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Miroslav Barić a,∗ Ivan Petrović a Nedjeljko Perić a
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Abstract

In this paper a neural network based sliding mode controller for electronic throttle
is proposed. Electronic throttle is considered as an uncertain linear system. The un-
certainties, which consist of an unknown friction and spring torque are estimated by
the neural network whose parameters are adapted in an on-line fashion. Control and
adaptive laws guarantee the boundedness of all signals in the system. Presented ex-
perimental results demonstrate the efficiency and robustness of the proposed control
scheme.

Key words: electronic throttle control, uncertainty, sliding mode, neural networks,
adaptive control

1 Introduction

Originally used only in high-performance vehicles with traction control, elec-
tronic throttle control (ETC) today becomes standard part of modern auto-
motive systems. By replacing the mechanical link between the driver’s pedal
and the throttle valve, electronic throttle eliminates the need for the additional
idle-speed actuator, since the idle-speed control can also be achieved through
the ETC system. In general, ETC makes the engine control easier and thus
introduces a possibility for the improvements in the sense of vehicle emission,
fuel economy and drivability. These are the main reason for the significant in-
terest of the control community for the ETC problem. A good survey of ETC
can be found in [1].
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The requirements set before ETC are high: the tracking of the referent valve
opening should be as accurate as possible and at the same time the control
system should be highly robust. Electronic throttles are produced in large
series from cheap components, meaning that considerable variations in their
electro-mechanical characteristics can be expected. Furthermore, significant
variations of the throttle physical parameters may occur during its operation,
mainly due to the changes of the temperature of the environment. Therefore,
in order to meet the above mentioned requirements, it is natural to consider
an ETC strategy based on robust and/or adaptive control concepts.

Sliding mode controllers have been used since 1950’s in a variety of control
applications [2–4]. The attractive feature of this control strategy is that a sys-
tem in the sliding mode is insensitive to parameter variations and disturbances
as long as these are implicit to the control input, i.e. as long as the match-
ing condition is satisfied. This is particularly convenient for the ETC since
the major uncertainty present in the electronic throttle (armature coil resis-
tance) satisfies the ”matching” condition [5]. Classical sliding mode control
concept introduces discontinuous control action, which results in higher en-
ergy consumptions and may lead to the undesired oscillatory behavior known
as ”chattering” [3]. In order to achieve stable sliding mode behavior, at least
the upper bound of the uncertainties and disturbances affecting the system
must be known. This, however, may result with very conservative controller.
In order to alleviate these disadvantages, the application of artificial neural
networks in the sliding mode control has been considered [6–10].

In this paper an application of the neural network based sliding mode con-
troller to the ETC is described. Neural network (NN) is used for the on-line
estimation of the state-dependent uncertainties in the system, similar to the
algorithm proposed in [6]. Adaptation algorithm is derived using the ideas
introduced by Polycarpou et. al. in [11,12], guaranteeing the ultimate bound-
edness of the neural network parameters and all signals in the closed-loop
system. The efficiency of the proposed algorithm has been experimentally ver-
ified.

The paper is structured as follows. In Section 2 the model of the electronic
throttle is described. The proposed algorithm is given in Section 3. Experi-
mental results are presented in Section 4. The concluding remarks are given
in Section 5.

2 Electronic Throttle

Electronic throttle (ET) system is shown in Fig. 1. Main parts of the system
are: DC motor, reduction gear box and a valve supported by a dual spring
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system, consisting of two return springs, whose characteristic is depicted in
Fig. 3. DC drive is supplied from the bipolar chopper. Motor shaft rotation is
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Fig. 1. Block scheme of the electronic throttle system

transmitted through the reduction gear box (see Fig. 2(b)) to the shaft with
the throttle valve (Fig. 2(a)). The opening of the throttle valve determines the
air mass inflow to the engine manifold. DC motor torque is in balance with
the torque produced by the dual spring system. This is a standard fail-safe
mechanism made for electronic subsystem failure situations, when the springs
keep the throttle valve at the default position which ensures the air inflow just
enough for the engine to keep running. This default position of the valve is
called ”Limp-Home position” (LH-position, θLH on Fig. 3).

Dynamic behavior of the electronic throttle is described by the following state
space equations:

θ̇ =
1

Kl
ωm, (1)

ω̇m =
Kt

J
ia − Kl

J
ms(θ) − 1

J
mf (ωm), (2)

i̇a = −KaKv

Ta

ωm − 1

Ta

ia +
Ka

Ta

ua, (3)

(a) Throttle valve (b) Reduction gear box

Fig. 2. Electronic throttle
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with the following notation: θ - valve angle, ωm - DC motor angular velocity,
ia - DC motor armature current, ua - DC motor armature voltage, ms - spring
torque, mf - gear friction torque, Ka - armature gain, Ta - armature time
constant, Kt - motor torque constant, Kv - electro-motive force constant, Kl

- gear ratio.

Block diagram of the throttle model given by (1)-(3) is shown in Fig. 4. In this
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Fig. 4. Block diagram of the electronic throttle model

model it is assumed that the friction torque (mf ) depends only on the motor
angular velocity ωm, which is a satisfactory approximation. More accurate and
detailed description of the friction model can be found in [1].

The dynamics of the armature current can be neglected, i.e. the equation (3)
can be replaced by

ia = Ka(ua −Kvωm). (4)
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The result is the reduced set of equations:

θ̇ =
1

Kl
ωm, (5)

ω̇m = −KtKvKa

J
ωm +

KtKa

J
ua − Kl

J
ms(θ) − 1

J
mf(ωm). (6)

During the operation of the ET there are significant changes in the coeffi-
cient Ka due to the therimc variations of the armature resistance. This effect,
together with the spring torque (ms), the friction (mf ) and the disturbance
caused by the air flow (mL), represents the net uncertainties and disturbances
(ξ) in the system:

ξ =
1

J
[−KtKv∆Kaωm + Kt∆Kaua −Klms(θ) −mf(ωm) −mL] . (7)

In order to solve the ETC problem, the value of ξ should be estimated. A con-
trol algorithm that uses a neural network for the estimation of ξ is presented
in the following section.

3 Neural network based sliding mode controller

Consider a system described by the following equations:

ẋ = Ax(t) +Bu(t) + ξ(x,u, t), (8)

where A ∈ R
n×n, B ∈ R

n×m, and ξ represents the uncertainty and unknown
disturbances in the system.

Specifically, for the ET system described by (5) to (7) it can be written:

A =


 0 1/Kl

0 −KtKvKa/J


 , B =

[
0 KtKa

J

]T
,

x =
[
θ ωm

]T
, u = [ua] , ξ(x,u, t) =

[
0 ξ(x,u, t)

]T
.

It is assumed that all states of the system are available and that function
ξ(x,u, t) is bounded. The objective is to design a controller which will reduce
the influence of joint uncertainties / disturbances ξ and achieve the tracking of
the referent state vector xR. In this section, an adaptive sliding mode controller
is considered. The design of the controller follows the usual procedure in the
sliding mode control design: first, the control action is chosen, which will drive
the system into the sliding mode and then, the parameters of the sliding surface
are selected, such that the stable sliding behavior is ensured.
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3.1 Driving the system into sliding mode

Consider the sliding surface S defined as:

S = {x : Sx(t) − φ(t) = 0} , (9)

where S ∈ R
m×n is a design matrix and φ(t) is a continuous function depend-

ing on the reference xR. The definition of the function φ(t) is generally system-
and goal-specific and will be given later for the ETC problem. In this phase
of the controller design the goal is to confine the motion of the system states
into the subspace defined by (9), or to bound it inside some neighborhood of
the surface (9).

In order to stabilize the sliding motion on the surface S, the following Lya-
punov function candidate is considered:

V =
1

2
sT (t)s(t), (10)

where
s(t) = Sx(t) − φ(t). (11)

Quadratic stability of the sliding mode will be achieved if the following holds:

V̇ (t) = −Pss
T (t)s(t), (12)

where Ps is a positive definite matrix. Time derivative of V (t) is:

V̇ (t) = sT (t)
[
SAx(t) + SBu(t) + Sξ − φ̇(t)

]
. (13)

From (12) and (13) the following stabilizing control law is obtained:

ua(x, t) = −(SB)−1
[
SAx(t) + Sξ − φ̇(t)

]
− (SB)−1Pss(t). (14)

Stabilizing control law as given by (14) cannot be realized since ξ is unknown.
Instead, consider the following control law:

ua(x, t) = −(SB)−1
[
SAx(t) + Sφ̂NN (x, t) − φ̇(t)

]
− (SB)−1Pss(t). (15)

In (15) the signal ξ(x) is replaced by the neural network φ̂NN(x). Note that
the neural network output is a function of only system states x and that it
cannot ideally replace the signal ξ(x,u, t), which depends both on states and
control input and also includes external disturbances. Therefore, instead of
the stability, control law (15) can guarantee only the boundedness of s(t).

In this paper a multilayer perceptron neural network (MLP NN) with a single
hidden layer is used for φ̂NN(x). It is known that for such a network a universal
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approximation property holds [13]. MLP with one hidden layer is described
by the following relations:

y0 = xNN , (16)

xl =
[
yl−1 1

]
, vl =Wlxl, yl = ψl(vl), l = 1, 2 (17)

φ̂NN = y2. (18)

where xNN ∈ R
n0 denotes a network input vector, xl ∈ R

nl−1+1 is input to the
lth layer, yl is the lth layer output and ψl represents the activation function
of the lth layer. nl is a number of neurons in the lth layer. The first layer is
usually called hidden layer and the second one the output layer. In this paper
full state vector will be used as an input vector, i. e. xNN = x. As an activation
function of the output layer linear function ψ2(v2) = v2 is used. The activation
function of the hidden layer ψ1(v1) will be defined later in the text.

It is necessary to define an adaptation law for the network parameters,
˙̂
W1

and
˙̂
W2, and the control law u(t), such that both the boundedness of s(t) and

the boundedness of the neural network parameters Ŵ1 and Ŵ2 are ensured.
The procedure that follows is based on the concepts developed by Lewis et.
al. [14] and Polycarpou et. al. [12].

Based on the universal approximation property of the single hidden layer neu-
ral network, for a given network structure (i.e. the number of hidden neurons),
there exists a set of optimal parameters W1 and W2, for which the approxi-
mation error εNN is minimal on a compact region D:

φNN(W1,W2,x) = arg min
Ŵ1,Ŵ2

{
sup
x∈D

‖ξ(x,u, t) − φNN (Ŵ1,Ŵ2,x)‖
}

(19)

Uncertainties ξ can be approximated by this ”ideal” network:

ξ(x,u, t) = φNN (x) + ε∗NN(x,u, t), (20)

where ε∗NN represents the approximation error of the ”ideal” network φNN (x).
Optimal parameters of the neural network are considered to be constant and
unknown. Parameters of the ”real” neural network φ̂NN used in the control
law, namely Ŵ1 and Ŵ2, are approximations of unknown optimal parameters
W1 and W2. Expression (20) can be written as:

ξ(x,u, t) = φ̃NN(x) + φ̂NN(x) + ε∗NN(x,u, t), (21)

where φ̃NN(x,u, t) = φNN (x) − φ̂NN (x).

In order to define the neural network adaptation law, it is convenient to find
the expression for φ̃NN which is linear in parameters Ŵ1 and Ŵ2. Taylor
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expansion of the hidden layer output may be written in the form:

ψ1(v1) = ψ1(v̂1) +Ψ′(v̂1)(W1 − Ŵ1)x1 + r2(W1), (22)

where r2(W1) represents higher order terms and Ψ′(v̂1) is Jacobian:

Ψ′(v̂1) = diag
i=1,...,n1

{
dψi(v̂1i)

dv̂1i

}
, (23)

where v̂1i denotes the ith component of the vector v̂1. The error φ̃NN can be
written in the following manner:

φ̃NN =W2ψ1(v1) − Ŵ2ψ1(v̂1) =

= W̃2

[
ψ1(v̂1) −Ψ′(v̂1)Ŵ1x1

]
+

+ Ŵ2Ψ
′(v̂1)W̃1x1 +∆(Ŵ1,Ŵ2,x1),

(24)

where W̃1 =W1 − Ŵ1, W̃2 =W2 − Ŵ2 and:

∆(Ŵ1,Ŵ2,x1) = W̃2Ψ
′(v̂1)v1 +W2r2(W1). (25)

Expression (24) is the desired form of φ̃NN , linear in parameters Ŵ1 and Ŵ2.
From (22) and (25) it follows:

∆(Ŵ1,Ŵ2,x1) =W2 [ψ1(v1) −ψ1(v̂1)]−Ŵ2Ψ
′(v̂1)v1+W2Ψ

′(v̂1)v̂1. (26)

Finally, the following inequality holds:

‖∆‖2 ≤ ρ∆σ(Ŵ1,Ŵ2,x1), (27)

where ρ∆ = max {‖W1‖F , ‖W2‖F} and:

σ(Ŵ1,Ŵ2,x1) = max
v1,v̂1

{‖ψ1(v1) −ψ1(v̂1)‖2} + ‖Ψ′(v̂1)v̂1‖2+

+ ‖Ŵ2Ψ
′(v̂1)‖F‖x1‖2,

(28)

where ‖·‖F denotes Frobenius norm. The term σ(Ŵ1,Ŵ2,x1) is known, while
ρ∆ will be estimated in an on-line fashion by the parameter ρ̂∆. Parameter
adaptation and control law are defined by the following Theorem:

Theorem 1 Let the feedback control law for the system (8) be given by:

u(x, t) = −(SB)−1

[
SAx(t) + Sφ̂NN (x) − φ̇(t)+

+ ρ̂∆σ̄(Ŵ1,Ŵ2,x1)S tanh

(
σ̄(Ŵ1,Ŵ2,x1)S

T s(t)

δ

)]
−

− (SB)−1Pss(t),

(29)
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with: Ps positive definite, σ̄(·) ∆
=1 + σ(·) and δ > 0. x1 denotes the input to

the hidden network layer.

Let the adaptation law of the parameters Ŵ1, Ŵ2 and ρ̂∆ be given by the
following equations:

˙̂
WT

1 = P−1
W1

[
x1s(t)SŴ2Ψ

′(v̂1) − αW1(Ŵ1 − Ŵ10)
T
]
, (30)

˙̂
WT

2 = P−1
W2

[
(ψ1(v̂1) −Ψ′(v̂1)v̂1) s(t)S− αW2(Ŵ2 − Ŵ20)

T
]
, (31)

˙̂ρ∆ =
1

γρ

[
σ̄(Ŵ1,Ŵ2,x1)s(t)S tanh

(
σ̄(Ŵ1,Ŵ2,x1)S

T s(t)

δ

)
−

− αρ (ρ̂∆ − ρ̂∆0)] ,

(32)

where PW1 and PW2 are positive definite matrices, Ŵ10, Ŵ20 and ρ̂∆0 are
initial values of Ŵ1, Ŵ2 and ρ̂∆ respectively, and γ∆, αW1, αW2, αρ∆

> 0 are
constant parameters.

With the control law (29) and the adaptive laws (30)-(32), with the stable
dynamics defined for s(t) ≡ 0, all the signals in the closed loop system are
bounded.

PROOF. Proof is given in Appendix A.

Remark 1 Initial values for the network parameters could be determined by
the preliminary training, or simply set to 0. If all network weights are set to
0, it is important to select an activation function of the hidden layer such that
ψ(0) �= 0. In this memo tanh with offset ∆ν is used:

ψ(ν) =
1 − exp(−2(ν + ∆ν))

1 + exp(−2(ν + ∆ν))
, (33)

Remark 2 Initially, parameter ρ̂∆ should be set to 0. This parameter deter-
mines the level of ”discontinuity” in the control action. If the uncertainty in
the system is dominantly a function of system states, the growth of this param-
eter should be carefully controlled by the proper choice of γρ and αρ, in order to
benefit more from the neural network approximation and get smoother control
action. If larger influence of the control vector dependent uncertainties and/or
external disturbances is expected, more ”discontinuous” control action should
be allowed by selecting smaller parameter δ.

With the described neural network training and the control law given by (29),
the system is driven close to the ideal sliding regime. The next step in the
control design is to choose matrix S and function φ(t) (see (9)) such that the
stable reference tracking is achieved for the system in sliding mode.
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3.2 Sliding mode dynamics

Assuming that the stability of the sliding mode is achieved, i.e. s(t) → 0,
matrix S and function φ(xR) are defined in a way that will ensure asymptotic
tracking of the reference vector xR.

System equations (5) and (6) are more conveniently written as:

θ̇ = a12ωm, (34)

ω̇m = a22ωm + b2ua − ξ, (35)

with:

a12 =
1

Kl

, a22 = −KtKvKa

J
, b2 =

KtKa

J
. (36)

Let the matrix S be of the form:

S = [s1 1] .

Then, sliding mode dynamics is governed by the following equation:

θ̇ = −s1a12θ(t) + a12φ(t). (37)

Tracking error e(t) is given by:

e(t) = θ(t) − θR(t), (38)

where θR(t) is the reference angle. From (37) and (38) follows the error dy-
namics in the sliding mode:

ė(t) = −s1a12e(t) − s1a12θR(t) + a12φ(t) − θ̇R(t). (39)

By defining φ(θR)

φ(θR) =
1

a12
(s1a12θR(t) + θ̇R(t)) (40)

equation (39) reduces to:
ė(t) = pse(t), (41)

where ps = −s1a12 represents the pole of the sliding mode dynamics. The
tracking dynamics is determined by the choice of s1. Obviously, in order to
achieve stable tracking it is necessary that: ps < 0.

4 Experimental results

The proposed ETC algorithm is implemented in a Matlab/Simulink environ-
ment as a C-mex file and experimental verification is carried out using Mat-
lab’s Real-Time Workshop running on Intel Celeron 700MHz PC. Sampling
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time of the controller and the adaptation procedure is set to 0.5ms. Matlab’s
Runge-Kutta4 numerical integration procedure is used. In the experimental
setup, throttle valve angle is measured using a low resolution potentiometer
and 10-bit resolution A/D card. With such measurement setup it is possible
to measure the throttle valve angle with the accuracy of 0.11◦. Valve angular
velocity is estimated using filtered differentiation. The following numerical val-
ues of the parameters are used: Ps1 = 500, αW1 = αW2 = 10−3, sliding mode
pole ps = −40, PW1 = PW2 = 0.015, γρ = 105, δ = 2. MLP neural network
with 10 neurons in hidden layer is used. Inputs to the neural network are:
measured valve angle θ and estimated valve velocity ω. All NN parameters
and ρ̂∆ are initially set to 0.

Two sets of experiments have been performed. The goal of the first two experi-
ments was to demonstrate the tracking performance of the proposed controller.
Tracking of the sinusoidal and step referent signals of the small amplitude has
been tested, in order to verify the ability of the controller to compensate the
influence of the dual spring system and the friction. The second set of exper-
iments was performed in order to check the robustness of the controller to
drastic changes of the control gain (i.e. motor armature resistance).

Tracking performance of the controller is shown in Figs. 5-7. In all cases the
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Fig. 5. Tracking sinus reference around LH.
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Fig. 6. Tracking step references above LH.

controller has successfully driven the tracking error below the resolution of the
measurement. While tracking the sinusoidal reference around LH position, the
controller successfully compensates the influence of the LH nonlinearity and
the friction. The controller also shows very good performance in tracking small
steps (see Figs. 6 and 7), demonstrating the ability to provide high tracking
accuracy for small changes of the reference. This feature is veri important in
idle-speed control.

The change of the resistance is simulated in experiments by changing the
control gain by factor of 2. Responses of the controller to both increase and
decrease of the resistance are shown on Figs. 8-9. The results demonstrate
that the controller is able to quickly adapt itself to extreme variations of the
process dynamics.

5 Conclusion

In this paper a neural network based sliding mode controller for electronic
throttle is considered. Uncertainties/disturbances consisting of unknown fric-
tion and spring torque are approximated with a neural network in an on-line
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Fig. 7. Tracking step references below LH.
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fashion. Control and adaptive laws guarantee the boundedness of all signals
in the system. The proposed algorithm is successfully experimentally verified,
showing a good performance. Control algorithm presented in this paper is
generic in nature and can be successfully applied to other control problems in
automotive industry. Its application is especially attractive in situations where
large uncertainties and/or disturbances are expected. The authors will show
through their future work other possible applications of the proposed control
strategy.
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A Proof of the Theorem 1

Consider the following Lyapunov function candidate:

V (t) =
1

2
sT (t)s(t)+

1

2
tr
{
W̃1PW1W̃

T
1

}
+

1

2
tr
{
W̃2PW2W̃

T
2

}
+

γρ

2
ρ̃2

∆, (A.1)

where tr{·} is a matrix trace operator and ρ̃∆ = ρ∆ − ρ̂∆. Using the following
relations:

˙̃W1 = − ˙̂
W1,

˙̃W2 = − ˙̂
W2, ˙̃ρ∆ = − ˙̂ρ∆, (A.2)

yTx = tr
{
xyT

}
, x, y ∈ R

n, (A.3)

and (29)-(32), it is easy to show that time derivative of (A.1) is given by:

V̇ (t) = −sT (t)Pss(t)+

+ αW1 tr
{
W̃1

(
Ŵ1 − Ŵ10

)T
}

+

+ αW2 tr
{
W̃2

(
Ŵ2 − Ŵ20

)T
}

+

+ αρρ̃∆ (ρ̂∆ − ρ̂∆0) + sT (t)S

[
∆(x1) + ε∗NN (x1,u, t)−

− σ̄(Ŵ1,Ŵ2,x1) tanh

(
σ̄(Ŵ1,Ŵ2,x1)S

T s(t)

δ

)]
.

(A.4)
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For the tr{·} in the (A.4) the following is valid:

tr
{
W̃

(
Ŵ − Ŵ0

)T
}

= tr
{
W̃

(
W− W̃− Ŵ0

)T
}

=

= −1

2
tr
{
W̃W̃T

}
+ tr

{
W̃

(
W− 1

2
W̃− Ŵ0

)T
}

=

= −1

2
tr
{
W̃W̃T

}
+

+ tr
{
1

2

(
W− Ŵ0 + Ŵ0 − Ŵ

) [(
W − Ŵ0

)
−
(
Ŵ0 − Ŵ

)]T}
=

= −1

2
tr
{
W̃W̃T

}
+

1

2
tr
{(
W− Ŵ0

) (
W − Ŵ0

)T
}
−

− 1

2
tr
{(
Ŵ − Ŵ0

) (
Ŵ − Ŵ0

)T
}

=

= −1

2
‖W̃‖2

F +
1

2
‖W− Ŵ0‖2

F − 1

2
‖Ŵ− Ŵ0‖2

F ,

(A.5)

Using (A.5) and (27) it can be shown that V̇ is bounded by:

V̇ (t) ≤ −sT (t)Pss(t) − αW1

2
tr
{
W̃1W̃

T
1

}
− αW2

2
tr
{
W̃2W̃

T
2

}
− αρρ̃

2
∆+

+
αW1

2

[∥∥∥W1 − Ŵ10

∥∥∥
F
−
∥∥∥Ŵ1 − Ŵ10

∥∥∥
F

]
+

+
αW2

2

[∥∥∥W2 − Ŵ20

∥∥∥
F
−
∥∥∥Ŵ2 − Ŵ20

∥∥∥
F

]
+

+ αρρ̃∆ (ρ∆ − ρ̂∆0)+

+ max {ρ∆, ε∗NN (x)}
[
σ̄(Ŵ1,Ŵ2,x1)‖sT (t)S‖1−

− σ̄(Ŵ1,Ŵ2,x1)s
T (t)S tanh

(
σ̄(Ŵ1,Ŵ2,x1)S

T s(t)

δ

)]
.

(A.6)

Using the following property [12]:

0 ≤ |x| − x tanh
(
x

δ

)
≤ κδ, (A.7)

where κ = 0.2785, and well-known Rayleigh’s inequality for symmetric positive
definite matrices:

tr
{
WPWT

}
≤ λmax(P)‖W‖2

F = λmax(P) tr
{
WWT

}
, (A.8)
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the following upper bound for V̇ is obtained:

V̇ (t) ≤ −λmin(Ps)s
T (t)s(t) − αW1

2λmax(PW1)
tr
{
W̃1PW1W̃

T
1

}
−

− αW2

2λmax(PW2)
tr
{
W̃2PW2W̃

T
2

}
− αρρ̃

2
∆+

+
αW1

2

∥∥∥W1 − Ŵ10

∥∥∥
F

+
αW2

2

∥∥∥W2 − Ŵ20

∥∥∥
F
+

+ αρρ∆ (ρ∆ − ρ̂∆0) + mκδmax {ρ∆, ‖ε∗NN‖} ,

(A.9)

where m is the dimension of the control vector u. Finally, V̇ is bounded by:

V̇ (t) ≤ −pV (t) + q, (A.10)

with

p = min

{
2λmin(Ps),

αW1

λmax(PW1)
,

αW2

λmax(PW2)
,
2αρ

γρ

}
(A.11)

q =
αW1

2

∥∥∥W1 − Ŵ10

∥∥∥
F

+
αW2

2

∥∥∥W2 − Ŵ20

∥∥∥
F
+

+ αρρ∆ (ρ∆ − ρ̂∆0) + mκδmax {ρ∆, ‖ε∗NN‖}
(A.12)

From (A.10) it follows:

V (t) ≤ q

p
+

[
V (0)− q

p

]
exp (−pt) , (A.13)

Therefore, all signals in the system are bounded. ✷
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