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Abstract. In this paper a new approach to performance tuning of saturated PID controller
for robot manipulators is presented. The proposed approach is based on construction of a
parameter dependent Lyapunov function. With the appropriate choice of the free parameter,
which is not included in stability conditions, a estimation of integral performance index is ob-
tained. The performance index depends on controller parameters and few parameters which
characterize the robot dynamics. The optimal values of the controller gains are obtained by
minimization of the performance index. An example is given to demonstrate the obtained
results.
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1. INTRODUCTION

The most industrial robots are controlled by linear PID
controllers which do not require any component of
robot dynamics into its control law. A simple linear
and decoupled PID feedback controller with appropri-
ate control gains achieves the desired position without
any steady-state error. This is the main reason why
PID controllers are still used in industrial robots. How-
ever, a linear PID controller in closed loop with a robot
manipulator guarantees only local asymptotic stabil-
ity [1], [2]. This is the reason to believe that linear
PID control is inadequate to cope with highly nonlin-
ear systems like robot manipulators, since the design
of the linear PID control law is based solely on local
arguments.

The first nonlinear PID controller which ensure global
asymptotic stability is proposed in [3]. In this work,
which was inspired by results of Tomei [4], it is proven
that global convergence is still preserved if regressor
matrix is replaced by constant matrix. Since the re-
gressor matrix is constant, the control law can be in-
terpreted as a nonlinear PID controller which achieve
GAS by normalization nonlinearities in the integra-
tor term of the control law. The second approach to
achieve GAS is the scheme of Arimoto [5] that uses a

saturation function in the integrator to render the sys-
tem globally asymptotically stable, just as the normal-
ization did in [3]. A unified approach to both above
controllers, which belong to the class of PD plus a non-
linear integral action (PD+NI) controllers, is given in
[6].

Although the stability properties of PD+NI controllers
for robot manipulators are well understood, there are
no many results regarding to optimality and perfor-
mance tuning rules, except ofH∞ optimality [7].

In this paper a new approach to performance tuning of
PD+NI controller for robot manipulators is presented.
The proposed approach is based on construction of a
parameter dependent Lyapunov function. With the ap-
propriate choice of the free parameter, which is not
included in stability conditions, a estimation of inte-
gral performance index is obtained. The performance
index depends on controller parameters and few pa-
rameters which characterize the robot dynamics. The
optimal values of the controller gains are obtained by
minimization of the performance index.

This paper is organized as follows. The system de-
scription is presented in Section 2. The stability cri-
terion based on the Lyapunov’s approach is derived in
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Section 3. The performance index evaluation is pre-
sented in Section 4. In Section 5, an example is given
to demonstrate the results. Finally, the concluding re-
marks are emphasized in Section 6.

2. SYSTEM DESCRIPTION

We consider a nonlinear mechanical system withn-
degree of freedom in closed loop with a nonlinear PID
controller.

2.1. Dynamics of Rigid Robot

The model ofn-link rigid-body robotic manipulator
with all revolute joints, in the absence of friction and
disturbances, is represented by

M(q)q̈ + C(q, q̇)q̇ + g(q) = u, (1)

whereq is then× 1 vector of robot joint coordinates,
q̇ is then× 1 vector of joint velocities,u is then× 1
vector of applied joint torques,M(q) is n × n inertia
matrix,C(q, q̇)q̇ is then× 1 vector of centrifugal and
Coriolis torques, andg(q) is then× 1 vector of grav-
itational torques obtained as the gradient of the robot
potential energyU(q)

g(q) =
∂U(q)

∂q
. (2)

The following well known properties of the robot dy-
namics, [8]- [10], are important for stability analysis.

Property 1. The inertia matrixM(q) is a positive def-
inite symmetric matrix which satisfies

λm{M}‖q̇‖2 ≤ q̇T M(q)q̇ ≤ λM{M}‖q̇‖2, (3)

whereλm{M} andλM{M} denotes strictly positive
minimum and maximum eigenvalues ofM(q), respec-
tively.

Property 2. The matrixS(q, q̇) = Ṁ(q) − 2C(q, q̇)
is skew-symmetric, i.e.,

zT S(q, q̇)z = 0, ∀z ∈ Rn. (4)

This implies

Ṁ(q) = C(q, q̇) + C(q, q̇)T . (5)

Property 3. The Coriolis and centrifugal term
C(q, q̇)q̇ satisfies

‖C(q, q̇)q̇‖ ≤ kc‖q̇‖2, (6)

for some bounded constantkc > 0.

Property 4. There exists some positive constantkg

such that gravity vector satisfies

‖g(x)− g(y)‖ ≤ kg‖x− y‖, ∀ x, y ∈ Rn. (7)

Property 5. There exist positive diagonal matrixKP

such that the following two inequalities with specified
constantk1 > 0 are satisfied simultaneously

s(q̃)T KP q̃ + s(q̃)T (g(q)− g(qd)) ≥ k1s(q̃)T q̃, (8)

1
2
q̃T KP q̃+U(q)−U(qd)−q̃T g(qd) ≥ 1

2
k1‖q̃‖2, (9)

wherek1 = λm{KP } − kg ≥ 0, ands(q̃) is a contin-
uous differentiable increasing vector function.

2.2. Nonlinear PID Controller

The nonlinear PID control law is given by

u = −ΨP (q̃)q̃ −KD q̇ −KIν, (10)

ν̇ = s(q̃), (11)

whereq̃ = q − qd is the joint position error,KD and
KI are constant positive-definite diagonal matrix,s(q̃)
is continuous differentiable increasing vector function
s(q̃) = [s(q̃1) s(q̃2) . . . s(q̃n)]T such that

s(q̃i)q̃i ≥ 0, |s(q̃i)| ≤ sM , 0 ≤ ds(q̃i)
dq̃i

≤ 1,

for all q̃i ∈ R. The functionΨP (q̃) is (n × n) pos-
itive definite diagonal matrix functions which can be
written in the following form

ΨP (q̃) = KP + K̄P Ψ̄P (q̃), (12)

where KP , and K̄P are constant positive-definite
diagonal matrix and Ψ̄P (q̃) is (n × n) posi-
tive definite diagonal matrix function̄ΨP (q̃) =
diag{ψ̄P (q̃1), ..., ψ̄P (q̃n)}, which satisfies additional
conditions

0 ≤ Ψ̄P (q̃) ≤ I, Ψ̄P (0) = I, lim
q̃→±∞

Ψ̄P (q̃) = 0,

whereI is the identity matrix and0 is the null matrix.

The functions(q̃) ensure global asymptotic stability
and the functionΨP (q̃) provide performance improve-
ment. The following properties of functionss(q̃) and
ΨP (q̃) are important for stability analysis.

Property 1. The functionΨP (q̃) is lower bounded and
satisfies the following inequalities

zT ΨP (q̃)z ≥ λm{KP }‖z‖2, ∀z ∈ Rn. (13)

Property 2. The following integrals are positive-
definite functions for allz ∈ R

0 ≤
∫ z

0

s(ξ)dξ ≤
{

1
2 |z|2, if |z| < sM

sM |z|, if |z| ≥ sM
, (14)

0 ≤
∫ z

0

ψ̄P (ξ)ξdξ ≤ 1
2
z2. (15)
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3. STABILITY ANALYSIS

Although the stability of the saturated PID controller
for robot manipulator is proven in [6] and [8], a
slightly different approach is needful for construction
of parameter dependent Lyapunov function which will
be used for performance evaluation. Namely, the main
request is elimination of the free parameter contained
in the Lyapunov function from final stability condi-
tions. On this way, the stability criterion doesn’t de-
pend on the mentioned parameter providing elegant
determination of a integral performance index in the
following section.

The stability analysis can be divided in four parts.
First, error equations for closed loop system (1), (10),
(11) is determined. Second, the Lyapunov function
candidate is proposed. Then, a global stability cri-
terion on system parameters is established. Finally,
LaSalle invariance principle is invoked to guarantee
the asymptotic stability.

The stationary state of the system (1), (10), (11) isq̃ =
0, q̇ = 0, ν = ν∗, andν∗ satisfiesg(qd) = −KIν

∗. If
a new variablez = ν − ν∗ is introduced, then system
(1), (10), (11) becomes

M(q)q̈ + C(q, q̇)q̇ + g(q)− g(qd) = u, (16)

u = −ΨP (q̃)q̃ −KD q̇ −KIz, (17)

ż = s(q̃). (18)

3.1. Construction of Lyapunov function

First, an output variabley = q̇ + αs(q̃) with param-
eterα > 0 is introduced, and inner product between
(16) andy is made, resulting in a nonlinear differential
form which can be separated in the following way

dV (q̃, q̇, z; α)
dt

= −W (q̃, q̇; α), (19)

whereV (q̃, q̇, z;α) is the Lyapunov function candi-
date parameterized by a positive parameterα.

For easier determination of conditions for positive-
definiteness of functionV andW , the following de-
compositions are made:V (q̃, q̇, z;α) = V1(q̃, q̇;α) +
V2(q̃, z;α) andW (q̃, q̇;α) = W1(q̃, q̇;α)+W2(q̃; α),
where

V1 =
1
2
q̇T M(q)q̇ + αs(q̃)T M(q)q̇ +

+ α

n∑

i=1

KDi

∫ q̃i

0

si(ξ)dξ, (20)

V2 =
1
2
q̃T KP q̃ + U(q)− U(qd)− q̃T g(qd) +

+
n∑

i=1

K̄Pi

∫ q̃i

0

ψ̄P (ξ)ξdξ +

+ q̃T KIz +
1
2
αzT KIz, (21)

and

W1 = q̇T (KD − αsq̃(q̃)M(q))q̇ +

+ αs(q̃)T (Ṁ(q)− C(q, q̇))q̇, (22)

W2 = s(q̃)T (αΨP (q̃)−KI)q̃ +
+ αs(q̃)T (g(q)− g(qd)). (23)

wheresq̃(q̃) = diag{sq̃1(q̃1), ..., sq̃n
(q̃n)}. We can

see that functionV1 contains positive-definite parts in
variables̃q andq̇ and cross-term in the same variables.
Also, first and third part of functionV2 is positive-
definite in variables̃q andz respectively, and second
part is cross-term in same variables.

In this way, the problem of determination of condi-
tions for positive-definiteness of functionV , which
contains three variables, is transformed to two simpler
problems of determination of conditions for positive-
definiteness of functionsV1(q̃, q̇; α) and V2(q̃, z;α),
which contain only two variables.

3.2. Stability criterion determination

First, we consider functionV1 which can be rearranged
to be of the form

V1 =
1
2

(q̇ + αs(q̃))T
M(q) (q̇ + αs(q̃))−

− 1
2
α2s(q̃)T M(q)s(q̃) + α

n∑

i=1

KDi

∫ q̃i

0

s(ξ)dξ,

and using property (3) we get

V1 ≥ α

n∑

i=1

f(q̃i) ≥ 0, (24)

where

f(q̃i) = λm{KD}
∫ q̃i

0

s(ξ)dξ − 1
2
αλM{M}s(q̃i)2,

that is positive-definite function if̃qifq̃i(q̃i) ≥ 0,

q̃ifiq̃i(q̃i) = λm{KD}q̃is(q̃i)−
−αλM{M}q̃is(q̃i)sq̃i(q̃i) =
= q̃is(q̃i)(λm{KD} − αλM{M}sq̃i(q̃i)) ≥
≥ q̃is(q̃i)(λm{KD} − αλM{M}) ≥ 0, (25)

for i = 1, ..., n, where we used propertysq̃i(q̃i) ≤ 1.
The above mentioned expression is the positive defi-
nite if the following condition is satisfied

λm{KD}
λM{M} > α. (26)

Further, we consider functionV2 which can be rear-
ranged to be of the form

V2 ≥ 1
2

(√
αz +

1√
α

q̃

)T

KI

(√
αz +

1√
α

q̃

)
+

+
1
2
k1‖q̃‖2 − 1

2α
q̃T KI q̃ ≥

≥ 1
2

(
k1 − 1

α
λM{KI}

)
‖q̃‖2, (27)
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where we used properties (9) and (15). The above
mentioned expression is the positive definite if the fol-
lowing condition is satisfied

α >
λM{KI}

k1
. (28)

If we compare (28) and (26) then we obtain

k1λm{KD} > λM{KI}λM{M}. (29)

Note that in the above-stated condition the unspecified
positive constantα is eliminated.

Next step is condition which ensure that time deriva-
tive of Lyapunov function is negative definite function,
i.e.,W ≥ 0. First, we consider functionW1. Applying
properties (3), (5), (6) we get

W1 ≥ λm{KD}‖q̇‖2 − αλM{M}‖q̇‖2 −
− αkcsM‖q̇‖2 ≥ 0, (30)

that is positive-definite if the following condition is
satisfied

λm{KD}
λM{M}+ kcsM

> α. (31)

Further, we consider functionW2. Using properties
(8) and (13) we get

W2 ≥ (αk1 − λM{KI})q̃T s(q̃), (32)

that is positive-definite if we have

α >
λM{KI}

k1
. (33)

Comparing (31) with (33) the following condition is
obtained

k1λm{KD} > λM{KI}(λM{M}+ kcsM ). (34)

Also, in the above-stated condition the unspecified
positive constantα is eliminated. Notice that the con-
dition (29) is trivially implied by the condition (34).
So, the condition (34) is the final stability condition
which guaranty global stability. Finally, invoking the
LaSalle’s invariance principle we conclude asymptotic
stability.

4. PERFORMANCE OPTIMIZATION

The Lyapunov functionV and its time derivativėV =
−W contain free parameterα > 0 which is not in-
cluded in stability condition. This fact can be em-
ployed for the evaluation of the following performance
index

I = I1 + τ2I2, (35)

where the constantτ2 is the weighting factor, and

I1 =
∫ ∞

0

q̃T s(q̃)dt, I2 =
∫ ∞

0

‖q̇‖2dt. (36)

Also, in this section, because of compactness, fol-
lowing shortened notation is introduced:kjm =
λm{Kj}, kjM = λM{Kj}, m̄ = λM{M} +
kcsM , µj = λM{Kj}/λm{Kj}, wherej = P, I,D.

The performance index (35) can be evaluated using
Lyapunov function (20), (21) and its time derivative.
From the equation (19) we can get

V (t)− V (0) ≤ −
∫ t

0

W (q̃(s), q̇(s))ds, (37)

and, fort →∞,

V (0) ≥
∫ ∞

0

W (q̃(s), q̇(s))ds, (38)

becauseV (∞) = 0. Putting (30) and (32) in (38) we
get

V (0) ≥ (kDm − αm̄)I2 + (αk1 − kIM )I1. (39)

The next step is the estimation of the upper bounds on
V(0). We havẽq(0) = −qd, q̇(0) = 0, z(0) = −ν∗ =
K−1

I g(qd), so thatV (0) satisfies the following expres-
sion

V (0) =
1
2
qT
d KP qd +

1
2
αg(qd)T K−1

I g(qd)−

− U(qd) +
n∑

i=1

K̄Pi

∫ −qdi

0

ψ̄P (ξ)ξdξ +

+ α

n∑

i=1

KDi

∫ −qdi

0

si(ξ)dξ. (40)

So, we can estimate the upper bounds

V (0) ≤ 1
2
(kPM + k̄PM )‖qd‖2 +

1
2
αk−1

IM‖g(qd)‖2

+ αkDM

n∑

i=1

∫ −qdi

0

si(ξ)dξ. (41)

Because of (7) andλM{K−1
I } = 1/λm{KI} we

have

V (0) ≤ w2

(
kPM + k̄PM + α

k2
g

kIm

)
+

+ αwskDM , (42)

wherew2 = 1
2‖qd‖2 and

ws =
{

1
2‖qd‖2, if ‖qd‖ < sM

sM‖qd‖, if ‖qd‖ ≥ sM
, (43)

wherews satisfies

ws ≥
n∑

i=1

∫ −qdi

0

si(ξ)dξ. (44)
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Finally, comparing (39) and (42) we have

(kDm − αm̄)I2 + (αk1 − kIM )I1 ≤ wsαkDM +

+w2

(
kPM + k̄PM + α

k2
g

kIm

)
. (45)

From the above mentioned expression we can get in-
tegral termsI1 andI2 in the following way. Because
the choice of the free parameterα is not limited by
stability conditions (34), we can putα = kDm/m̄ in
expression (45) so that

I1 ≤ w2

SM

(
(kPM + k̄PM )m̄ + kDm

k2
g

kIm

)
+

+
ws

SM
kDmkDM , (46)

where
SM = k1kDm − kIMm̄ > 0. (47)

The positivity ofSM follows from stability conditions
(34). Similarly, if we putα = kIM/k1 in expression
(45) we get

I2 ≤ w2

SM

(
(kPM + k̄PM )k1 + kIM

k2
g

kIm

)
+

+
ws

SM
kIMkDM . (48)

Finally, if we put expressions (46) and (48) in (35) we
get

I ≤ Î =
1

SM
(k∗P + wsµD(k2

Dm + τ2kDmkIM )) +

+
w̄2

SM

(
kDm

kIM
+ τ2

)
, (49)

whereÎ is the estimation of the upper bounds of the
performance index (35),̄w2 = w2µIk

2
g , and

k∗P = w2(m̄ + τ2k1)(kPM + k̄PM ). (50)

We want to chosekDm andkIM which will minimize
the performance index (49)

∂Î

∂kDm
= 0,

∂Î

∂kIM
= 0. (51)

The solution of equations (51) is the following set of
polynomial equations regarding to variableskDm and
kIM

aDk2
Dm − bDkDm − cD = 0, (52)

aIk
2
IM + bIkIM − cI = 0, (53)

where

aD = k1wsµD, bD = 2m̄wsµDkIM ,

cD = m̄(wsµDτ2k2
IM + w̄2) + k1(k∗P + w̄2τ

2),

and

aI = m̄(k∗P + w̄2τ
2) + wsµD(m̄ + k1τ

2)k2
Dm,

bI = 2m̄w̄2kDm, cI = k1w̄2k
2
Dm.

We can rewrite the equations (52) and (53) in the fol-
lowing way

kDm =
1

2aD

(
bD +

√
b2
D + 4aDcD

)
, (54)

kIM =
1

2aI

(
−bI +

√
b2
I + 4aIcI

)
. (55)

We can find solution of the set of nonlinear equations
(54) and (55) applying simple iterative procedure.

It is well known that it is impossible to select fixed
gains for a linear PID controller that will prevent over-
shoots for all configurations of a given robot system.
A way to reduce the overshoots is selection of high
proportional gain and appropriate derivative and inte-
gral gain. A drawback of this approach is high con-
trol jump during the transient response, because of
large error at the beginning of control action,u(0) ≈
−KP q̃(0) = KP qd. This problem can be avoided by
introducing a nonlinear proportional gain

ψPi(q̃i) = KPi + K̄Pi exp(− q̃2
i

2σP
). (56)

In this way, we ensure high proportional gain
ΨP (q̃) ≈ KP + K̄P , when the system state is near the
stationary state,̃q ≈ 0, preventing a large overshoot
in the transient response. On the other side, for large
error, q̃ ≈ −qd, we have small gainΨP (q̃) ≈ KP ,
what prevent high control jump during the transient re-
sponse. The parameterσP defines a bandwidth around
stationary statẽqi = 0 with high proportional gains in-
fluence.

So, the maximal value of proportional gainKP is
determined by the maximal allowed control variable
umax,

kPM ≤
∣∣∣∣

umax

qd,max

∣∣∣∣ , (57)

whereqd,max is the maximal value ofqd.

5. SIMULATION EXAMPLE

The manipulator used for simulation is a two revolute
jointed robot (planar elbow manipulator) considered in
[11]. The numerical values of robot parameters have
been taken from [2]. The entries of the inertia matrix
M(q) are given by

M11(q) = m1l
2
c1 + m2(l21 + l2c2 + 2l1lc2 cos(q2)) +

+ I1 + I2,
M12(q) = M21(q) = m2(l2c2 + l1lc2 cos(q2)) + I2,
M22(q) = m2l

2
c2 + I2.
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Figure 1: The transient response for positions and
control torque forKP = diag{500}, K̄P = diag{0},
and for the optimal values ofKD andKI .
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Figure 2: The transient response for positions and
control torque for KP = diag{150}, K̄P =
diag{350}, and for the optimal values ofKD andKI .

The elements of the Coriolis matrixC(q, q̇) are

C11(q, q̇) = −m2l1lc2 sin(q2)q̇2,
C12(q, q̇) = −m2l1lc2 sin(q2)(q̇1 + q̇2),
C21(q, q̇) = m2l1lc2 sin(q2)q̇1, C22(q, q̇) = 0.

The elements of the gravitational torque vectorg(q)
are given by

g1(q) = (m1lc1 + m2l1)g cos(q1) + g2(q),
g2(q) = m2lc2g cos(q1 + q2).

The numerical values of the constantskg, kc and
λM{M} are: kg = 75.46 Nm, kc = 0.7 kg m2,
λM{M} = 1.33 kg m2. The nonlinear integral term
is s(q̃) = 1

2 tanh(2q̃) andτ = 0.01.

In Fig. 1-2 we can see comparison between controller
with K̄P = 0 and controller withK̄P 6= 0. To
make the comparison fair, the value ofλM{ΨP (q̃)}
will be same in both cases. The values of controller
parameters in the first case (Fig. 1) are:KP =
diag{500}, K̄P = diag{0}, KD = diag{37.4}, KI =
diag{921.4} andσP = 0.5. The values of controller
parameters in the second case (Fig. 2) are:KP =
diag{150}, K̄P = diag{350}, KD = diag{44.8},
KI = diag{367.1} andσP = 0.5.

We can see that for almost same quality of the tran-
sient response, controller in Fig. 2. has not a high
jump of the control variable which can be seen for the
controller in Fig. 1.

6. CONCLUDING REMARKS

In this paper a new approach to performance tun-
ing of saturated PID controller for robot manipulator
is proposed. The proposed tuning rules provide fast
transient response without oscillations and large over-
shoots, overcoming undesirable effect of high control
jumps which is characteristic for conventional linear
PID controllers. The performance tuning rule involve
only few parameters which characterize the robot dy-
namics.
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