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1. Introduction 
 Good air quality is a prerequisite for the health and well-being of humans and ecosystems. The 
air pollution today presents major threat to the human health. The atmosphere can act as a means 
for transporting local pollution emissions to other locations, even long distances away and to other 
media (land and water). The urban areas, as well as industrial zones, with many air pollution 
sources, contribute most to the air quality deterioration. Most countries have enforced their Clean 
Air Act that regulates the air quality control and management to protect the population health and 
environment. 
 The region of the Rijeka municipality has very bad air quality (polluted above the regulatory 
boundary values). One of the main pollution sources is refinery plant near Rijeka. This was the rea-
son for the maximum pollution analysis. The Rijeka refinery power plant and processing vessels 
and reactors emit, among others, significant amount of SO2  pollutant. It is specially so when using 
high sulphor content fuel for power plant. Given the 17 point sources of  SO2 emission pollution re-
sulting from high sulphor content in the fuel, the problem was to numerically simulate dispersion 
and distribution of SO2 pollutant , as well as to find its maximum value in the nearby surroundings 
for the worst possible meteorological data, with given topography of the terrain. Special attention 
should be paid to the urban areas situated few km far from the power plant, which has third cate-
gory of air quality (dangerous for health if temporary exposed) according to Report on environmen-
tal pollution in Republic of Croatia for 1998) [5]. Finally, different scenarios should be invented for 
pollution reduction, such as the alternative use of two different fuels, one expensive, with low and 
other cheap, with high sulphor content. The analysis of the height of the reconstructed power plant 
stacks on the pollution is carried out too. 
 
2. Gaussian pollution dispersion model 
 

 By far the most frequently used approach to regulatory air quality modeling has been the 
Gaussian plume diffusion formulation. This approach stems from the fact that the well-known 
normal, or Gaussian, distribution function provides a fundamental solution to the classic Fickian 
diffusion equation.  In the Gaussian plume model, the crosswind plume concentration distributions 
are taken to be Gaussian in form.  This has been partially substantiated through field experiments 
for typical meteorological conditions.  In the strict sense, Gaussian diffusion is valid only for long 
diffusion time and for homogeneous, stationary conditions. However, this type of model has been 
found to give useful results for many practical applications [6]. 

The Gaussian plume algorithm has the advantages of inherent simplicity, ease of use, flexibil-
ity and short computation time. For a steady-state Gaussian plume, the hourly concentration χ at 
downwind distance x (m) from the source and crosswind distance y (m) is given by eqn (1): 
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where: Q, K, V and D are pollutant emission rate,  scaling coefficient, vertical and decay term re-
spectively, σy,σz standard  deviation of lateral and vertical concentration distribution, dependent on 
downwind distance x, us mean wind speed (m/s) at release height [1]. 
The concentration is linearly dependent on emission value Q, so the pollution concentration field 
looks the same for different emissions, only maximum value and the scale depends on emissions. 

3. Receptor and sources locations 
 

 The 17 sources were modeled at their real topographic locales with proposed SO2 emissions. 
The stacks varied in height from 9.5 to 124 m, and were distributed through the whole refinery ter-
ritory. The SO2  emissions varied from 1 to 140 g/s coming from the sources such as refinery power 
plant, with highest emissions, to different refinery process plants. 
 To determine the maximum impact from given sources in the bigger surrounding for all possible 
meteorological conditions, the large number of receptor locations are needed across the modeling 
domain. Here we used 120x131 = 15720 receptor mesh with 100 x 100 m resolution, covering 12 x 
13.1 km area centered at the power plant and including nearby urban areas. In the south-north di-
rection (-15 to 60 deg) the terrain rises very steeply, which is the main reason for high surface pol-
lutant concentrations in the refinery region for the south winds. 

4. Meteorological data 

 The atmospheric conditions, besides terrain topography and emission intensity, determine the 
distribution of air pollution impacts for a particular area.  While an unstable atmosphere disperses 
pollutants and thus causes a wider impact area, a stable atmosphere can cause pollutants to be 
transported further downwind in a long, narrow impact area. Here we varied meteorological data in 
the chosen intervals that result in highest pollution.  The input meteorological parameters used by 
Gaussian dispersion models are the wind speed, wind direction, isolation (during daytime) or tem-
perature gradient (night) , and the mixing height.  Atmospheric stability category is then calculated 
from input data (6 possible values).  

5. Genetic algorithm 
 We used genetic algoritm optimization tool. It is quite robust tool in producing near optimal so-
lutions. It is derivative free method and can be applied to complicated objective functions with 
multiple local maxima [3],[4],[2]. Because of the varying terrain height and varying wind directions 
and speeds, even for the stationary pollution emissions multiple maxima of the surface pollution 
occur. Therefore the genetic algorithm technique is well suited for this problem. Each individual set 
of meteorological data is represented by chromosome with different gene lengths; 8, 6, 5 and 1-bit 
string encoding wind direction, speed, mixing height and temperature gradient respectively. The 
search intervals for given four variables are input data, given by their minimum and maximum val-
ues. The gene lengths can also be input data; those chosen here being best suited for required reso-
lution of maximum location. 

6. Results analysis 

 In the genetic algorithm every individual produce input meteorological data for computer code 
for the simulation of distribution and dispersion of pollutants accros the given terrain. Preliminary 
search resulted in following limits where maximum pollution occurs: wind speed 1-10m/s, direc-
tion 345°-60° (0 is north), mixing height 300 – 5000 m, temperature gradient –1 or 1. For given 
limits final detailed search with refined intervals gave maximum values. One population consisted 
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of 20 individuals. The optimization was achieved with  for 60 generations. The objective functional 
(fitness), which is maximized by the genetic algorithm optimization procedure, is the SO2 surface 
concentrations at any of given receptors for all possible variations of meteorological data in given 
intervals. The cross-over and mutation probabilities were chosen 0,4 and 0,05 respectively in order 
to advance from parent to child generation. The generation history of adaptation is given in Fig.1, 
where generation mean, mean plus and minus one standard deviation curves are ploted versus the 
generation number. The results show that worst pollution occures at night, with stabile atmospheric 
condition, class 5 or 6, and low speeds 1 – 2 m/s and south winds 15-45 degrees. In these condi-
tions the plume hits the steep terrain nearest to the stack, while difusion is still small, so that the 
concentrations are high. 
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Fig. 1   The generation mean, mean plus and minus one standard deviation curves versus generation 
number 

 
 The mixing height, defining the reflection of the plume at upper boundary, has no practical in-
fluence in these conditions. From Fig. 1. it can be seen that the highest values of fittness  was not 
significantly improved after  20 generations, so genetic algorithm optimization can be stoped after 
20 iterations. 
 Figure 2. shows maximal surface pollution distribution in given terrain for worst meteorological 
data . Maxima occurs in the night for slow winds of 1 m/s,  south-north direction 10°-12°, positive 
temperature gradient and high mixing heights 3880 – 5000 m. 
In order to estimate the influence of the stack height of the most influential stacks, these of the 
power plant, its variation is studied. The maximum surface pollution for the worst meteorological 
conditions for three different stack heights: original 35, 60 and 125 m are given on the Fig. 2 – 4. 
The linear regression of the maximum pollution concentration – y, as a function of stack height –x,  
was established in the form of 

 
y = -121.53244262x + 18798.14140984 , 

 
showing that 80 m stack height would halve the maximum pollution concentration form 1600 to 
800 µg/m3  ( see Fig. 5). 
 
 
 
 
 



 
 

352

 
 
 

50

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

 
 
 

Fig. 2  The surface SO2 concentration (µg/m3 ) for worst meteorological  conditions for original stack 
heights 
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 Fig. 3  The surface SO2 concentration (µg/m3 ) for worst meteorological  conditions for 60 m stack 
heights 
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 Fig. 4  The surface SO2 concentration (µg/m3 ) for worst  meteorological  conditions for 125 m stack 
heights 

  
 

 

y = -121.53244262x + 18798.14140984
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Fig. 5  The maximum surface SO2 concentration (µg/m3 ) for worst  meteorological  conditions and dif-
ferent stack heights 
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7. Conclusion 
 The town of Rijeka and its surroundings has third category of air quality, dangerous for 
human health, mainly due to emissions from nearby refinery and thermal power plant. The need for 
developing scenarios to avoid excessive pollution in unfavoranle meteorological conditions, 
motivated the study of evaluating maximum pollution for given emissions in various athmospheres. 
The Gaussian plume model was used to model SO2 advection, disspersion and concentration 
distributions in the surrounding of Rijeka refinery. The genetic algorithm was used to find 
maximum pollution values within 12 km radius of surrounding terrain for all possible variations of 
meteorological conditions. Since the problem has many local maxima due to variable terrain height 
and wind directions genetic algorithm was the most suitable optimization technique. It was shown 
that 20 individuals population go through 20 generations to achive maximum pollution with  cross-
over and mutation probabilities 0,4 and 0,05. 
 The main conclusion is that proposed modelling of maximum pollution enables one to decide 
in which forecasted meteorological conditions the pollution is above accepted values and therefore 
determine the time interval when cheap law sulphur fuel should be used instead of cheap high 
sulphur fuel. The analysis of the influence of the stack height on surface pollution concentrations 
was carried out too, for all possible meteorological conditions and given pollutant emissions. The 
linear regression of the maximum pollution concentration, as a function of stack height, was 
established. 
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