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Abstract. In this paper a new approach to performance tuning of saturated PID controller
for robot manipulators is presented. The proposed approach is based on construction of a
parameter dependent Lyapunov function. With the appropriate choice of the free parameter,
which is not included in stability conditions, a estimation of integral performance index is ob-
tained. The performance index depends on controller parameters and few parameters which
characterize the robot dynamics. The optimal values of the controller gains are obtained by
minimization of the performance index. An example is given to demonstrate the obtained
results.
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1. INTRODUCTION saturation function in the integrator to render the sys-
tem globally asymptotically stable, just as the normal-

. . . ization did in [3]. A unified approach to both above
The most industrial robots are controlled by linear PID controllers, which belong to the class of PD plus a non-

controllers W.hlch do_ not require any component of linear integral action (PD+NI) controllers, is given in
robot dynamics into its control law. A simple linear [6]

and decoupled PID feedback controller with appropri-
ate control gains achieves the desired position without
any steady-state error. This is the main reason why
PID controllers are still used in industrial robots. How-
ever, alinear PID controller in closed loop with a robot
manipulator guarantees only local asymptotic stabil-

ity [1], [2]. This is the reason to believe that linear ] ]
PID control is inadequate to cope with highly nonlin- !N this paper a new approach to performance tuning of

ear systems like robot manipulators, since the designPD+N| controller for robot manipulators is presented.

of the linear PID control law is based solely on local Th€ Proposed approach is based on construction of a
arguments. parameter dependent Lyapunov function. With the ap-

propriate choice of the free parameter, which is not
included in stability conditions, a estimation of inte-
gral performance index is obtained. The performance
index depends on controller parameters and few pa-
rameters which characterize the robot dynamics. The
optimal values of the controller gains are obtained by
minimization of the performance index.

Although the stability properties of PD+NI controllers
for robot manipulators are well understood, there are
no many results regarding to optimality and perfor-
mance tuning rules, except éf., optimality [7].

The first nonlinear PID controller which ensure global

asymptotic stability is proposed in [3]. In this work,

which was inspired by results of Tomei [4], itis proven

that global convergence is still preserved if regressor
matrix is replaced by constant matrix. Since the re-
gressor matrix is constant, the control law can be in-
terpreted as a nonlinear PID controller which achieve ] )
GAS by normalization nonlinearities in the integra- 1hiS paper is organized as follows. The system de-
tor term of the control law. The second approach to scrlptlon is presented in Section 2. The s',tablht.y cri-
achieve GAS is the scheme of Arimoto [5] that uses a terion based on the Lyapunov’s approach is derived in
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Section 3. The performance index evaluation is pre- Property 5. There exist positive diagonal matriXp
sented in Section 4. In Section 5, an example is given such that the following two inequalities with specified
to demonstrate the results. Finally, the concluding re- constant; > 0 are satisfied simultaneously

marks are emphasized in Section 6.

2. SYSTEM DESCRIPTION

We consider a nonlinear mechanical system with

s())"Kpq+s(@)" (9(q) — 9(qa)) > k15(4)"q, (8)

1. 5 N 1 ~
§qTqu+U(q)—U(qd)—ng(qd) > §k1IIQIl2, 9)

degree of freedom in closed loop with a nonlinear PID wherek; = \,,{Kp} — k, > 0, ands(g) is a contin-

controller.

2.1. Dynamics of Rigid Robot

The model ofn-link rigid-body robotic manipulator
with all revolute joints, in the absence of friction and
disturbances, is represented by

M(q)§+ C(q,4)q + g9(q) = u, 1)

whereq is then x 1 vector of robot joint coordinates,
G is then x 1 vector of joint velocitiesy is then x 1
vector of applied joint torquesy/(q) is n x n inertia
matrix, C(q, ¢)q is then x 1 vector of centrifugal and
Coriolis torques, ang(q) is then x 1 vector of grav-

itational torques obtained as the gradient of the robot s(g;)g; > 0,

potential energy/(q)

U (q)
Oq

The following well known properties of the robot dy-
namics, [8]- [10], are important for stability analysis.

9(q) = 2

Property 1. The inertia matrix\/ (¢) is a positive def-
inite symmetric matrix which satisfies

Am{MHGI1” < "M (q)d < A {M}|d]?, (3)

where\,,,{M} and Ay {M} denotes strictly positive
minimum and maximum eigenvaluesif(q), respec-
tively.

Property 2. The matrixS(q, 4) = M(q) — 2C(q,q)
is skew-symmetric, i.e.,

21'S(q,4)z =0, VzecR"™ 4)
This implies
M(q) = C(g,4) + Clg,9)"- 5)

Property 3. The Coriolis and centrifugal term
C(q, ¢)q satisfies

1C (. d)dll < kelldl,

for some bounded constakt > 0.

(6)

Property 4. There exists some positive constat
such that gravity vector satisfies

lg(z) =9Il < kgl —yll, ¥,y eR"

(7)
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uous differentiable increasing vector function.

2.2. Nonlinear PID Controller
The nonlinear PID control law is given by

u=—Vp(q)qd— Kpq— Ky,
v = s5(q),

(10)
(11)

whereq = ¢ — ¢4 is the joint position errorK p and

K are constant positive-definite diagonal matsi(g)

is continuous differentiable increasing vector function
s(q) = [s(a1) 5(@2) --- s(gn)]" such that

ds(gi) 1
g ~—

Is(G@i)] < sm, 0<

for all §; € R. The function¥p(q) is (n x n) pos-
itive definite diagonal matrix functions which can be
written in the following form

Up(G) = Kp+ Kp¥p(q), (12)
where Kp, and Kp are constant positive-definite
diagonal matrix andW¥p(q) is (n x n) posi-
tive definite diagonal matrix functionVp(q) =
diag{v'p(G1), ..., ¥pr(Gn)}, which satisfies additional
conditions

0<Up(q)<I, Up(0)=1, lim Up(G) =0,

G—=+oo

wherel is the identity matrix and is the null matrix.

The functions(§) ensure global asymptotic stability
and the functionl p(¢) provide performance improve-
ment. The following properties of function$qg) and
¥ p(g) are important for stability analysis.

Property 1. The function¥ () is lower bounded and
satisfies the following inequalities

TUp(§)z > M{Kp}|2||?, VzeR™ (13)
Property 2. The following integrals are positive-
definite functions for alk € R

? 22, if 2] < su
os/o s(E)dfé{ e S g
Z 1
0< de < =22 15
< [ drterede < 32 (15)



3. STABILITY ANALYSIS

Although the stability of the saturated PID controller
for robot manipulator is proven in [6] and [8], a
slightly different approach is needful for construction
of parameter dependent Lyapunov function which will

be used for performance evaluation. Namely, the main
request is elimination of the free parameter contained wheres;(¢) = diag{sg, (1), --

in the Lyapunov function from final stability condi-
tions. On this way, the stability criterion doesn't de-

and

Wy = ¢T(Kp — asg(@)M(q))d +
+as(@"(M(q) - C(g.9)d,  (22)
Wy = s(@)"(a¥p(q) — K1)q+
+ as(@) " (9(q) — 9(qa))- (23)

-8, (Gn)}. We can
see that functior; contains positive-definite parts in
variablesj andq and cross-term in the same variables.

pend on the mentioned parameter providing elegantAlso, first and third part of functiori; is positive-
determination of a integral performance index in the definite in variablegj and z respectively, and second

following section.

The stability analysis can be divided in four parts.

First, error equations for closed loop system (1), (10),

part is cross-term in same variables.

In this way, the problem of determination of condi-
tions for positive-definiteness of functiovi, which

(11) is determined. Second, the Lyapunov function contains three variables, is transformed to two simpler
candidate is proposed. Then, a global stability cri- problems of determination of conditions for positive-
terion on system parameters is established. Finally, definiteness of function¥;(q, ¢; @) and V2 (g, z; a),
LaSalle invariance principle is invoked to guarantee which contain only two variables.

the asymptotic stability.

The stationary state of the system (1), (10), (1B s
0,¢ =0, v = v*, andv* satisfiegg(qq) = —Kv*. If

a new variablee = v — v* is introduced, then system
(1), (10), (11) becomes

M(q)i+ C(q,4)q + g(q)
u=—-Yp(§)§ — Kpq— Krz,

2 =s(q).

—9(qa) = u, (16)
(17)
(18)

3.1. Construction of Lyapunov function

First, an output variablg = ¢ + as(q) with param-
etera > 0 is introduced, and inner product between
(16) andy is made, resulting in a nonlinear differential
form which can be separated in the following way

dv(q, g,z ) o
dt - W(q7Q7a)7

whereV (g, 4, z; ) is the Lyapunov function candi-
date parameterized by a positive parameter

(19)

For easier determination of conditions for positive-
definiteness of functio” and W, the following de-
compositions are madé’(q, ¢, z; «) = V1(q,¢; ) +
Va(q, z; ) andW (g, ¢; ) = Wi (4, G; @) + Wa(G; ),
where

Vi = STM(Q)d + as(@) T M(9)g +

2
+ QZKDZ/

iqTKpfj +U(q) -

o [ Gne)ed
> pi/o Dp(€)ed +

1
+ chK,z + aazTKIz,

§)dg, (20)

Ulqa) — d" 9(qq) +

(21)

3.2. Stability criterion determination

First, we consider functiolr; which can be rearranged
to be of the form

L+ as@)” M(q) (4 + as(@) —

Wi = 5
1
- et M(@)s(@) + aZKDz / &)de,
and using property (3) we get
Viza) f(@) >0, (24)
=1

where
@ 1
£@) = Mn{p) [ (€ = anrlan)s(@)
0

that is positive-definite function #; 3, (¢;) > 0,

Gi fig,(Gi) = Mu{ KD }Gis(Gs) —

—a A {M}Gis(Gi)sq, (Gi) =

= Gi5(Gi) Am{Kp} — adAn{M}s4,(Gi) >

> 4is(qi)(Am{Kp} — A {M}) >0, (25)
fori =1,...,n, where we used propersy, (g;) < 1.

The above mentioned expression is the positive defi-
nite if the following condition is satisfied

)\’I'IL{KD}
A {M}

Further, we consider functiol; which can be rear-
ranged to be of the form
i) +

> % (\/524- \}ad)TKI (\/524-
(27)

(26)

Ja

1 1
—k1)|ql? — —q K1q >
+ 3 4l 51 K1d=

1 1
> =k — “AuiK gl
> 2(1 5 mf 1}) 14]I%,
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where we used properties (9) and (15). The above Also, in this section, because of compactness, fol-

mentioned expression is the positive definite if the fol-
lowing condition is satisfied

SESTAENI Y (28)
k1
If we compare (28) and (26) then we obtain
klAm{KD} > )\]V[{K]})\M{M} (29)

lowing shortened notation is introducedk;,, =
And{KGY kv = Au{K;}, mo = Au{M} +
k‘cS]\,{, Hi = /\]\/[{Kj}//\m{Kj}, Wherej = P, I,D.

The performance index (35) can be evaluated using
Lyapunov function (20), (21) and its time derivative.
From the equation (19) we can get

t
Note that in the above-stated condition the unspecified V() -V(0) < _/O W(q(s), 4(s))ds, (37)

positive constant is eliminated.

Next step is condition which ensure that time deriva-
tive of Lyapunov function is negative definite function,
i.e.,WW > 0. First, we consider functiol/;. Applying
properties (3), (5), (6) we get

Wi > Ay {Kp}HIglI> — ada {M}|g||* —

— akesu||gl)? >0, (30)

that is positive-definite if the following condition is
satisfied
An{Kp}

Ai{M} + kesar

Further, we consider functiol’,. Using properties
(8) and (13) we get

> a. (31)

Wy > (aky — Au{Kr})q" s(q), (32)
that is positive-definite if we have
A {K
S AudRr} (33)
k1

Comparing (31) with (33) the following condition is
obtained

k‘lx\m{KD} > )\M{KI}(/\M{M} + kCSM). (34)

Also, in the above-stated condition the unspecified

positive constand is eliminated. Notice that the con-
dition (29) is trivially implied by the condition (34).
So, the condition (34) is the final stability condition
which guaranty global stability. Finally, invoking the
LaSalle’s invariance principle we conclude asymptotic
stability.

4. PERFORMANCE OPTIMIZATION

The Lyapunov functio” and its time derivativé” =
—W contain free parameter > 0 which is not in-
cluded in stability condition. This fact can be em-
ployed for the evaluation of the following performance
index

I=1+720, (35)

where the constant? is the weighting factor, and

L—- / s(@dt, I = / ll%dt.  (36)
0 0
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and, fort — oo,

V() > / T Wils).a()ds,  (38)

becausd/(co) = 0. Putting (30) and (32) in (38) we
get

V(O) > (kDm - aﬁl)fg -+ (Ozkl - kIJW)IL (39)

The next step is the estimation of the upper bounds on
V(0). We havej(0) = —qq, ¢(0) = 0, 2(0) = —v* =
K;'g(qq), sothatV(0) satisfies the following expres-
sion

V(0) = 54i Kpga + %ag(Qd)TKflg(qcz) -

- Ul + K [ dn(€gde +
(40)
So, we can estimate the upper bounds
V(0) < g (kear + Fear)laal® + gakia lo(an) P

+ Oék‘D]uZ/i
i=170

Because of (7) andy{K;'} = 1/\,.{K;} we

N =

qdi

si(£)de. (41)

_ k2
V(0) < wo <kP]W +kpym + Oég> +

k]m
+ oawskp, (42)
wherew, = 3||¢q4||* and
1 2 H
_ §||qd|| ) If ||Qd|| <Sm 43
ws { swllgall, iflaal =5 @3
wherew, satisfies
n —qdi
w >3 / si(€)ds (44)
N JO



Finally, comparing (39) and (42) we have

(kpm —am)Iy + (aky — kry) Iy < wsakpa +

+w2< ’“)

kpy + kpv + a——
k[m

From the above mentioned expression we can get in-

tegral termsl; and; in the following way. Because

the choice of the free parameteris not limited by

stability conditions (34), we can pdt = kp,,/m in

expression (45) so that

(45)

_ k2
I, < 22 (kpar + kpar)m + kpm—2 | +
S]w kIm
ws
+ 5 kpmkpar, (46)
M
where
Sy = kikpm — krarm > 0. (47)

The positivity of S, follows from stability conditions
(34). Similarly, if we putae = krps/k in expression
(45) we get

2

I, < 22 (kpanr + kpar)ky + kv —2 | +
SM kIm
Wy
M

Finally, if we put expressions (46) and (48) in (35) we
get
€

I<T = —(kp+wspup(kd,, + 7 kpmkia)) +

S

Wo kDm 2)

W2 (Fpm | 2) 49
Su (k?IM (49)

where] is the estimation of the upper bounds of the
performance index (35)p; = wop k2, and

kp = wa(m + 7%k1)(kpar + kpar). (50)

We want to chosép,,, andk;,, which will minimize
the performance index (49)

ol

akDm B

0, L
Okrm

0. (51)

The solution of equations (51) is the following set of
polynomial equations regarding to variables,, and
krv

(52)
(53)

apk?,, —bpkpm —cp =0,

arkiy +brkiv — er =0,
where

ap = kiwspp, bp = 2mwsupkr,

cp = m(wspupt?kiy, + w2) + ki (kb + wot?),

and

ar = m(kp + wer?) + wepp (M + k1 72)k3,

= = — 1.2
b[ = 2mw2kpm, Cr = k’lekDm.

We can rewrite the equations (52) and (53) in the fol-
lowing way

1
kpm = — (bD +4/0% +4aDCD> , (54)
2aD
— _ /12
k’]]\,{ = 2@1 ( b[+ bI+4a101> . (55)

We can find solution of the set of nonlinear equations
(54) and (55) applying simple iterative procedure.

It is well known that it is impossible to select fixed
gains for a linear PID controller that will prevent over-
shoots for all configurations of a given robot system.
A way to reduce the overshoots is selection of high
proportional gain and appropriate derivative and inte-
gral gain. A drawback of this approach is high con-
trol jump during the transient response, because of
large error at the beginning of control actiar(0) ~
—KpG(0) = Kpgq. This problem can be avoided by
introducing a nonlinear proportional gain

~2
Ypi(Gi) = Kpi + Kp; eXP(—2q71)~ (56)

op
In this way, we ensure high proportional gain
Up(§) ~ Kp + Kp, when the system state is near the
stationary stateg =~ 0, preventing a large overshoot
in the transient response. On the other side, for large
error,§ =~ —qq, We have small gaiwp(§) ~ Kp,
what prevent high control jump during the transient re-
sponse. The parametep defines a bandwidth around
stationary staté; = 0 with high proportional gains in-
fluence.

So, the maximal value of proportional gaiip is
determined by the maximal allowed control variable
umaxu

umax

kpy <

(57)

)

4dd,max

wheregy max IS the maximal value ofgy.

5. SIMULATION EXAMPLE

The manipulator used for simulation is a two revolute
jointed robot (planar elbow manipulator) considered in
[11]. The numerical values of robot parameters have
been taken from [2]. The entries of the inertia matrix
M (q) are given by

M (q) =malZy +ma(If 4 12 + 2112 cos(qa)) +
+ Il + 127

Mi2(q) = M1 (q) = ma(l2, + lilea cos(q2)) + Ia,

Mgg(q) = mQZEQ + 12.
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Figure 1: The transient response for positions and

control torque forK p = diag{500}, Kp = diag{0},
and for the optimal values df p and K.

The elements of the Coriolis matriX(q, ¢) are

Ch1(q,4) = —malilez sin(gz)qe,
Ci2(q, ¢) = —malileasin(q2)(¢1 + 42),
C21(q, ¢) = malileasin(g2)g1, Ca22(q,¢) = 0.

The elements of the gravitational torque vecidq)
are given by

91(q) = (maler + mali)gcos(qr) + g2(q),
g2(q) = maleag cos(qr + g2).

The numerical values of the constanitg, k. and
M{M} are: k, = 75.46 Nm, k. = 0.7 kg n?,
Av{M} = 1.33 kg m?. The nonlinear integral term
is s(¢) = 3 tanh(2g) andr = 0.01.

In Fig. 1-2 we can see comparison between controller

with Kp = 0 and controller withKp # 0. To
make the comparison fair, the value ®f;{¥p(q)}

will be same in both cases. The values of controller

parameters in the first case (Fig. 1) ar&p =
dlag{500}, RP = dlag{O}, Kp = dlag{374}, K; =
diag{921.4} andop = 0.5. The values of controller
parameters in the second case (Fig. 2) &&: =
diag{150}, Kp = diag{350}, Kp = diag{44.8},
K; =diag{367.1} andop = 0.5.

We can see that for almost same quality of the tran-
sient response, controller in Fig. 2. has not a high
jump of the control variable which can be seen for the

controller in Fig. 1.

6. CONCLUDING REMARKS

— ul[Nm]

— ql[rad]
- - q2[rad]

=

1 2 3 0 01 02 03 04
time [s] time [s]

Figure 2: The transient response for positions and

control torque for Kp =

diag{150}, Kp =

diag{350}, and for the optimal values df p, and K.

1.

N

5.

Arimoto S., Miyazaki F.: Stability and robustness
of PD feedback control with gravity compensation
for robot manipulator, irRobotics: Theory and Ap-
plications DSC(F. W. Paul and D. Yacef-Toumi,
eds.), vol. 3, 1986, pp. 67-72.

. Kelly R.: A tuning procedure for stable PID con-

trol of robot manipulatorsRobotica vol. 13, 1995,
pp. 141-148.

. Kelly R.: Comments on: Adaptive PD control

of robot manipulators,IEEE Trans. Robotics Au-
tomat, vol. 9, no. 1, 1993, pp. 117-119.

. Tomei P.: Adaptive PD control for robot manipu-

lators, IEEE Trans. Robotics Automatol. 7, no.
4,1991, pp.565-570.

Arimoto S.: A class of quasi-natural potentials and
hyper-stable PID servo-loops for nonlinear robotic
systems,Trans. Soc. Instrument Contr. Enggol.
30, no. 9, 1994, pp. 1005-1012.

6. Kelly R.: Global Positioning of Robot Manipula-

7.

In this paper a new approach to performance tun- g

ing of saturated PID controller for robot manipulator
is proposed. The proposed tuning rules provide fast
transient response without oscillations and large over-
shoots, overcoming undesirable effect of high control
jumps which is characteristic for conventional linear

. Arimoto S.:

tors via PD Control Plus a Class of Nonlinear Inte-
gral Actions, IEEE Trans. on Autom. ControVol.
43, no. 7, 1998, pp. 934-938.

Nakayama T., Arimoto S.H ., optimal tuning of
the saturated PID controller for robot arms using
the passivity and dissipativity,Proc. 13th IFAC
World CongressSan Francisco, 1996.

Control Theory of Nonlinear Me-
chanical Systems: A Passivity-Based and Circuit-
Theoretic ApprachOxford University Press, 1997.

Ortega R., Loria A., Nicklasson P.J., Sira-Ramirez
H.: Passivity-based control of Euler-Lagrange Sys-
tems: Mechanical, Electrical and Electromechan-
ical Applications Springer-Verlag, London, Ltd.,
1998.

PID controllers. The performance tuning rule involve 10. de Wit C.C., Bastin G., Siciliano B..Theory of

only few parameters which characterize the robot dy-

namics.

REFERENCES

848

Robot Control Springer-Verlag, New York, 1996.

11. Spong M.W., Vidyasagar M.:Robot Dynamics

and Contro] Wiley, New York, 1989.



