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DYNAMIC NEURAL NETWORK WITH ADAPTIVE NEURON 

ACTIVATION FUNCTION 
 

MAJETIC, D.; BREZAK, D.; NOVAKOVIC, B. & KASAC, J. 
 

 
Abstract: An attempt has been made to establish a nonlinear 
dynamic discrete-time neuron model, the so called Dynamic 
Elementary Processor (DEP). This dynamic neuron disposes of 
local memory, in that it has dynamic states. To accelerate the 
convergence of proposed extended dynamic error back 
propagation learning algorithm, the adaptive neuron activation 
function and momentum method are applied. Instead of most 
popular bipolar and unipolar Sigmoid neuron activation 
functions, the Gauss activation function with adaptive 
parameters is proposed. Based on the DEP neuron with 
adaptive activation function in hidden layer, a Dynamic Multi 
Layer Neural Network is proposed and tested in prediction of a 
Glass-Mackey time series. 
Key words: dynamic neural network, adaptive neuron 
activation function, momentum,  prediction, glass-mackey 
 
1. INTRODUCTION 
 
Error-back propagation is one of the most famous training 
algorithms for multilayer perceptron. Unfortunately it can be 
very slow for practical applications. Over the last years many 
improvement strategies have been developed to speed up error-
back propagation, and improve neural network learning and 
generalization features. All of these strategies can be separated 
in three basic categories. The first category deals with the 
improvement of the error back-propagation learning algorithm 
(Smagt, 1994). The second category deals with the neurons 
weights initial values (Nguyen & Widrow, 1990; Darken & 
Moody, 1991) and the third category deals with neural network 
topology optimization (Lawrence at al., 1996). 

In this paper the neuron structure modification and 
activation function with adaptive parameters are proposed. 
With applying only momentum method for speeding up the 
learning algorithm and proposed neuron activation function, 
neural network training procedure can be much efficient and 
faster. More over, the neural network with proposed activation 
function has the less number of neurons. And finally, trained 
neural network with smaller topology has much faster response, 
which is more promising in real-time domain applications. 
 
2. DYNAMIC NEURAL NETWORK 
 
The basic idea of the dynamic neuron concept is to introduce 
some dynamics to the neuron transfer function, such that the 
neuron activity depends on the internal neuron states. In this 
study an ARMA (Auto Regressive Moving Average) filter is 
integrated within the well known static neuron model. Such a 
filter allows the neuron to act like an infinite impulse response 
filter, and the neuron processes past values of its own activity 
and input signals. The structure of a proposed dynamic neuron 
model is plotted in Fig. 1. The filter input and output at time 
instant (n) are given in (1) and (2) respectively (Novakovic at 
al., 1998): 
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Fig. 1. Dynamic neuron model 
 
The input of the neuron activation function (AF) is given in (3), 
and widely used nonlinear Sigmoid unipolar activation function 
and gauss activation function with adaptive parameters, are 
described in (4) and (5) respectively. 
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where 1=Ju  represents a threshold unit, also called Bias. 
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The network proposed in this study has three layers. Each i-

th neuron in the first, input layer has single input which 
represents the external input to the neural network. The second 
layer is consisting of dynamic neurons, which are presented by 
Fig. 1. Each j-th dynamic neuron in hidden layer has an input 
from every neuron in the first layer, and one additional input 
with a fixed value of unity usually named as Bias. Each k-th 
neuron in the third, output layer has an input from every neuron 
in the second layer and, like the second layer one additional 
input with fixed value of unity (Bias). 
 
3. LEARNING ALGORITHM 
 
The goal of the learning algorithm is to adjust the neural 
network learning parameters ϑ in order to determine the 
optimal parameter set that minimises a performance index E 
(Zurada, 1992) as follows : 
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where N is the training set size, and the error is the signal 
defined as difference between the desired response  and 
the actual neuron response O(n). This error is propagated back 
to the input layer through the dynamic filters of dynamic 
neurons in hidden layer. Iteratively, the optimal parameters 
weights, filter coefficients and DEP activation function 
parameters (c and σ, (5)) are approximated by moving in the 
direction of steepest descent: 
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where η is a user-selected positive learning constant (learning 
rate). To accelerate the convergence of the learning algorithm 
given in (7), momentum method is applied. The momentum 
method is given in (9) and involves supplementing the current 
learning parameter adjustment (8) with a fraction of the most 
recent parameter adjustment. This is usually done according to 
the formula  
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where α is a user-selected positive learning constant. The 
arguments n and n-1 are used to indicate the current and the 
most recent training step (instant time), respectively. All error 
measures will be reported using non-dimensional error index 
NRMS, Normalized Root Mean Square error. “Normalized” 
means that the root mean square is divided by the standard 
deviation of the target data (Lapedes & Farber, 1987). 
 
4. EXPERIMENTAL RESULTS 
 
Lapedes suggested (Lapedes & Farber, 1987) the Glass-Mackey 
time series as a good benchmark for learning algorithms, 
because it has a simple definition, yet its elements are hard to 
predict (the series is chaotic). The goal of the task is to use 
known values of the time series up to the point x(t), to predict 
the value  x(t+P) at some point P  in the future . The standard 
method for this type of prediction is to create a mapping  f(•)  
as follows : 

( )(),...,2(),(),()( ∆−∆ )−∆−=+ mtxtxtxtxfPtx  (10) 
where P is a prediction time into the future, ∆ is a time delay , 
and m is an integer. According to the equation (10) an attractor 
can be reconstructed from a time series by using a set of time 
delayed samples of a series. By choosing ∆=P it is possible to 
predict the value of time series at any multiple of ∆ time steps 
in the future, by feeding the output back into the input and 
iterating the solution. In this study we choose to use 6=∆=P , 
since results can be compared with previous experiments where 

. It is obvious that for  and 6=P 6=∆=P 4=m  the 
expansion (10) has the following form : 

( ))24(),18(),12(),6(),()6( −−−−=+ txtxtxtxtxftx          (11) 
According to the equation (11) the input layer consists of 5 

neurons (input buffer), and output layer consists of one static 
neuron with linear activation function. For hidden layer we 
suggested 10 and 5 dynamic neurons. Lapedes and Farber 
(Lapedes & Farber, 1987) for the same task used 20 hidden 
static neurons arranged in two hidden layer architecture. 
Training started with random weights values between -1 and 
+1, while the filter coefficients  and  were initialized to 
zeros to support a stable learning procedure. The network was 
trained with 
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01.0=η  and 8.0=α . The trained network were 
used to predict new sets of values x(t) in the future. The 
learning and testing results are given in Table 1. 
 

Neuron AF Unipolar Sigmoid Adaptive Gauss 
Network Topology 5-10-1 5-5-1 5-10-1 5-5-1 
Learning Epoch's 70000 80000 35000 50000 
Learning (NRMS) 0,069 0,053 0,027 0,057 
Test 1. (NRMS) 0,069 0,071 0,048 0,043 
Test 2. (NRMS) 0,071 0,067 0,052 0,058 
Test 3. (NRMS) 0,073 0,078 0,050 0,052 

Table 1. Learning and test results 
 
It is obvious that proposed neuron structure modification 
concerning integrated ARMA filter and adaptive Gauss 
activation function gives very promising results. The goal was 

achieved with only 5 hidden nodes. Neural network with 
adaptive activation function learns faster and have smaller 
topology. To illustrate the network generalization capability, 
the 300 data points of test 2. for the Adaptive Gauss and 
Unipolar Sigmoid activation functions are given in fig. 2. 
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Fig. 2. Test 2. for the 5-5-1 neural network topology with Gauss 
and unipolar Sigmoid activation function 
 
5. CONCLUSION 
 
Within this approach a Multi Layer Perceptron with distributed 
dynamics based on the DEP neuron model and adaptive 
activation function was proposed to predict a time series of 
nonlinear chaotic system. An attempt was made within this 
approach to establish a basic dynamic neuron model, which 
processes multi inputs and does not require past values of the 
process measurements or prior information about its activity 
functions. 

The main advantage of proposed dynamic neuron model is 
that it reduces the network input space. The advantage of 
adaptive activation function is speeding up the learning 
algorithm. Such AF shows the great possibility in solving the 
local minima's problems. The proposed neural network offers a 
great potential in solving many problems that occurs in system 
modelling with a special emphasis on the systems with 
characteristics such as nonlinearity, time delays, saturation or 
time-varying parameters. 
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