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Abstract: In this paper a class of globally stable controllers for robotic manipula-
tors with mixed revolute and prismatic joints is proposed. The global asymptotic
stabilization is achieved by adding a nonlinear proportional and derivative term to
the linear PID controller. By using Lyapunov’s direct method, explicit conditions
on controller parameters which ensure global asymptotic stability are obtained.
Further, the Lyapunov function is employed for the evaluation of a performance
index and determination of optimal values of controller parameters. Finally, an
example is given to demonstrate the obtained results.
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1. INTRODUCTION

It is well known that a PD plus gravity com-
pensation controller can globally asymptotically
stabilize a rigid-joints manipulator (Takegaki and
Arimoto, 1981). This approach has drawbacks
that gravitational torque vector which depends on
some parameters, usually uncertain, is assumed
to be known accurately. To overcome parametric
uncertainties on the gravitational torque vector,
an adaptive version of PD controller has been
introduced in (Tomei, 1991), guaranteeing global
asymptotic stability. The main weakness of this
approach is that the structure of the gravitational
torque vector has to be known.

On the other hand, most industrial robots are
controlled by linear PID controllers which do not
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require any component of robot dynamics into
its control law. A simple linear and decoupled
PID feedback controller with appropriate con-
trol gains achieves the desired position without
any steady-state error. This is the main rea-
son why PID controllers are still used in indus-
trial robots. However, a linear PID controller in
closed loop with a robot manipulator guaran-
tees only local asymptotic stability (Arimoto and
Miyazaki, 1986; Kelly, 1995). By looking at the
proof it can be seen that the quadratic terms in
joint velocities contained in the Coriolis matrix
hampers the global asymptotic stability. This is
the reason to believe that linear PID control is
inadequate to cope with highly nonlinear systems
like robot manipulators, since the design of the
linear PID control law is based solely on local
arguments.

The first nonlinear PID controller which ensures
global asymptotic stability (GAS) is proposed in



(Kelly, 1993). In this work, which was inspired
by the results of (Tomei, 1991), it is proven that
global convergence is still preserved if the regres-
sor matrix is replaced by the constant matrix.
Since the regressor matrix is constant, the con-
trol law can be interpreted as a nonlinear PID
controller which achieves GAS by normalization
nonlinearities in the integrator term of the control
law. The second approach to achieving GAS is
the scheme of Arimoto (Arimoto, 1994) that uses
a saturation function in the integrator to render
the system globally asymptotically stable, just as
the normalization did in (Kelly, 1993). A unified
approach to both above controllers, which have a
linear derivative term, linear or saturated propor-
tional term, and nonlinearities in the integrator,
is given in (Kelly, 1998).

An alternative approach to global asymptotic sta-
bilization of robot manipulator is ”delayed PID”
(PIdD) (Loria et al., 2000). PIdD can be under-
stood as a simple PD controller to which an inte-
gral action is added after some transient of time.
The idea of this approach consists of ”patching” a
global and a local controller. The first drives the
solutions to an arbitrarily small domain, while the
second, yields local asymptotic stability.

All mentioned approaches can be applied to robot
manipulators with revolute joints only. In this
paper an approach to GAS of robot manipulators
with revolute and prismatic joints is presented.
In this approach GAS is achieved by adding a
nonlinear proportional and derivative term to
the linear PID controller. Explicit conditions on
controller parameters which guarantee GAS are
given. Also, a performance index is evaluated on
the base of the Lyapunov function.

This paper is organized as follows. The system
description is presented in Section 2. The stabil-
ity criterion based on the Lyapunov approach is
derived in Section 3. The performance tuning is
presented in Section 4. In Section 5, an example
is given to demonstrate the results. Finally, the
concluding remarks are emphasized in Section 6.

2. SYSTEM DESCRIPTION

We consider a robot manipulator with n-degree
of freedom in a closed loop with a nonlinear PID
controller.

2.1 Dynamics of Rigid Robot

The model of n-link rigid-body robotic manipula-
tor, in the absence of friction and disturbances, is
represented by

M(q)q̈ + C(q, q̇)q̇ + g(q) = u, (1)

where q is the n × 1 vector of robot joint coor-
dinates, q̇ is the n × 1 vector of joint velocities,
u is the n× 1 vector of applied joint torques and
forces, M(q) is n×n inertia matrix, C(q, q̇)q̇ is the
n×1 vector of centrifugal and Coriolis torques and
g(q) is the n × 1 vector of gravitational torques
and forces, obtained as the gradient of the robot
potential energy U(q)

g(q) =
∂U(q)

∂q
. (2)

The following properties of the robot dynam-
ics, are important for stability analysis (see e.g.
(Ortega et al., 1998) for properties 1, 4 and 5, and
(Pervozvanski and Freidovich, 1999) for properties
2 and 3).

Property 1. The matrix S(q, q̇) = Ṁ(q)− 2C(q, q̇)
is skew-symmetric, i.e.,

zT S(q, q̇)z = 0, ∀z ∈ Rn. (3)

This implies

Ṁ(q) = C(q, q̇) + C(q, q̇)T . (4)

Property 2. The inertia matrix M(q) is a positive
definite symmetric matrix which satisfies

a1‖z‖2 ≤ zT M(q)z ≤ ā2(‖q‖)‖z‖2, (5)

for all z, q ∈ Rn, where

ā2(‖q‖) = a2 + c2‖q‖+ d2‖q‖2, (6)

and a1, a2 > 0, c2, d2 ≥ 0.

Property 3. The Coriolis and centrifugal terms
C(q, q̇)q̇ satisfy

‖C(q, q̇)q̇‖ ≤ (c1 + d1‖q‖)‖q̇‖2, (7)

for all q, q̇ ∈ Rn, where c1, d1 ≥ 0.

Property 4. There exists a positive constant kg

such that the gravity vector satisfies

‖g(x)− g(y)‖ ≤ kg‖x− y‖, ∀ x, y ∈ Rn. (8)

Property 5. There exists a positive diagonal ma-
trix KP (x) such that the following two inequal-
ities with specified constant k1 > 0 are satisfied
simultaneously

q̃T KP (x)q̃ + q̃T (g(q)− g(qd)) ≥ k1‖q̃‖2, (9)

1
2
q̃T KP (x)q̃ + Ū(q̃) ≥ 1

2
k1‖q̃‖2, (10)

where

Ū(q̃) = U(q)− U(qd)− q̃T g(qd), (11)

k1 = λm{KP } − kg ≥ 0. (12)



Here and below we use the notation: ‖ · ‖ for the
Euclidean norm of the vector ” · ”, λM{·} and
λm{·} for the maximal and minimal eigenvalues
of the symmetric matrix ” · ”, I for the identity
matrix of the appropriate dimension.

The assumptions (5)-(10) are valid for all practi-
cally used robot manipulators. If the robot has no
prismatic joints then d1, d2, c2 = 0. The bounded-
ness of gravity forces does not hold for manipula-
tors having non-horizontal prismatic joints, but it
is not required for stability analysis.

2.2 Nonlinear PID Controller

The nonlinear PID control law is given by

u =−ΨP (q̃)q̃ −ΨD(q̃)q̇ −KIν, (13)

ν̇ = q̃, (14)

where q̃ = q − qd is a joint position error, KI

is a constant positive definite diagonal matrix,
Ψj(q̃), j = P, D are (n × n) positive definite
diagonal matrix functions which can be written
in the following form

Ψj(q̃) = Kj + k
(1)
j ‖q̃‖I + k

(2)
j ‖q̃‖2I, (15)

where Kj , j = P,D are constant positive definite
diagonal matrix, and k

(1)
j , k

(2)
j are positive con-

stants.

The following properties of functions Ψj(q̃), j =
P, D are important for stability analysis.

Property 1. Functions Ψj(q̃), j = P, D, are lower
bounded and satisfy the following inequalities

zT Ψj(q̃)z ≥ (λm{Kj}+ k
(1)
j ‖q̃‖+ k

(2)
j ‖q̃‖2)‖z‖2 ≥

≥ λm{Kj}‖z‖2, ∀z ∈ Rn. (16)

Property 2. The following property of the Eu-
clidean norm holds

d

dt

(
1
k
‖q̃‖k

)
= ‖q̃‖k−2q̃T q̇, k ≥ 2. (17)

3. STABILITY ANALYSIS

The stability analysis is based on Lyapunov’s di-
rect method, and can be divided in four parts.
First, error equations for the closed-loop system
(1), (13), (14) is determined. Second, the Lya-
punov function (LF) candidate is proposed. Then,
a global stability criterion on system parameters
is established. Finally, the LaSalle invariance prin-
ciple is invoked to guarantee the asymptotic sta-
bility.

3.1 Error Equations

The stationary state of the system (1), (13), (14)
is q̃ = 0, q̇ = 0, ν = ν∗, and ν∗ satisfies g(qd) =
−KIν

∗.

If a new variable z = ν − ν∗ is introduced, then
the system (1), (13), (14) becomes

M(q)q̈ + C(q, q̇)q̇ + g(q)− g(qd) = u, (18)

u = −ΨP (q̃)q̃ −ΨD(q̃)q̇ −KIz, (19)

ż = q̃. (20)

3.2 Construction of the Lyapunov function

First, an output variable y = q̇+αq̃ with some α >
0 is introduced, and the inner product between
(18) and y is made, resulting in a nonlinear
differential form which can be separated in the
following way

dV (q̃, q̇, z)
dt

= −W (q̃, q̇), (21)

where V (q̃, q̇, z) is the Lyapunov function candi-
date.

For easier determination of conditions for positive-
definiteness of function V and W , the following
decompositions are made: V (q̃, q̇, z) = V1(q̃, q̇) +
V2(q̃, z) and W (q̃, q̇) = W1(q̃, q̇) + W2(q̃), where

V1(q̃, q̇) =
1
2
q̇T M(q)q̇ + U(q)− U(qd)− q̃T g(qd) +

+ αq̃T M(q)q̇ +
1
2
q̃T KP q̃ +

+
1
3
k

(1)
P ‖q̃‖3 +

1
4
k

(2)
P ‖q̃‖4, (22)

V2(q̃, z) =
1
2
αzT KIz + q̃T KIz +

1
2
αq̃T KD q̃ +

+
1
3
αk

(1)
D ‖q̃‖3 +

1
4
αk

(2)
D ‖q̃‖4, (23)

and

W1(q̃, q̇) =−αq̇T M(q)q̇ + q̇T ΨD(q̃)q̇ +

+ αq̃T (Ṁ(q)− C(q, q̇))q̇, (24)

W2(q̃) =−q̃T (KI − αΨP (q̃))q̃ +

+ αq̃T (g(q)− g(qd)). (25)

In this way, the problem of determination of
conditions for positive-definiteness of function V ,
which contains three variables (Kelly, 1995), is
transformed into two simpler problems of deter-
mination of conditions for positive-definiteness of
functions V1(q̃, q̇) and V2(q̃, z), which contain only
two variables. The second advantage of the above
mentioned decomposition of functions V and W
is the elimination of unspecified constant α from
the final stability condition.



3.3 Stability criterion determination

In this section, because of compactness, the fol-
lowing shortened notation is introduced: kjm =
λm{Kj}, kjM = λM{Kj}, j = P, I, D.

3.3.1. Conditions of positive-definiteness of func-
tion V . First, we consider function V1 which can
be rearranged to be of the following form

V1 =
1
2

(q̇ + αq̃)T
M(q) (q̇ + αq̃)− 1

2
α2q̃T M(q)q̃ +

+
1
2
q̃T ΨP (q̃)q̃ + U(q)− U(qd)− q̃T g(qd), (26)

and using properties (10) and (5) we get

V1 ≥ 1
2
(k1 + k

(1)
P ‖q̃‖+ k

(2)
P ‖q̃‖2)‖q̃‖2 −

− 1
2
α2(a2 + c2‖q‖+ d2‖q‖2)‖q̃‖2 ≥ 0. (27)

Using triangle inequality ‖q‖ ≤ ‖q̃‖ + ‖qd‖, and
rearranging the previous expression we get

V1 ≥ 1
2
(k1 − α2m̄)‖q̃‖2 +

1
2
(k(1)

P − α2m̄1)‖q̃‖3 +

+
1
2
(k(2)

P − α2d2‖q̃‖4, (28)

where

m̄ = a2 + c2‖qd‖+ d2‖qd‖2, (29)

m̄1 = c2 + 2d2‖qd‖. (30)

The function V1 is positive-definite if the follow-
ing conditions are satisfied

k1 > α2m̄, k
(1)
P > α2m̄1, k

(2)
P > α2d2. (31)

Further, we consider function V2 which can be
rearranged to be of the form

V2 =
1
2

(√
αz +

1√
α

q̃

)T

KI

(√
αz +

1√
α

q̃

)
+

+
1
2
q̃T

(
αKD − 1

α
KI

)
q̃ +

+
1
3
αk

(1)
D ‖q̃‖3 +

1
4
αk

(2)
D ‖q̃‖4. (32)

If we apply properties (16) then

V2 ≥ 1
2

(
αkDm − 1

α
kIM

)
‖q̃‖2, (33)

that is positive-definite if the following condition
is satisfied

α2 >
kIM

kDm
. (34)

Comparing (34) with (31), the following condi-
tions for positive definiteness are obtained

k1kDm > kIMm̄, (35)

k
(1)
P kDm > kIMm̄1, (36)

k
(2)
P kDm > kIMd2. (37)

Note that in the above-stated conditions the
unspecified positive constant α is eliminated.

3.3.2. Conditions of positive-definiteness of func-
tion W . The next step is the condition which
ensures that the time derivative of LF is a negative
definite function, i.e., W ≥ 0. First, we consider
function W1. Applying properties (4), (5), (7) and
(16) we get

W1 ≥ (λm{KD}+ k
(1)
D ‖q̃‖+ k

(2)
D ‖q̃‖2)‖q̇‖2 −

− α(a2 + c2‖q‖+ d2‖q‖2)‖q̇‖2 −
− α(c1 + d1‖q‖)‖q̃‖‖q̇‖2 ≥ 0. (38)

Using triangle inequality ‖q‖ ≤ ‖q̃‖ + ‖qd‖, we
get

W1 ≥ [λm{KD} − αm̄]‖q̇‖2 +

+ [k(1)
D − α(m̄1 + k̄c)]‖q̃‖‖q̇‖2 +

+ [k(2)
D − α(d1 + d2)]‖q̃‖2‖q̇‖2, (39)

where k̄c = c1 + d1‖qd‖.
The function W1 is positive-definite if the follow-
ing conditions are satisfied

kDm > αm̄, (40)

k
(1)
D > α(m̄1 + k̄c), (41)

k
(2)
D > α(d1 + d2). (42)

Further, we consider function W2. Using property
(9) we get

W2 ≥ (αk1 − kIM )‖q̃‖2, (43)

that is positive-definite if we have

α >
kIM

k1
. (44)

Comparing (44) with (40)-(42) the following
conditions for positive definiteness are obtained

k1kDm > kIMm̄, (45)

k
(1)
D k1 > kIM (m̄1 + k̄c), (46)

k
(2)
D k1 > kIM (d1 + d2). (47)

Also, in the above-stated conditions, the unspec-
ified positive constant α is eliminated.

3.3.3. A choice of parameters which ensure GAS.
Proposition 1. The following choice of parameters
k

(i)
j , j = P, D, i = 1, 2,



k
(1)
P =

m̄1

m̄
k1, k

(2)
P =

d2

m̄
k1, (48)

k
(1)
D =

m̄1 + k̄c

m̄
kDm, k

(2)
D =

d1 + d2

m̄
kDm,(49)

will satisfy stability conditions (36), (37), (46) and
(47).

Proof. From (35) or (45) we have

k1

m̄
>

kIM

kDm
,

kDm

m̄
>

kIM

k1
. (50)

Putting first inequality in (48) we get (36) and
(37). Further, putting second inequality in (49)
we get (46) and (47). 2

4. PERFORMANCE EVALUATION

The Lyapunov function V and its time derivative
V̇ = −W contain free parameter α. This fact can
be employed for the evaluation of the following
performance index

I = I1 + τ2I2, (51)

where the constant τ2 is the weighting factor, and

I1 =

∞∫

0

‖q̃‖2dt, I2 =

∞∫

0

‖q̇‖2dt. (52)

Also, in this section, because of compactness, the
following shortened notation is introduced

µj =
λM{Kj}
λm{Kj} , wp =

1
p
‖qd‖p, (53)

where j = P, I,D, and p = 2, 3, 4.

The performance index (51) can be evaluated
using the Lyapunov function (22), (23) and its
time derivative. From the equation (21) we can
get

V (t)− V (0) = −
t∫

0

W (q̃(s), q̇(s))ds, (54)

and, for t →∞,

V (0) =

∞∫

0

W (q̃(s), q̇(s))ds, (55)

because V (∞) = 0. Putting (38) and (43) in (55)
we get

V (0)≥ (kDm − αm̄)I2 + (αk1 − kIM )I1 +

+ (k(1)
D − α(m̄1 + k̄c))

∞∫

0

‖q̃‖‖q̇‖2dt +

+ (k(2)
D − α(d1 + d2))

∞∫

0

‖q̃‖2‖q̇‖2dt. (56)

The third and fourth term on the right side of the
above-mentioned expression are positive because
of (41) and (42), so that

V (0) ≥ (kDm − αm̄)I2 + (αk1 − kIM )I1.(57)

The next step is the estimation of the upper
bounds on V(0). We have q̃(0) = −qd, q̇(0) = 0,
z(0) = −ν∗ = K−1

I g(qd), so that V (0) satisfies the
following expression

V (0) =−U(qd) +
1
2
qT
d KP qd +

1
2
αqT

d KDqd +

+
1
2
αg(qd)T K−1

I g(qd) +
1
3
k

(1)
P ‖qd‖3 + (58)

+
1
4
k

(2)
P ‖qd‖4 +

1
3
αk

(1)
D ‖qd‖3 +

1
4
αk

(2)
D ‖qd‖4.

So, we can estimate the upper bounds

V (0)≤w2(kPM + αkDM ) +
1
2
αk−1

IM‖g(qd)‖2 +

+ w3k
(1)
P + w4k

(2)
P + αw3k

(1)
D + αw4k

(2)
D (59)

Because of (8) and λM{K−1
I } = 1/λm{KI} we

have

V (0)≤w2

[
kPM + α

(
kDM +

k2
g

kIm

)]
+ w3k

(1)
P

+ w4k
(2)
P + αw3k

(1)
D + αw4k

(2)
D . (60)

Finally, comparing (57) and (60) we have

(kDm − αm̄)I2 + (αk1 − kIM )I1 ≤

≤ w2

[
kPM + α

(
kDM +

k2
g

kIm

)]
+ (61)

+ w3k
(1)
P + w4k

(2)
P + αw3k

(1)
D + αw4k

(2)
D .

From the above-mentioned expression we can get
integral terms I1 and I2 in the following way. If
we put α = kDm/m̄ in expression (61) and apply
(48) and (49) we get

I1 ≤ w2

SM

[
m̄kPM + kDm

(
kDM +

k2
g

kIm

)]
+

+
1

SM
(Āk1 + C̄k2

Dm), (62)

where SM = k1kDm − m̄kIM , and

Ā = w3m̄1 + w4d2, B̄ = w3k̄c + w4d1,

C̄ = (Ā + B̄)/m̄. (63)

Similarly, if we put α = kIM/k1 then



I2 ≤ w2

SM

[
kPMk1 + kIM

(
kDM +

k2
g

kIm

)]
+

+
1

SM

(
Ā

m̄
k2
1 + C̄kDmkIM

)
. (64)

Finally, if we put expressions (62) and (64) in
(51) including (53) we get

I ≤ Î =
1

SM
(k∗P + A(k2

Dm + τ2kDmkIM )) +

+
B

SM

(
kDm

kIM
+ τ2

)
, (65)

where Î is the estimation of the upper bounds of
the performance index (51), and

k∗P = (m̄ + τ2k1)
(

w2kPM +
Ā

m̄
k1

)
,

A = w2µD + C̄, B = w2µIk
2
g . (66)

Expression (65) can be employed to find the
optimal values of the controller gains

∂Î

∂kDm
= 0,

∂Î

∂kIM
= 0. (67)

The solution of above set of nonlinear algebraic
equations can be found by applying simple itera-
tive procedure.

5. SIMULATION EXAMPLE

We consider a 2-DOF manipulator with rotational
and translational degrees of freedom,

(m1l
2
c + m2(l + q2)2)q̈1 + 2m2(l + q2)q̇1q̇2 +

+(m1lc + m2(l + q2))g sin(q1) = 0, (68)

m2q̈2 −m2(l + q2)q̇2
1 −mg cos(q1) = 0. (69)

as shown in Fig. 1. The values of parameters
can be determined comparing (68) and (69) with
(5), (7) and (8), a1 = min{m1l

2
c ,m2}, c1 =

c2 = 2m2l, d2 = m2, a2 = max{m1l
2
c +

m2l
2,m2}, d1 = 2m2, kg = 2g(m1lc + m2l) +

2gm2(2+ qd2). The numerical values of the model
parameters are: m1 = 2 kg, m2 = 0.5 kg, lc =
0.7 m, l = 1 m. In Fig. 1. we can see transient
response of the link positions for kPm = 100, and
for the optimal values kDm = 16.6 and kIM = 17.2
which minimize the performance index (65).

6. CONCLUSION

In this paper a new class of globally stable con-
trollers for robot manipulators with revolute and
prismatic joints has been presented. The stability
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Fig. 1. The robot manipulator and the transient
response of the position variables.

criterion in terms of Lyapunov’s direct method
is proposed to guarantee the global asymptotic
stability. Also, a performance index is obtained
providing determination of the optimal values of
the controller gains.
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