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Abstract 
Here we present a propagation model for Power-Line 
Communication (PLC) networks, based on a frequency 
domain analysis. First we set a simple two-port model of 
a network and calculate complex attenuation factor from 
the z-parameters, which are expressed in terms of 
impedances easily calculable/measurable from the 
network's ports. We provide all the elements for a simple 
and efficient propagation model, including propagation 
by crosstalk between different circuits in e.g. three phase 
networks, as well as influence of the loads connected to 
the ports of different circuits on such networks. We 
conclude that the model shown is suitable for PLC 
channels simulations, giving very accurate results and 
enabling modeling of wide band channel characteristics. 
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1.  Introduction 
In this article we present an accurate and straightforward 
model for propagation analysis in complex Power-Line 
Communication (PLC) networks. The model is based on 
the simulations of input impedances of network's ports. 
We also develop a measurement method grounded on the 
same principle. Models which first evaluate an impulse 
response of the network, switch to frequency domain by 
means of inverse fast Fourier transform, and then 
introduce correction for material loss in cables, are today 
widely spread and rather well developed [1, 2, 3]. Since 
distribution networks have very complex topologies and 
many ports, a multipath propagation phenomena occur. 
However, tracing of all possible impulse paths in multi-
branched networks, i.e. pure calculation of delays and 
amplitudes of all possible modes of impulse propagation, 
turns out to be very complex even for relatively simple 
networks. While developing our method, we were led by 
several firm principles: 

- The propagation model should be as simple as 
possible, and it may require as input data only the 
network topology and a few cable properties for each 
cable type used. 

- The model must be experimentally verified against 
another independent direct channel attenuation 

measurement, performed on a model network 
designed for this purpose. 

- The model must be based on easily calculable 
quantities, which must be related only to network 
terminals, and not to inner (hidden) quantities within 
the network. 

- The model must define all the elements needed to 
make a software tool for propagation analysis. 
Besides pure complex transfer function, this tool 
should also be able to perform calculations and 
analyses of other quantities important for wide-band 
communication channel characterization. 

So, our purpose is to develop a very simple and 
practical model with which one can act on real life 
networks, predicting channel attenuations and other 
important features. Thus this model is complementary 
to time domain based models, treating the same 
physical processes in an alternative way. 
 

2.  Basic Propagation Analysis 
Fig. 1. shows the basic two-port network model with z-
parameters. From the elementary analysis of this circuit, 
the input/output voltage ratio, which we will call 
attenuation, Γ, is: 
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Fig. 1. Two-port model of PLC network. 
 
Other attenuation factors could also be easily specified, 
e.g. E/V2, I1/I2, (V1I1/V2I2), but throughout this article we 
assume attenuation is defined as port voltages ratio, (1). 
Next, we introduce the following quantities: 

- Z1O  – impedance seen at port 1, when port 2 is 
open; 
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- Z1S  – impedance seen at port 1, when port 2 is 
short circuited; 

- Z2O  – impedance seen at port 2, when port 1 is 
open; 

- Z2S  – impedance seen at port 2, when port 1 is 
short circuited. 

Since z-parameters can be expressed in terms of three 
of the four of those impedances, (1) can be transformed 
to: 
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or to: 
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Now we have two equivalent formulas expressed in terms 
of port impedances rather than z-parameters. All of those 
impedances can easily be calculated or measured in PLC 
networks. Both propagation model is based on (2), or (3). 
For the two port network, at least three of four 
impedances defined above, seen from the two ports under 
defined conditions, are required. Of course, z-parameters 
can also be calculated by performing three 
measurements/simulations only from one port, requiring 
that the other can be loaded by three different precise 
terminations. We choose the approach with formulas (2) 
or (3) because it gives the simplest expressions, thus 
reducing error accumulation when measurements based 
on the same principle as the simulation method are 
involved. From purely computational (modeling) point of 
view, all the approaches mentioned above are equivalent. 
 
Let us emphasize that along with the simulation method 
treated here we can also define a measurement method 
involving measurements of port impedances, and then 
calculation of the attenuation factor from them by (2) or 
(3). So, when ever we address impedance measurements, 
we also address impedance calculations, and vice versa. 
 
We shall now explain extension of the method to multi-
port networks. Imagine an N-port network and its z-
parameter matrix. All the diagonal z-parameters can 
obviously be identified with the impedances measured 
from appropriate ports, while all other ports are open. 
Transimpedances should be expressed in terms of 
impedances measurable from the ports, avoiding 
simultaneous measurements of voltages and currents on 
different ports, which might seem appropriate from the z-
parameters definition, i.e. zij = Vi/Ij. Since 
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we can extract all the z-parameters by single-sided 
impedances measurements/simulations. Here, indexes i,j 

stand for respective ports, ZjO stands for the impedance 
seen at the port j while all other ports are open, and O

ij,Γ  

stands for the complex voltage attenuation factor when 
the signal propagates from port j to port i, and when all 
other ports are open. This factor can obviously be 
determined by two-port type expressions, like (2) or (3), 
so we can calculate all the z-parameters from single-sided 
impedance measurements. Employing two-port scheme, 
Fig. 1, zij can be expressed as: 
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Here the indexes O and S mean "open" and "short". For 
each zii one must measure one complex impedance, and 
for each zij three, so the total number of measured port 
impedances needed for full description of N-port network 
is N(3N – 1)/2. 
 
Suppose that the port 1 is fed by a source with Thevenen's 
voltage E1 and Thevenen's impedance ZL1. According to 
standard z-parameters definition, voltage on port 1 equals      
E1 – I1ZL1. If the load impedance on i-th port is ZLi, the 
matrix equation for currents and voltages is: 
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From the Cramer's rule, the expression for the attenuation 
factor when signal propagates from port 1 to port i is: 
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Here ∆x denotes the determinant of the z-matrix from (6) 
in which the x-th column is replaced by a column vector 
with all elements equal to zero, except the first one, 
equaling 1. 
 
One easily shows that the result (7), in both amplitude 
and phase parts, is sensitive to signs of the 
transimpedances from (6), which are calculated by (5), so 
the question of the square roots signs occurs. To ensure 
the correctness of the resulting transimpedance, one can 
take the following approach. Determine first the argument 
of the impedance ZiO from, for example, the left 
expression in (5), which can take values between –π/2 
and +π/2. Then calculate the argument of the difference 
ZjO – ZjS, which can take any value between 0 and 2π. 
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Sum up the two results and divide by 2, so to get the 
argument of the resulting transimpedance. The module of 
it is calculated in a straightforward manner, so that we get 
the transimpedance in polar coordinates, which can easily 
be converted to Cartesian shape. 
 
Equation (7) enables analysis of any port's load influence 
on attenuation factor. In general, the multi-port approach 
may not be very practical because in real networks load 
impedances are in most cases not known, or at least not 
sufficiently precisely known. So, with (7) we can in fact 
simulate load influences in the theoretic context, which 
we also find usable. However, for the development of the 
simulation software tool, or the measurement method, we 
shall apply the two-port model. Load variations are 
modeled by stochastic termination of all the network 
nodes according to appropriate distributions which 
simulate realistic situations. 
 
3.  Cable Parameters 
We shall now briefly describe the building blocks for the 
development of an efficient and accurate software tool for 
PLC channel propagation modeling, starting with cable 
parameters. We present here a method for extraction of 
relevant parameters from simple measurements of input 
impedances on a piece of cable, while the other side of it 
is short circuited, or open. The cable used here for 
demonstrations was three-wire 0.75 mm2, PVC isolated. It 
was the cable with highest specific attenuation available 
on market, which is an advantage for demonstration of 
material attenuation modeling. Other types more 
commonly encountered in electrical installations have 
somewhat lower attenuation. From the basic transmission 
line theory we can derive the ratio between imaginary and 
real part of the impedance for an open line of the length l: 
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For shorted line we obtain the same expression, only with 
opposite sign. Measured ratios for a 15-meter peace of 
cable are given on Fig. 2. Information on wave number, 
β, is in zero crossings, whilst α can be calculated from the 
decay of the curves' envelopes. The wave number equals 
2π/λ = 2πf/v, where λ is the wavelength in the 
propagation medium, and v is wave propagation velocity. 
The suitable model for α is [1]: 
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The least squares method employed to (8) and (9) 
produces very complicated system of simultaneous 
equations with four unknowns (α0, α1, K and β). With 
this system we could make use of all 259 measured for 
each curve from Fig. 2. Instead we use only the data on 
zero crossings for calculation of β, and data on extreme 
values for α0, α1, and K. Looking at Fig. 2, the average 
frequency interval between zero points is 2.87 MHz, and 
the standard deviation of it is 0.078 MHz. We derive the 

least squares condition by enforcing the function y = 
sin(Cf) to run as close as possible to zero crossings, 
yielding: 
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All summations hereafter run from i=1 to the number of 
data points used, N. Here C is a parameter. The left-hand 
side of (10) must equal zero because all yi equal zero 
(zero crossings). Equation (10) has many solutions and is 
very sensitive to C, so the result should be controlled by 
comparing the solution with average interval between 
zero crossings, ∆f, which was here 2.87 MHz. Relation 
between C and ∆f is simple: C = π/∆f. For our 15-meter 
test peace of cable we obtained C = 1.141 rad/MHz, 
implying v = 4πl/C = 1.652 m/s, i.e. 0.55 times light 
speed in vacuum. Parameter C is constant within the 
frequency band of our interest (5 to 30 MHz), and so is 
the wave velocity, v. 
 
Parameters α0, α1, and K can be extracted from the points 
where the envelopes touch the curves from Fig. 2, i.e. 
where sin(Cf) = 1. Those data points are special because 
their ordinate values do not depend on C. For them we 
calculate: 
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The X/R term applies to both open and short impedance 
imaginary and real parts. From our two curves we can 
obtain  N = 18 values for αi. Now, using (9), one can 
easily show that K is the solution of the following implicit 
equation: 

 
 
Fig. 2. Measured ratios of imaginary and real part of the impedances of  
15-meter cable (one pair in a 3-wire cable), when the other end is open, 
or shorted. 
 

 
 
Fig. 3. Three-wire cable as a four-port network. 
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This can be solved by a simple numerical procedure. 
Knowing K, we obtain α1 as any of the two left-hand side 
expressions from (12). Finally, α0 can be calculated as: 
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For our cable we obtained:   K = 0.709; 
α1 = 0.00095 m-1 MHz-1 

α0 = 0.00307 m-1. 
 
These figures are in agreement with values found in 
literature, see e.g. [1], and they also enabled very accurate 
simulations. 
 The wave impedance, Z0, was found from the data as 
the geometrical mean between short- and open line 
impedances: 
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This was calculated for all measured points at 259 
different frequencies, and then all results were averaged. 
The statistical processing showed very small frequency 
dependence of the resulting best linear fit throughout the 
frequency band from 5 to 30 MHz. Real part of Z0 was 
never different from the absolute value of it more than 
1.5%, and in 96% of total frequency band the difference 
was less than 0.5%. Resulting Z0 was 90.442 Ω. Using the 
same procedure, we also extracted the wave impedance 
when the two of three cable's wires were shorted at both 
ends. In such a propagation mode, the wave impedance 
was 67 Ω. 
 
4.  Crosstalk Propagation 
An important building block for the simulation tool is a 
procedure for crosstalk propagation calculations. It 
enables modeling of situations when the signal is injected 
into one wire pair and forwarded to other network parts 
from the other pair, as well as modeling of the influence 
of a load impedance connected to the wire pair other than 
the one used for signal transmission. Both situations are 
commonly encountered e.g. in three-phase networks. On 
the other hand, with the new methods of PLC network 
conditioning [1], where the signal is injected into a 
neutral-protection wire pair, and when other wires are 
shorted together with the protection one by  small 
capacity condensers, crosstalk propagation model may 
not be of much importance. Therefore, we shall briefly 
present here only a model for transmission through two 
coupled lines section with common wire in a 

geometrically symmetrical arrangement. For shortness, 
we will only give the results, without thorough 
derivations.  We start with Fig. 3, where a three-wire 
cable is presented as a four-port network consisting of 
two transmission lines l meters long, between which the 
signal can propagate by crosstalk. The z-parameters of 
such a structure can be found in [4]: 
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It is understood that the cable is geometrically symmetric, 
and that the common wire is not necessarily at ground 
potential. Here Z0e is the even-mode wave impedance, and 
Z0o is the odd-mode wave impedance, which is always 
smaller or equal to Z0e. Our aim is to express the 
impedances that can be seen from port 1, when the port 3 
is open or shorted, and to express the impedance seen 
from the port 3, when the port 1 is open. Those three 
impedances are sufficient to calculate the z-parameters of 
the two-port network having the ports 1 and 3 from Fig. 
3. We assume the ports 2 and 4 are open. Let Z(1,4)O 
denote the impedance seen from the port 1, when the port 
4 (and all the others) is open, and let Z(1,4)S denote the 
impedance seen from port 1 when port 4 is shorted, and 
all the other ports are open. Let Z(1,3)S be the impedance 
seen from port 1, when port 3 is shorted, and let Z0 denote 
the wave impedance for the transmission line between 
ports 1 and 4, which can be measured as the geometrical 
mean between the latter two impedances, when the ports 
2 and 3 are open, as described in Chapter 3.  We have 
proven that the equation holds: 
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The impedance Z(1,3)S is a linear combination of Z(1,4)O and 
Z(1,4)S. With a = 4Z0eZ0o/(Z0e + Z0o)2, (16) takes the shape: 
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Note that the factor a can be viewed as another cable 
parameter and thus added to the set of parameters 
discussed in Chapter 4. In fact, the propagation model 
would not be complete without this parameter. 
Knowledge of Z0 and a is equivalent to the knowledge of 
the pair of wave impedances Z0e and Z0o. From our 
previous considerations one can easily derive the 
connection between those two sets of parameters: 
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This is a relation with general validity. We found the set 
(Z0,a) much more practical than (Z0e,Z0o) because both Z0 
and a are in fact very easy to measure on a single peace of 
cable. Since the impedance seen from port 1 when the 
port 3 (and all the others) is open equals z11, as well as to 
z33, from (15), which is also equal to Z(1,4)O, we have 
managed to express all the impedances needed to fully 
describe the crosstalk behavior in a structure from Fig. 3. 
with the impedances Z(1,4)O and Z(1,4)S only. The latter two 
are very easy to simulate, because they are simply: Z(1,4)O 
= Z0 coth(γl) and Z(1,4)S = Z0 tanh(γl). This is essential if 
one wants to make a practical simulation tool. 
 
5.  Propagation Analysis Tool 
Having all the elements explained, we may describe how 
the analysis tool works. It is grounded on impedance 
calculations. The complex Γ factor, which is reciprocal to 
the complex transfer function, is calculated according to 
(2) or (3). Assume one wants to calculate Γ for the 
propagation between ports A and B in a network. The 
program must calculate at least three impedances, for 
example: 
 

- impedance seen from A when B is open; 
- impedance seen from A when B is short; 
- impedance seen from B when A is open. 

 
In a distribution network of any complexity those 
calculations are easy to perform because we have explicit 
formulas for impedance transformations available. On 
Fig. 4. one can see a typical junction where four lines 
meet. Say we want to calculate the impedance seen from 
the port A, when ports B, C, and D are loaded by 
impedances ZB, ZC and ZD. Those loads can be anything, 
for example another line sections or parallel combinations 
of line sections. Let all four sections have the length l and 
the complex propagation constant γ. The load ZB is 
transformed by the line of the length l, so that at the 
junction point it looks like: 
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The other two loads transform in the same manner. In the 
junction point, the line leading towards port A is loaded 
by the parallel combination of those transformed loads, so 
that: 
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Finally we get the impedance seen from the port A: 
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This algorithm can obviously be performed easily over 
arbitrary complex distribution network containing such 
line branches. Another situation can occur if we have to 
model the crosstalk propagation. Then the program must 
calculate the z-parameters of such a section (z11, z22 and 

z12). Impedance transformation by a two-port loaded with 
certain ZL is simply: 
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Note that the program has to calculate nothing else, but 
impedance transformations, using explicit formulas of the 
types (19) or (21). It is self-understandable that the 
program must be given by the following inputs: 

- cable parameters for each network branch; 
- length of each branch; 
- network topology; 
- additional parameters for crosstalk sections; 
- loads connected to each port. 

We have tested the simulation model and the 
measurement method on a simple network made of the 
cable used for all investigations described in this article. 
The network had a shape of the letter H. All five branches 
were 15 meters long. The propagation between two points 
on diagonally opposite ends of the network was measured 
and simulated. We ran several tests, with various port 
terminations, and with the propagation by crosstalk, or 
influence of the load connected to a wire pair different 
than the one used for transmission. The results were very 
good. On Fig. 5. we present an example of a typical 
result, comparing the following: 

- simulation using measured cable parameters; 
- transfer function determined from measured port 

impedances, as described in this article; 
- direct measurements, with signal source on one 

side, and the spectrum analyzer on the other, 
performed at 26 frequencies within the band from 
5 to 30 MHz. 

 
Fig. 4. A typical element of a complex network's structure for 
explanation of the algorithm used in the simulation software tool. 
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Fig. 5. On the experimental verification of the propagation model. 
 
One can see excellent agreement, especially between 
direct attenuation measurement and simulation with the 
software tool. For impedance measurements we used the 
reflectometer built in the Anritsu Site Master S114B. We 
also checked for the agreement between the phase 
functions obtained by impedance measurements and by 
simulations. The results were also very good. Complex 
reflection coefficients with respect to instrument's 
impedance, 50 Ω, were converted to impedances with: 
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We also used the spectrum analyzer of the same 
instrument for received signal measurements. The signal 
source in the range from 5 to 30 MHz was Wandel 
Goltermann PSM 139. We used a digital oscilloscope 
Metrix OX 2000 for input voltage control. We took 
utmost care of the connections between instruments and 
the network ports and made sure that all the 
measurements are carried out with the exactly the same 
mechanical arrangement of the equipment and model 
network. We also examined the effect of mismatch 
between the network impedance and the spectrum 
analyzer inner impedance and factored it out. 
 
As regards simulation software tool, we made for 
demonstration a program that operated over a distribution 
network of an imagined office building with 150 
termination ports. It is self-understood that the network of 
such complexity cannot be modeled with time-domain 
approach in an economic way, unless some channel 
impulse response measurements are taken. Our program 
needed fractions of a second to simulate the complex 
transfer function of a single channel. Since this function 
can depend heavily on the loads connected to network 
ports, especially if they are placed in the vicinity of the 

transmitter or the receiver, we developed another 
interesting feature. 
Our program was generating loads for every termination 
port stochastically, according to a given distribution. Such 
a procedure can be performed a number of times. We 
used to have 1,000 simulations for each channel, meaning 
that the set of terminating impedances were stochastically 
changed 1,000 times. In such numerical experiment it is 
possible to generate a waste of data on various physical 
quantities important for PLC channel properties, enabling 
statistical analysis of them. We found this approach very 
useful because PLC network are in real life conditions 
hardly predictable. With this feature we have been able to 
analyze: 

- transfer function (amplitude, phase; real and 
imaginary part, various representations and 
visualizations); 

- group delay versus frequency; 
- delay spread according to various definitions; 
- network impulse response by means of 

appropriately adjusted fast inverse Fourier 
transform; 

- delay and delay spread for ultra wideband 
excitation of the channel; 

- full impedance analysis (module, phase, real and 
imaginary part, Smith chart representation); 

- thorough analysis of the channel's Shannon 
capacity (here the noise scenarios were needed, 
too). 

A full statistical analysis for each quantity mentioned 
above in a desired frequency band was carried out. Due to 
a limited scope and volume of this paper, we shall not 
present the simulation results in any further detail here. 

 
6.  Conclusion 
We have presented a propagation model in frequency 
domain suitable for PLC channel transfer function 
simulations. We also provide a measurement method 
based on the same principles. In both model and 
measurement method the transfer function is calculated 
from the impedances that can be calculated/measured on 
network ports. We have explained simple methods for 
cable parameters extraction, as well as necessary building 
blocks for the adequate software tool. We have 
experimentally verified the proposed model. The 
simulation tool can be used for extensive channel 
analyses. 
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