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RADAR-INVISIBILITY ON AXIS OF
ROTATIONALLY SYMMETRIC REFLECTORS

Siniša Škokíc, Enrica Martini,Member, IEEE, Stefano Maci,Fellow, IEEE

ABSTRACT

It has been observed that the monostatic RCS of parabolic
PEC reflectors vanishes at certain frequencies for broadside
wave incidence. It has also been noticed that hyperbolic
reflectors behave similarly, with very low RCS minima. This
behaviour is explained by using Physical Optics (PO) and
verified via a numerical full-wave analysis. Relations between
the physical dimensions of the reflector and the characteristic
values of the RCS (notch frequencies, minimum and maximum
value), as well as a comparison of different canonical reflec-
tors, are given. The interest in the phenomenon described is
at present essentially speculative, since, as pointed out in the
paper, there are some significant limitations which restrict its
practical utilization.

I. PRELIMINARY CONSIDERATIONS

In this paper, the wide-band monostatic RCS behaviour of
rotationally symmetric reflectors illuminated from broadside
direction is considered. The motivation for this particular
analysis arises from noticing the occurrence of sharp minima
in the monostatic RCS of some canonical reflectors.

In the case of axial incidence, the PO integral providing the
field backscattered by a rotationally symmetric reflector can be
interpreted as the radiation from an equivalent circular aperture
with a particular current distribution, whereby the magnitude
of the currents is constant and the phase depends on the
reflector profile and on the frequency [1]. A reflector becomes
electrically deeper with increasing frequency. Let us consider a
reflector of monotone profile: when its depth becomes greater
thanλ/4, the field radiated from the inner part (the central disk
on the equivalent aperture) will start to interfere destructively
with the one radiated from the outer part (the outer ring), thus
resulting in lower values of the scattered field and hence of
the RCS. The maximum negative interference occurs when the
reflector depth equalsλ/2; as the frequency increases further,
a new constructively interacting area appears at the center
of the aperture and the RCS increases again. Although this
process has a periodic nature, it does not necessarily lead to a
frequency-periodic RCS curve, since the level of interference
between fields radiated from the different rings depends on
the reflector profile.

It will be seen that the RCS minima equal 0 for the case
of a parabolic reflector, revealing an interesting invisibility
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phenomenon which, to the best of our knowledge, has not been
previously detected. Although the scattering characteristics of
an infinite parabolic reflector illuminated axially by a plane
wave are well known [2], [3], only a few works have analysed
the case of a finite paraboloid (see for instance [4], [5], [6]).

In the following, the broadside monostatic RCS of hyper-
bolic and parabolic reflectors are investigated; for the sake of
comparison, the well-known results for the disk, the sphere
and the cone are also briefly summarised.

II. RCS OF A ROTATIONALLY SYMMETRIC PEC
REFLECTOR

We start from the general case of a rotationally symmet-
ric PEC reflector illuminated from broadside direction, with
incident magnetic field defined as

−→
Hi = H0 ejkz ŷ, as shown

in Fig. 1. The origin of a cylindrical coordinate system is set
at the apex of the reflector with thez axis being the axis
of symmetry; the reflector radius is denoted withr and its
depth with h. Since the reflector is rotationally symmetric,
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Fig. 1. Geometry for the reflector analyzed.

its equation is given asz = f(ρ). Calculating the equivalent
PO currents on the reflector surface as

−→
Jeq = 2n̂ ×

−→
Hi and

bearing in mind that for monostatic broadside RCS only the
x-component of the magnetic vector potential contributes to
the scattered electric far-field, we obtain

−→
Esc = (jωµH0)

e−jkR

R

∫ r

0

ej2k f(ρ)ρ dρ x̂. (1)

The RCSσ is then calculated as

σ = lim
R→∞

4πR2 |
−→
Esc|

2

|
−→
Ei|

2 . (2)

Denoting the integral in (1) withI, the RCS equation takes
on the final simple form

σ = 4πk2 |I|
2
. (3)
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As can be seen from the previous formulas, the key point in
obtaining the broadside monostatic RCS of a given reflector
is the evaluation of the integralI in (3).

III. C ANONICAL SHAPES

The defining equationf(ρ) for different reflectors is re-
ported in Table I, along with the corresponding values ofI
and σ. In the table,c = cot(θ/2), whereθ is the cone nose
angle,a andb are the semi-major and semi-major axis of the
hyperbola, anddf is the focal length of the parabolic reflector.

A. Flat-Plate, Conical and Spherical Reflectors

The PO solutions for the RCS of flat-plate, conical and
spherical reflectors, shown in Table I, are well-known. We
nevertheless present them here to prepare the grounds for the
discussion that follows. Their comparison is shown in Fig. 2.
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Fig. 2. Comparison of PO-calculated wideband monostatic RCS in broadside
direction for a flat circular plate, a sphere, and two cones with different nose
angles. All the reflectors have the same radiusr.

We notice that the expressions for the RCS of the cone and
the semi-sphere in Table I are basically the same. Indeed, for a
90◦-cone the constantc equals 1 and the two solutions match
exactly. On the other hand, in the limiting case whenc→ 0,
and fork�1, the cone solution simplifies to the one of a flat-
plate. Thus, one can consider the RCS of the flat-plate and
the sphere as limiting cases of the RCS of cones (with nose
angle greater than 90◦). Strictly speaking, the PO solution is
not valid in the presence of a discontinuity such as the cone
tip, but the solution is shown to agree reasonably well with
the exact solution for the case of broadside monostatic RCS
[1].

B. Hyperbolic Reflector

The RCS curve of a generic hyperbolic reflector is shown
in Fig. 3 and compared with the corresponding curve of a
parabolic reflector. One can notice that the first two terms in
the expression ofσ as reported in Table I tend to dominate
over the last one with increasing frequency; the last term can
be neglected forf � c0

2πh
, c0 being the speed of light in free

space. In this case, the expression simplifies to

σhyp =
πb4

a4

∣

∣

(

(a+h) − a e−j2kh
)∣

∣

2
. (4)

The minimum and the maximum RCS in the high-frequency
region are given as

σmin
hyp =

πb4

a4
h2

σmax
hyp =

πb4

a4
(2a+h)

2
, (5)

while the RCS minima occur forf = nc0/2h, wheren is
a positive integer, that is, when the depth of the reflector
equalsnλ/2. Thus, the solution can be regarded as frequency-
periodic, except in the low-frequency region, where the PO is
not applicable anyway.
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Fig. 3. Comparison of wideband broadside monostatic RCS for a generic
parabolic and hyperbolic reflector having the same radiusr and the same
depthh, calculated with PO.

It is worth noting that, although not explicitly stated in
the above equation, the maximum RCS value of a hyperbolic
reflector of fixed radiusr and depthh is independent of the
parameters of its defining hyperbola. In other words, for any
pair of values of the semi-major and semi-minor axis(a, b)
which satisfy the condition that the reflector of radiusr is
deeph, the maximum RCS will have the same value, which
equalsπr4/h2. The minimum RCS value, on the other hand,
does not exhibit such a property.

C. Parabolic Reflector

Bearing in mind that r2

4df
for a parabolic reflector actually

denotes its depthh (Fig. 1), the solution from Table I simplifies
to

σpar = 16πdf
2 sin2 (kh). (6)

The most interesting property that comes from (6) is the fact
that the RCS completely vanishes at certain frequencies, ascan
be seen in Fig. 3. The equation also reveals that the maximum
RCS of a parabolic reflector does not depend on its dimensions
but merely on its focal length:

σmax
par = 16πdf

2 (7)

and that also in this case the RCS minima occur forkh = nπ,
with n integer.

Furthermore, it is observed that in this case the RCS is
strictly periodic with frequency. Although this is rigorously
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TABLE I

BROADSIDE MONOSTATIC RCSOF DIFFERENT CANONICAL SHAPES, CALCULATED WITH PO

reflector sketch f(ρ) I =
∫ r

0 ej2kf(ρ)ρ dρ σ

flat-plate 0
∫ r

0 ρ dρ πk2r4

cone −cρ
∫ r

0 e−j2k cρρ dρ π
∣

∣

∣

{

1
jc

[(

−r + j
2kc

)

e−j2kcr
−

j
2kc

]}
∣

∣

∣

2

semi-sphere
√

r2
− ρ2

− r e−j2kr
∫ r

0 ej2k
√

r2
−ρ2

ρ dρ π
∣

∣

∣

{

1
j

[(

−r + j
2k

)

ej2kr
−

j
2k

]}
∣

∣

∣

2

hyperbola a
√

1 + ρ2

b2
−a e−j2ka

∫ r

0 e
j2ka

√

1+ ρ2

b2 ρ dρ
πb4

a4

∣

∣

∣

∣

∣

(

(a+h) − a e−j2kh
−

(

1−e−j2kh
)

j2k

)
∣

∣

∣

∣

∣

2

parabola
ρ2

4df

∫ r

0 e
j2k

ρ2

4df ρ dρ 16πdf
2 sin2

(

kr2

4df

)

true only for the parabolic reflector, an almost periodic be-
haviour is found for most of the reflectors analysed. This arises
from the fact that for all reflectors the asymptotically dominant
term is proportional to1− ej2kh; as a consequence, for every
frequency at which the reflector depth equalsnλ/2 there is
a local minimum of RCS. The flatter the reflector, the farther
apart the minima will be. This is best seen for the two cones
discussed in the previous section, shown in Fig. 2.
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Fig. 4. The imaginary part of the integrand in (1), atf = c0/2h: flat-
plate reflector (thin line), parabolic reflector (thick line), hyperbolic reflector
(dashed line) and conical reflector (dotted line). The shaded regions have the
same area (parabolic reflector).

As anticipated in Sec. I, the minima in the RCS occur
due to the interference between fields scattered from different
parts (rings) of the reflector surface. This interaction can
be understood better if one looks into the behaviour of the
integrand in (1), whose imaginary part is shown in Fig. 4. The
situation depicted there occurs at a ”resonance” frequency, i.e.
for f = c0/2h, where there is a minimum of the RCS. It is
seen that for the parabolic reflector (shaded) the inner and
outer part contributions cancel each-other out perfectly,while
in the other reflectors cases one part dominates and the RCS
has a non-zero value.

IV. A N INVISIBLE PARABOLA ?

The most unexpected of the properties illustrated in previous
sections is definitely the periodic vanishing of the RCS of a

parabolic reflector. One may think that this is brought about
by the inaccuracy of the PO approximation. On the contrary, it
is shown in this section that this phenomenon remains evident
even when using a full-wave analysis.

A. Comparison between PO and MoM

A particular case of a parabolic reflector has been simulated
by the Method of Moments (MoM) with a commercially
available software (FEKO); the results have been compared
with those provided by the PO analysis (Fig. 5) for a relatively
small reflector (2r < λ at the lowest frequency). The two
solutions match very well, confirming the validity of the PO
approach. The difference between the curves is due mainly
to the effect of creeping waves induced by the diffraction
on the reflector edge, which is not taken into account in the
PO analysis. It is worth noting, however, that the full-wave
analysis predicts a very deep minimum atf = c0/2h.

PO

MoM

Fig. 5. Comparison of wideband broadside monostatic RCS for a parabolic
reflector withr = 42.53 mm, df = 60 mm. The PO result agrees well with
the MoM result even at the lowest frequency, where the reflector is less than
one wavelength wide.

B. Paraxial Illumination

In order to investigate the spatial selectivity of the invisi-
bility phenomenon described, we consider the case of a plane
wave impinging on the reflector from an angleθ with respect
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to thez-axis (Fig. 1). We calculate the monostatic RCS again
using the PO approximation. In this case, both thex and thez
component of the equivalent currents have to be included fora
rigorous analysis and the RCS can no longer be expressed in a
simple form. Because of the oblique incidence, the integration
in φ gives rise to Bessel functions, which, in turn, can be
represented via a Taylor expansion to yield a closed form
solution.

The results obtained with this approach, shown in Fig. 6,
were validated by comparison with those obtained via numer-
ical integration and the ones provided by a MoM simulation.
One sees that the value of the RCS atf = c0/2h rapidly
increases as the incidence direction moves away from the axis;
this means that the phenomenon described in the previous
Section exhibits a significant spatial selectivity, as one might
have expected.
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Fig. 6. Comparison of wideband broadside monostatic RCS of a parabolic
reflector withr = 42.53 mm, df = 60 mm for different angles of incidence
of the impinging plane wave.

C. Effect of the Presence of Feeder

In most cases, a parabolic reflector is used in a reflector
antenna system. In this case, the presence of a feeder at the re-
flector’s focus may significantly perturbate the scattered field,
this effect being most visible in the directions where the RCS
has a null. In the results shown in Fig. 7, a mismatched feed
located at the focus was represented by a flat metallic plate
of the same dimensions. The results presented are obtained
via a MoM analysis (FEKO). The RCS curve of the whole
system no more shows the stealth behaviour. Moreover, with
the increasing size of the feeder the RCS approaches that of
the disk of the same radius. This is due to the fact that the
reflected rays are focused on the feeder surface, then reflected
back from the focus to the reflector at the same angle and
re-reflected back in the broadside direction again as parallel
rays. However, it is also worth noting that at the operating
frequency of the antenna one can assume that the feeder is non-
scattering, thus absorbing the singly reflected rays; this results
in a significant decrease of the RCS level. (This phenomenon
is however not accounted for in the simulated model.)

V. CONCLUSION

The far field back scattering from some finite rotationally
symmetric reflectors illuminated by a normally incident plane
wave has been investigated. By applying the Physical Optics
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Fig. 7. Wideband broadside monostatic RCS for a parabolic reflector with
r = 127.5 and mm,df = 540 mm for different apertures of the feeder. The
mismatched feeder is modelled as a flat rectangular PEC disk of apertureSf .
Results are compared to the RCS of a circular disk of the same radius (dashed
line) and the parabolic reflector alone (dash-dotted line).

approximation, a closed form expression for the monostatic
RCS has been obtained; in particular, it has been observed
that this expression predicts the existence of deep minima at
certain frequencies for some canonical reflectors. In partic-
ular, in the case of a paraboloid, the RCS vanishes at the
frequencies where the reflector depth is an integer multipleof
half-wavelength. This behaviour has been verified through a
full wave analysis. It is finally observed that this invisibility
phenomenon is hard to exploit in practice, since the value of
the RCS increases rapidly with the angle of incidence of the
illuminating plane wave and/or in presence of a mismatched
feeder.
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