [6], the 
adaptive prediction part can be composed of more than one 
adaptive prediction branch and also a similar structure can be 
employed to obtain an adaptive update step. For the sake of 
simplicity, in this paper we only use the simplest adaptive 
filter bank structure shown in Fig. 4.  
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Fig. 4. Adaptive analysis quincunx filter bank. The predict 
step consists of two parts: fixed prediction branch and the 
adaptive prediction branch 

Since the decimated wavelet transform is not shift 
invariant, the denoising result will depend on the positions of 
the discontinuities in the image. Improved results can be 
obtained using the undecimated version of the given wavelet 
transform [3]. In this paper, we use the undecimated wavelet 
transforms only. In that case, the decimation operators are 
removed from the lifting scheme and the N-times quincunx-



upsampled versions of P and U filters are used, where N 
represents the decomposition level. This way, for higher (i.e. 
coarser) decomposition levels the corresponding filters’ 
support widens. 

In the adaptive prediction branch, we have used 
generalized 2D windowed least squares (LS) adaptation 
algorithm. It is used to improve the performance of the 
prediction step by minimizing the squared prediction error. 
Since the wavelet detail coefficients are treated as an error of 
predicting samples from the second image phase based on a 
number of samples from the first phase, the minimization of 
the squared prediction error leads to minimizing the energy of 
the detail coefficients. The least squares solution for the p 
parameter has been calculated for every pixel of the analyzed 
image based on a window 5x5 pixels big that symmetrically 
surrounds the adaptation point. 

Given the equation,  

 eyeAy +=+= ˆp ,  (2) 

the LS solution for p is the one that minimizes 
2
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ŷye −= , where y is a vector that contains values of 

the signal in the lower branch after the subtraction of the P2 
filter output (see Fig. 4). Since the adaptation is based on a 
moving window that is 5x5 pixels large, the vector y contains 
25 entries. The A matrix has 25 rows and 1 column (since the 
unknown p is just a scalar) and contains the values of the 
output of the P4-P2 block. 

It is well known that the solution to this problem is 

 yAAA T1T )( −=p  (3) 

If each component of e is a zero-mean, i.i.d. random 
variable with variance σ2, the estimator p is said to be a best 
linear unbiased estimator (BLUE) [7]. In the case that e 
represents the colored noise with the covariance matrix R = 
E[eeT] that is not diagonal, the BLUE solution is obtained as 

 yRAARA 1T11T )( −−−=p  (4) 

It the case of image denoising, the input image is obtained 
by adding the zero-mean Gaussian white noise to the original 
image. Since the noise in the signal y has been colored after 
passing through the high-pass filter 1−P2, the appropriate 
covariance matrix R has been constructed  in order to obtain 
the estimate p whose value is least affected by the noise in the 
input image. 

By moving the adaptation window, for each pixel of the 
analyzed image, one value of the p parameter has been 
calculated. Using the equation (4), the p parameters follow the 
features of the analyzed image and the remaining detail 
coefficients mostly correspond to the noise present in the 
image. By this approach, the important features of the image 
are expected to be mostly stored in the locally adapted wavelet 
functions, defined by the values of p parameters, while noise 
dominates in the detail coefficients. This way, in order to 
obtain the denoised image, much higher threshold can be used 
than in the case of using fixed filter banks. 

III. EXPERIMENTAL SETUP 
In the experiments, we have used eight-level adaptive 

undecimated wavelet decomposition. Detail wavelet 
coefficients from all decomposition levels have been either 
soft or hard thresholded. Since the employed filter bank is 
biorthogonal, different threshold weights have been applied 
for each decomposition level. For an analyzed image with 
additive Gaussian noise with standard deviation σ, the final 
threshold value is obtained as a weighted multiple of the noise 
deviation: TQ = NσW. The weights have been obtained 
empirically and for levels from 1 to 8 (finest to coarsest) they 
are: W = {2.5  1.5  0.9  0.8  0.7  0.6  0.5  0.4}. 

After thresholding of wavelet detail coefficients, the 
reconstructed image has been compared to the original (non-
noisy) image. The peak signal to noise ratio (PSNR) has been 
used as a measure of denoising effectiveness. 

For comparison purposes, the denoising results based on 
the fixed wavelets defined on the quincunx grid and fixed 
separable wavelets have been shown.  

In the case of fixed quincunx wavelets, we have used 
second order prediction filter P2. Combined with the update 
filter U2, we have got a biorthogonal wavelet filter bank with 2 
dual and 2 primal vanishing moments. For denoising, the 
eight-level wavelet decomposition has been performed 
together with the same thresholding as in the case of adaptive 
quincunx wavelets. 

In the separable case, Daubechies wavelets of order two 
(db2) have been used to decompose an image into four 
decomposition levels. The threshold is obtained as a multiple 
of the noise deviation: TS = Nσ and it is the same for all 
decomposition levels. 

IV. RESULTS AND CONCLUSION 
Fig. 5 shows the denoising results in terms of PSNR for 

various threshold levels. It shows that denoising performance 
improvement when using adaptive quincunx wavelets is 
relatively small (1dB at most) compared to fixed quincunx and 
separable wavelets. For the case of hard thresholding this 
improvement gets smaller as noise variance increases. The 
reason that the improvement is not greater lies in the fact that 
the (colored) noise is also present it the matrix A of equation 
(4), which is supposed to be noiseless. 

Still, in the right column of Fig. 5 (σ = 20), it can be seen 
that when the threshold value increases (more wavelet 
coefficients are being set to zero), the PSNR decreases faster 
for nonadaptive wavelet decompositions that for the case of 
adaptive wavelets. It means that in the adaptive wavelet case, 
the information on some features of the original image has 
been transferred to the p parameters and cannot be lost by 
thresholding the wavelet detail coefficients. 

It is obvious that the generalized least squares approach 
represented by equation (4) cannot give the optimal results 
since it does not take into account that the colored noise is 
present in both channels of the filter bank. The solution to this 
problem might lie in the so-called errors-in-variable modeling 
and it is the topic of an ongoing research. 



 
Fig. 5. Wavelet shrinkage results when denoising the Bike image with additive Gaussian noise with σ = 5 (first column) and 
σ =20 (second column) obtained with separable wavelets (S), quincunx wavelets (Q) and adaptive quincunx wavelets (Qa). For Q 
and Qs, the threshold is TQ = NσW. For the separable case (S), TS = Nσ. First row: hard thresholding. Second row: soft 
thresholding. 
 

 
Fig. 6. Part of the original Bike image 200x200 pixels big that 
has been used to test the denoising algorithms. 
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