
Service Development and Application Integration
with Public Information System Mediator

S. Srbljic*, I. Skuliber**, I. Benc**, M. Stefanec**, A. Milanovic*, B. Dellas**, S. Desic**, L. Budin*,
N. Bogunovic*, D. Huljenic***, and A. Caric***

* School of electrical engineering and computing, University of Zagreb, Zagreb, Croatia
** Ericsson Nikola Tesla d.d., Zagreb, Croatia

*** KATE, A StarCapital Company, R & D, Zagreb, Croatia
{sinisa.srbljic, andro.milanovic, leo.budin, nikola.bogunovic}@fer.hr

{ivan.skuliber, ivan.benc, mario.stefanec, bjorn.dellas, sasa.desic}@ericsson.com
{dhuljenic, acaric}@starcapital.net

Abstract — Software development industry is facing two
important issues: enabling rapid service development and
integration of existing applications. Current approaches
result in custom solutions that are not generally applicable.
Therefore, we propose a service development and application
integration system acting as a mediator between developers,
users, services, and applications.

In this paper, we present the prototype of the public
information system mediator MidArc1. We describe the
mediator's system architecture, the technology it is built
upon, and the process of integration of distributed
applications. The mediator prototype was created and used
to develop the formal automata simulator as a public service,
to integrate the automata simulator service into the distance
learning application, and to run the distance learning
system.

I. INTRODUCTION
The driving force of contemporary information and

telecommunication technology (ICT) industry are
applications. They can be either mainstream products and
services or software systems designed for specific
customer [1]. Software companies are eager to minimize
development expenses, making it necessary to materialize
new ideas into applications fast and to integrate proven
existing solutions and make them act as unified system.

The simplest approach to the integration problem is
development of custom integration solutions. Integration
of various data organizations and protocols [2] is easier by
developing custom wrappers and services, than by
creating reusable integration components that can be used
in general. However, although the initial cost is lower,
maintenance and upgrades of the custom solutions can be
very expensive [3].

On the other hand, creating the reusable integration
components requires identification of often-used
application parts or services, and their implementation in

1 The MidArc mediator is developed by the School of Electrical
Engineering and Computing, University of Zagreb, Croatia, and
Ericsson Nikola Tesla d.d., Zagreb, Croatia; MidArc project is
partially sponsored by the Ministry of science, education and
sport, Croatia, and is a part of CRO-Grid national project,
TP-01/036-29, http://ris.zemris.fer.hr

most general and open way. Thus, they can be used by any
vendor on any kind of platform and in any kind of
application [4]. User management facilities like
registration, authentication and authorization are obvious
parts of all applications. Other services like security, load
balancing or usage tracking are also needed in
contemporary applications. Reusability is the major
feature of the service-oriented architecture (SOA) [3].
Often used application parts are implemented in
components and offered as services to application
developers. Moreover, components can also be bridges,
used to integrate different applications and systems. While
using SOA, developers include components into
applications and program the ties between included
components.

In order to facilitate service development and
application integration, we develop the distributed,
modular and scalable system that offers different services
implemented as software plug-ins (SOA components).
Our MidArc system mediates between developers, users,
services, and applications by offering design-time support
for development and run-time support for execution of its
plug-ins and applications. Since mediation is its primary
characteristic, we have named our system the Mediator of
Public Information System [5].

The rest of the paper is organized as follows. Section 2
presents the related work. Section 3 describes the
architecture of the MidArc mediator seen from three
distinct aspects: system, technology and application. In
Section 4 we illustrate the development and integration of
distance learning application by using the MidArc
mediator.

II. RELATED WORK
Various software products are developed in order to

create a system of reusable components for application
development [6]. Since one type of system often builds
upon other type in order to achieve certain properties, the
layered products are often called middleware systems. The
classification of the middleware systems is presented in
Fig. 1.

The GRID technology [7] enables rapid development of
infrastructural middleware systems. They provide uniform
software layer residing on various hardware and operating
system platforms for harvesting hardware resources of

Igor Sebo
0-7803-8271-4/04/$20.00 ©2004 IEEE 713

Igor Sebo
IEEE MELECON 2004, May 12-15, 2004, Dubrovnik, Croatia

distributed system. Database middleware systems are the
most common type of middleware systems. They are
comprised of drivers, wrappers and transaction monitors
that facilitate access to and operations over different types
of database systems. Communication middleware systems
assure platform independent communication enabling one
application to be run on different platforms
simultaneously. Web Services [8] are the latest
communication standard that represents the essence of
communication middleware systems.

Resources Management Applications Management

The most sophisticated middleware systems are those
that deal with distributed application integration. Due to
their nature of integration, application middleware
systems incorporate most of other previously described
middleware system types. There are not many middleware
systems operating at this level, most of them exist only in
laboratory environment. However, application middleware
systems have started to mature in the recent years due to
high demands from the ICT industry.

The concept of application middleware system was
introduced in the AT&T's IP Platform GeoPlex project.
AT&T's GeoPlex project described the idea of hybrid
services spanning across different networks [9]. In
addition, it created the notion of transferring common
parts of applications' logic from the network periphery to
the network itself [4]. The network offers these common
parts for use by applications. User management functions
have been identified as common application parts, as well
as a number of system management functions, like
security, load balancing and data caching. Exposing these
functions through public APIs assures faster application
development. Integration aspect of application
middleware consists of the ability to translate between
different protocols and of a records database that can be
used as a statewide records database. AT&T targeted the
IP Platform toward ISPs as an intermediate between
ASPs, businesses and customers.

Active Networks [10] operate on IP network level,
deploying the features that are related to IP packets
routing and filtering, QoS signaling, Web caching, reliable
multicast mechanisms, etc. Applications utilize deployed
features to obtain required support in terms of network
and network management resources. For example, the
main actors of the FAIN model (Future Active IP
Networks, EU R&D IST project) [11] are the active
network service provider (ANSP), the service provider
(SP), and the consumer (C). The ANSP offers basic
network resources for the deployment and operation of the
network active components. The SP obtains network
resources from the ANSP and creates services comprising
active components. It then deploys these components in
the network, and offers the resulting service to Cs. The C
is the end user of the active services offered by an SP.
Besides FAIN, several active network implementations
have been released: ANTS [12], SANE [13], BOWMAN,
and CANES [14].

Microsoft's Hailstorm project, later named ".NET My
Services" [15], is a platform that is an equivalent of a
statewide records database with three basic user
management functions: registration, authentication and
authorization. These user management functions can be
included into application as already developed
components, thus facilitate application development
process. However, the emphasis of Microsoft's project is
user centric database and its interaction with users. The

database is optimized for specific user-related functions
like management of user's calendar, tracking user's
location, etc. Authorized applications can access these
functions through SOA like services. Interaction is bi-
directional, meaning that the database sends information
and requests additional information or authorizations from
users. Communication technology based on Web Services
and environment based on .Net Framework hide
implementation details and provide operating system
independence.

The application middleware systems are commonly
used as enterprise application/business integration
products [16, 17]. Utilizing SOA, redesigning integration
platforms as a collection of integration services and
components, and including common services for rapid
application development, presents new and more general
approach to application middleware systems with
emphasis on customization, extendibility and reusability.

III. MIDARC ARCHITECTURE
The MidArc mediator is an application level

middleware system that mediates between clients and
servers in a distributed, Internet-based public information
system. The public information system based on the
mediator is presented in Fig. 2. The role of the mediator,
service, and client in public information system is similar
to the role of the active network service provider (ANSP),
the service provider (S), and consumer (C) in FAIN model
[11], respectively. However, instead of dealing with
network and network management functions that provide
network independence and QoS in FAIN model, we focus
on high-level application functions that support concepts

Database Middleware

Platform independent database
access and management.

Transaction monitoring and
processing.

 Microsoft, Oracle products, etc.

Application Middleware

Rapid development and system
integration.

.NET My Services, MS Biz Talk,

Vitria Businessware, etc.

Infrastructural Middleware

Hardware and software resource
management.

GRID projects (Globus, Condor,

Legion, etc.)

Communication Middleware

Platform independent
communication.

WEB services, CORBA, etc.

Figure 1. Middleware systems classification

Client

C S

Server

Common
Services

Computing
Infrastructure C

SS

C

Wrapper

Core

MidArc mediator

Figure 2. The MidArc mediator in public information system

Igor Sebo
 714

closely related to the business processes, enterprise
models, entertainment models, etc. In order to achieve this
goal, the mediator supports service-oriented functions, like
service description, discovery, delivery, and composition
[18].

The MidArc mediator consists of Core and Wrapper.
Core is physically isolated and secured part of the
mediator, which provides infrastructure and execution
environment for Wrapper. It also contains common
services, which are used by clients and servers through
Wrapper. Wrapper establishes presence of the mediator on
clients and servers. Through its plug-ins, Wrapper
provides various services and facilities that can be used by
clients and servers.

A. System architecture
Since the MidArc mediator is an application level

middleware system, it has to provide a wide range of
services and facilities, which enable rapid distributed
application development as well as maintenance during
both design-time and run-time. In order to provide these
services and facilities, the MidArc mediator builds upon
and extends the other three classes of middleware systems.

Fig. 3 presents the layered architecture of the MidArc
mediator. The vertical segment in the left portion of the
Fig. 3 shows how four middleware system classes are
organized and stacked in order to build the MidArc
mediator. The vertical segment in the right portion of the
Fig. 3 states the functions that are implemented at each
level of the layered mediator architecture. The presented
layered approach improves the flexibility and portability
of the mediator. The bottom layer provides core
functionality, and each successive layer is built on top of
the lower layer, providing new services to the upper
layers. The application level services are located at the top
of the layered architecture.

Since the Core and the Wrapper constitute two distinct
parts of the MidArc mediator, the architecture is further
divided into two relating portions, as marked by the
dashed lines.

The Core of the mediator consists of the computing
infrastructure, distributed data infrastructure and common
services. Computing infrastructure constitutes the bottom

layer of the mediator system architecture. Its purpose is to
provide dependable and scalable execution and hosting
environment for the higher mediator layers. In order to
meet these requirements, computing infrastructure layer is
built using the infrastructural middleware. It contains
services and facilities necessary for transparent
deployment and execution of the mediator's components.
One of the major benefits of using the infrastructural
middleware is hardware and operating system
independence.

Distributed data infrastructure extends the
functionality provided by the computing infrastructure
with the goal of creating physically distributed, but
logically centralized data storage. It provides distributed
data and transaction management that are developed by
using the database middleware solutions. This layer stores
user and service profiles, usage tracking and security
related data.

Resource management provided by the computing
infrastructure and data management provided by the
distributed data infrastructure, make the foundation for the
common services. Common services consist of
functionalities necessary to develop distributed
application, i.e. security, user and service management,
auditing and usage tracking, etc. Since the developers of
applications and services do not have to develop their own
versions of these functionalities, they can speed-up service
and application development by using the MidArc
mediator.

The Wrapper of the mediator provides extended
services and facilities, like application integration,
interoperability and development. It is built upon mediator
Core and consists of Wrapper services, service specific
logic, and client specific logic.

The Wrapper services contain the logic for application
integration and interoperability. Since the Wrapper
services must meet various requirements including direct
resource management and runtime efficiency, layer
bridging is introduced into the mediator architecture.
Layer bridging provides direct access to all core layers, so
the Wrapper services can "bridge" one or more core
layers. The layer bridging is primarily used to extend or
improve the functionality of the common services. For

Computing infrastructure

Distributed data infrastructure

Common services

Wrapper services

Client specific logic Service specific logic

Deployment

Data and transaction
management

Common
functionalities

Integration,
interoperability

Development

Infrastructural
middleware

Database
middleware

Communication
middleware

Application
middleware

MidArc Core

MidArc Wrapper
Middleware stack Functions stack

Figure 3. Layered view of mediator system architecture

Igor Sebo
 715

MidArc Mediator

.NET Hosting Environment

example, new designed service can inherit common
security service and upgrade it according to the specific
application requirements. Since Wrapper services should
meet requirements set by a large number of different
distributed applications, there is a large number of
requirements, some of which can be contradictory.
Therefore, it is impossible to predict, develop and deploy
a fixed set of out-of-the-box Wrapper services. Instead of
providing a huge number of pre-built Wrapper services,
mediator Wrapper provides a mechanism to develop and
deploy custom Wrapper services as plug-in components.

The service specific logic and the client specific logic of
the Wrapper provide the functions needed for the client-
server communication. When building client-server
applications, developers use the development
environment, which consists of development tools and
communication functions necessary to access Wrapper
services. The mediator wrapper is distributed on the client
and server hosts in the form of the user and service agents.

B. Technology
The MidArc mediator is implemented using three sets

of technology classes: implementation, interconnection,
and access technologies. Fig. 4 presents the relations
between technologies, mediator, clients and servers. While
the implementation technologies are used to implement
and operate the mediator Core, the access technologies
and the interconnection technologies are used in the
mediator Wrapper.

The implementation technologies are used in mediator
Core in order to create the mediator’s computing
infrastructure. These technologies provide a hosting
environment for all services and facilities of the mediator.
Fig. 5 presents the technologies used in the
implementation of the MidArc mediator. Microsoft .NET
is used as the hosting environment of the mediator. All
services and facilities are implemented as .NET classes.
.NET hosting environment manages execution of .NET

classes and supports their interconnection,
synchronization and collaboration.

In addition, the implementation technologies are used to
build the mediator data management facilities. Data
management facilities consist of two types of databases
used to store mediator data: a relational database and a
directory. The relational database is based on SQL and
accessed through the ODBC protocol. The data in the
directory is accessed through the LDAP protocol.

The access technologies are used to expose mediator’s
common services and facilities to clients and servers.
Clients and servers access all services and facilities of the
MidArc mediator through remote procedure call (RPC)
mechanism based on the Web Services RPC standard.

Fig. 6 presents the Web Services protocol stack used in
the mediator. UDDI standard is located at the top of the
Web Services protocol stack. UDDI is a registry service
that stores the list of all methods exposed by the mediator
as well as their descriptions. Since mediator can be
expanded with new services and facilities, clients and
servers use UDDI to discover the related access methods
exposed by mediator.

All exposed methods are formally described using the
WSDL language. Clients and servers use WSDL to gain
the information on how to invoke the exposed methods.
The remote methods of the MidArc mediator can then be
invoked using the SOAP protocol. The SOAP protocol is
a text-based protocol, which uses clear text and the XML
to encode all parameters and other information of a remote
procedure call into a single message. The MidArc
mediator uses the SOAP over HTTP standard to transport
the messages over the Internet.

Since both SOAP and HTTP messages are in clear text,
a security mechanism is necessary to secure the
information transmitted by SOAP. In addition to clear-text
communication, the MidArc mediator offers the choice of
custom developed MWSECURE protocol or the standard
SSL protocol. These protocols provide message privacy,

Figure 5. MidArc implementation technologies

HTTP
…

Stack 1 Stack 2 Stack 3 Stack n

SOAP

TCP/IP

Figure 7. MidArc interconnection technologies

HTTP HTTP

MWSEC/
SSL IRC MWSEC/

SSL

SOAP

WSDL

UDDI

HTTP

XML MWSEC/SSL

TCP/IP

Figure 6. MidArc access technologies

Figure 4. MidArc technologies

C
lie

nt
s

Interconnection technologies SQL Directory

Wrapper

S
er

ve
rs

Core

A
cc

es
s

te
ch

no
lo

gi
es

A
cc

es
s

te
ch

no
lo

gi
es

ODBC LDAP Implementation
technologies

TCP/IP

Igor Sebo
 716

confidentiality, sender authentication, and nonrepudiation.
Finally, both clear-text messages and secure, encrypted
messages are sent over the network using the TCP/IP
protocol stack.

Interconnection technologies consist of various
protocols used to connect clients and servers. The MidArc
mediator provides the basic set of interconnection
protocols, but this set can be extended through the
Wrapper plug-in mechanism. The mediator includes a set
of pre-built plug-ins that implement commonly used
protocols. The supported protocols are HTTP, secure
HTTP using either MWSECURE or SSL, SOAP over
secure HTTP, and IRC. Individual protocols are bound
together in order to form a protocol stack. A protocol
stack is used to support complex and layered
communication procedures used by clients and servers.
For instance, when mediator connects Web server and a
Web browser, the protocol stack consists of two protocols,
TCP/IP and HTTP. Protocol stacks are the foundation of
the MidArc mediator interconnection technologies, as
presented in Fig. 7. New protocol stacks as well as
individual protocol plug-ins are built using the mediator
development facilities.

C. Distributed Application Architecture
Applications integrated by the MidArc mediator are

structured into three layers in order to be distributed to
multiple hosts: presentation layer, processing layer, and
database layer [19]. These layers present the information
to the users, implement the logic of the application, and
perform database operations. Since often used application
functionalities are isolated, modularized, and put into the
MidArc mediator as common services, the processing and
data management layers are additionally split into the four
layers: common processing layer, application specific
processing layer, common database layer, and application
specific database layer.

Depending on (1) architecture of the computer
infrastructure of the mediator Core, (2) complexity of the
application, and (3) layer distribution through multiple
hosts, the architecture of the integrated applications could
be two-tier, three-tier, or multi-tier [7, 19]. Typical
application architectures are presented in Fig. 8.

If an application only uses common services of the
mediator, it has either two-tier or three-tier architecture,
which depends on distribution of common processing
layer and common database layer on the mediator hosts.
Typical Client-Mediator applications perform client
registration, billing statement checking, while Server-
Mediator applications perform service registration, usage
data analysis, etc.

Client-Mediator-Server applications use both common
and application specific services. For example, common
services could include client authentication and
authorization, while application specific services could be
operations of an e-banking system. These complex
distributed applications have multi-tier architecture as
presented in Fig. 8.

Involving more clients and services in a single
application increases the architecture complexity. The
MidArc mediator enables developers to integrate common
services and application specific services at application
design-time. However, we are exploring a possibility to
request services on demand at application run-time, an
approach described as demand-led application architecture
[18].

Client–Mediator Application
(Two-tier or three-tier architecture)

IV. MIDARC IN PRACTICE
The applicability and usefulness of mediator system is

continually being tested in practice. The SoftLab distance
learning system [20], which is an integral part of computer
science curriculum at School of Electrical Engineering
and Computing, University of Zagreb, is developed and
run on the MidArc mediator. The SoftLab distance
learning system and the MidArc mediator is being used by
more than 200 students and 10 system supervisors each
semester in Automata Theory and Compiler Design
courses.

Based on three years worth of testing, we make the
following conclusions. The development of the SoftLab
distance learning service from standalone application
Automata Simulator [20] was very short. The integration
of the SoftLab distance learning application proves the
benefits of using the MidArc mediator. All network
related services and user management services of the
Automata Simulator application are implemented as the
common services components of the MidArc mediator.
Furthermore, the performance measurement [21, 22]

Client Mediator

Common
processing layer

Common database layer

Presentation layer

Server–Mediator Application
(Two-tier or three-tier architecture)

Mediator Server

Common
processing layer

Common database layer

Presentation layer

F igure 8. Typical architectures of applications integrated by the
MidArc mediator

Client Mediator Server

Application specific
processing layer

Application specific

database layer

Client–Mediator–Server Application
(Multi-tier architecture)

Common
processing layer

Common database layer

Presentation layer

Igor Sebo
 717

shows that low computer resources (a couple of Pentium
III PCs connected with Ethernet) are sufficient to
efficiently run the MidArc mediator and the SoftLab
distance learning system. Measurements show that
processor workload on the mediator computers never
exceeded 10 percent, although testing involved more than
200 students. This indicates that with similar equipment
larger groups of students can be efficiently served.

V. CONCLUSION
The concept of the application level middleware can be

traced all the way back to the 1995 and AT&T Labs’
project named GeoPlex. At that time, GeoPlex project has
been literally ahead of time falling short of appropriate
software technologies and lacking the terminology for its
products. However, since then, the necessary software
technologies have matured enough to support the
development of an efficient application level middleware
system.

In this paper, we have shown that, with selection of
proper software technologies and by assembling them into
the appropriate system architecture, it is possible to build
efficient distributed application development and run-time
support system. We have described the public information
system mediator MidArc, the prototype of the application
level middleware system. It is our solution to the problem
of service development, application integration, and run-
time support for distributed system execution. It is being
developed by the School of Electrical Engineering and
Computing, University of Zagreb, and Ericsson Nikola
Tesla d.d., Zagreb, Croatia. We have described the
architecture of the MidArc mediator through its system
components, building technologies, and distributed
application integration process. When compared to similar
integrated middleware solutions, MidArc system offers
openess for development of custom plug-in components
and completely modular composition that assures simple
system extendability.

MidArc mediator is used to run and develop the
SoftLab distance learning system. Our experiences show
facilitation of service development, application
integration, and execution of the distance learning system.
Currently, we are incorporating service-on-demand
feature to the MidArc mediator.

REFERENCES
[1] M. Shaw and D. Garlan, Software Architecture - Perspectives on

an Emerging Discipline, Prentice Hall, 1996.
[2] J. Pinkston, "The Ins and Outs of Integration", EAI Journal,

August 2001, pp. 48-52

[3] R. Schmelzer, "Service-oriented integration", Proceedings of the
Boundaryless Information Flow: The Role of Web Services, The
Open Group, Boston, Massachutes, July, 2002.

[4] M. Lerner, G. Vanecek, N. Vidovic, and D. Vrsalovic,
Middleware Networks - Concept, Design and Deployment of
Internet Infrastructure, Kluwer Academic Publishers, 2000.

[5] S. Srbljic et al., "Application Middleware: A Case Study", Annual
of 2002 of the Croatian Academy of Engineering, pp. 101-108,
Zagreb, 2002.

[6] E. A. Gryazin, J. O. Tuominen, and O. Seppala, "Heterogeneous
Middleware Structures for MyGrocer Project", Proceedings of M-
Business 2002, Athens, July 2002.

[7] I. Foster and C. Kesselman, The Grid: Blueprint for a New
Computing Infrastructure, Morgan Kaufmann Publishers, 1998.

[8] W3C, Web Services Activity, http://www.w3.org/2002/ws/
[9] G. Vanacek, N. Mihai, N. Vidovic, and D. Vrsalovic, "Enabling

Hybrid Services in Emerging Data Networks", IEEE
Communication Magazine, July 1999.

[10] D. Tennenhouse and D. Wetherall, "Towards an active network
architecture", Computer Communications Review, 26, 2 (1996),
pp. 5-18

[11] A. Galis et al., "A Flexible IP Active Networks Architecture",
Proceedings of Second International Working Conference, Active
Networks, IWAN 2000, Tokyo, Japan, October, 2000. pp 1-15

[12] D. Wetherall, J. Guttag, and D. Tennenhouse, "ANTS: A Toolkit
for Building and Dynamically Deploying Network Protocols,"
Proceedings of the 4th International Conference on OPENARCH,
San Francisco, California, April 1998, pp. 1–12.

[13] D. Alexander at al., "Safety and Security of Programmable
Network Infrastructures, " Communications Magazine, pp. 84– 92.
IEEE, October 1998.

[14] M Keaton at al., "Active Reliable Multicast on CANEs: A Case
Study," Proceedings of the 4th International Conference on
OPENARCH, Anchorage, Alaska, April 2001.

[15] Microsoft Corporation, Microsoft .NET My Services Specification,
Microsoft Press, 2001.

[16] North Carolina Office of Information Technology Services, North
Carolina Statewide Technical Architecture, 2003.

[17] B. Sumak, M. Hericko, I. Rozman, and M. Pusnik, "E-Businesses
Integration Servers", Proceedings of Mipro 2003, Opatija, Croatia,
2003.

[18] M. Turner, D. Budgen, and P. Brereton, "Turning Software into a
Service", IEEE Computer, October 2003, pp. 38-44

[19] I. Sommerville, Softweare Engineering, 6th ed., Pearson Education
Limited, 2001.

[20] I. Skuliber, S. Srbljic, and A. Milanovic, "Extending the
Textbook: A Distributed Tool for Learning Automata Theory
Fundamentals", Proceedings of ICECS 2002, Dubrovnik, Croatia,
September 15-18, 2002, pp. 1231-1234

[21] I. Benc, F. Plavec, and S. Srbljic, "Scalable Data Storage for
Public Information System Middleware MidArc", Proceedings of
SCI 2003, Orlando, Florida, USA, July 2003, Vol 3., pp. 241-246

[22] M. Stefanec, S Srbljic, and I. Skuliber, "Performance Evaluation
of Distributed Objects Platform for Public Information System
Implementation", Proceedings of SCI 2003, Orlando, Florida,
USA, July 2003, Vol 3., pp. 259-264

Igor Sebo
 718

	Main Menu
	Table of Contents
	Author Index
	Introductory Pages

	Search CD-ROM
	Next Search Result
	Print

