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Abstract

As invaluable tools in networked and distributed systems research, network emulators offer a viable alternative to live
experimental / testbed networks. We present a methodology for emulating computer networks by using a general-
purpose OS kernel partitioned into multiple lightweight virtual nodes, which can be interconnected via kernel-level links
to form arbitrarily complex network topologies. The concept of using virtual nodes inside a kernel for fast network
emulation is not new, yet previously published work generally advocated implementing kernel-level virtual nodes with
capabilities limited to only certain simple functions, such as blind passing of network frames from one queue to another
based on a static pre-computed path. We show that virtual nodes, offering the identical rich set of capabilities as the
standard kernel does, can be implemented very efficiently by reusing the existing OS kernel code. Therefore our model
not only provides each virtual node with an independent replica of the entire standard network stack, thus enabling
highly realistic and detailed emulation of network routers; it also enables unmodified user-level applications to run
within virtual nodes, thus becoming a powerful tool for development and testing of real-world networked applications

ranging from routing protocol daemons to distributed file sharing systems.

1 INTRODUCTION

The need for efficient iterative testing or experimental
prototype validation has been a part of the most
engineering research and development efforts and
processes ever since. In case of networked systems, three
major classes of experimentation methodologies and
tools have today become widely accepted: testbed
networks, network simulation, and network emulation.

Testbed networks are experimental environments
constructed of real hardware, such as routers or hosts,
interconnected and configured to form a network of
desired topology and other properties, such as
bandwidth, delay, packet loss ratios, queuing disciplines
etc. While typically offering a high level of realism in
resembling the characteristics of target production
networks, testbed environments tend to be difficult and
time consuming to setup and maintain, but above all they
are costly and therefore seldom affordable. In addition,
large-scale experiments with network testbeds can
present a logistic impossibility [11].

Network simulators provide for synthetic conceptual
network environments. Simulators are typically highly
configurable and extensible tools designed to test and
evaluate network dynamics in a virtual timescale and in a
controllable environment decoupled from any external
traffic or systems. Unfortunately, simulations often make
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simplifying assumptions which can result in inaccurate
representation of traffic dynamics as seen in real-world
environments.

Network emulators can be considered a hybrid of
testbeds and simulators — they subject real network
traffic and systems to a synthetic network environment.
This is however only a rough definition of an emulator,
as different classes of such tools are available today.
Single-hop WAN link emulators, such as Dummynet [2]
or NIST [3], introduce artificial delays, bandwidth
constraints, packet losses, and queuing policies in real
time, however they do not provide for emulation of
network topologies.

This article is focused on the problem of real-time
emulation of entire computer network topologies. A
fundamental requirement for a single physical machine to
emulate a full network topology is the ability to support
virtually simultaneous operation of multiple virtual nodes
and interconnecting links, multiplexed on a single
physical unit (a PC workstation). One typical approach in
constructing such emulators is implementing a multi-
node emulation engine as a userland process running on
top of a general-purpose OS kernel. Each virtual node,
running either as an isolated thread or a process, is then
equipped with a private instance of virtual network
interfaces and routing tables, which allow it to be
interconnected either with other virtual nodes or to
external networks. In effect such virtual nodes can
functionally impersonate a router or a stripped-down end
system. However, the overall throughput in such
emulation systems can be severely limited by frequent



context switching and data copying from kernel to
userland and vice versa, and is therefore seldom usable
for real-time operation in high speed network
environments.

We argue that the most pragmatic means for overcoming
the performance bottlenecks inherently associated with
userland emulation engines can be found in shifting of
the entire traffic path in the operating system kernel. This
approach not only eliminates the cost of context
switching overhead, but also allows for packet handoff
between virtual nodes to be accomplished by reference,
thus eliminating any unnecessary data copying.
Furthermore, we assess that the built-in support for
maintaining multiple independent routing tables within a
single kernel image, which today can be found as an
optional feature in certain operating systems, does not
per se provide sufficient foundation for constructing fully
functional kernel-level emulator engines, despite some
reports describing research efforts aiming in such a
direction [9]. We show that it can be necessary to
virtualize all the key components of the network stack in
order to support complex emulation scenarios. Most
importantly, during the implementation of our prototype
we learned that the virtualization of the complete
network stack functionality was a prerequisite for
achieving a full application programming and binary
interface compatibility with arbitrary user space
programs relying on the network communication
facilities provided by the OS kernel. An additional
benefit from such an approach is a rich set of tuning
options at each virtual node, such as independent
controlling of queue depth limits or packet filters and
classifiers, which together offer a powerful toolset in
constructing emulated networked environments.

In support for our thesis, we propose and validate a
framework for constructing high performance real-time
IP network emulator, based on a modified 4.4BSD OS
kernel. Our OS extensions allow for simultaneous setup
and operation of multiple independent network stack
instances within a single kernel. Each network stack
instance acts as an independent virtual node (router or
host), connected either to other virtual nodes via
simulated links, or directly to the outside world via
standard network interfaces. This allows for complex
emulated IP network configurations to be constructed on
a single machine. The virtualized network configuration
can then be observed and analyzed at the level of each
independent virtual node, link, or network interface. The
emulator can easily interact with real networks through
standard physical interfaces at up to gigabit speeds,
depending on simulated network complexity and
simulator hardware capabilities.

The rest of the article is organized as follows. Section 2
explains the basic implementation concepts behind the
architecture of IMUNES, an Integrated Multiprotocol

Network Emulator / Simulator. In section 3 we briefly
describe the implementation details of our prototype
kernel-level network emulator. Section 4 discusses the
performance aspects of our real-time simulation
environment. A few application examples are presented
in section 5. Previous and related work is outlined in
section 6, followed by a conclusion and directions for
future research outlined in section 7.

2 THE ARCHITECTURE

We propose a transparent network emulation model
consisting of entirely independent virtual nodes and
links, which can be individually configured,
interconnected, accessed and observed just as their
physical counterparts in real networks. We do not claim
paternity to such an approach, as it has been described
earlier in different variations (see section 6). However,
our main contribution lies in a highly efficient
implementation of virtual network infrastructure, in form
of a general-purpose OS kernel providing multiple
independent network stack instances, with virtually no
additional per packet processing overhead compared to
the unmodified OS. Unlike some other architectures,
such as Modelnet [12], which provide for only static
network topologies and a source-routed emulation core
without any IP layer processing capabilities in virtual
nodes whatsoever, our model allows for emulation of
fully functional IP routers in any emulated virtual node.

2.1 Virtual nodes

The key element of our emulator framework is a virtual
node. A virtual node is a collection of a network stack
instance and zero or more associated user space
processes. Each network stack instance is functionally
independent of all others, so that each instance maintains
its own private set of state variables such as list of
network interfaces, routing tables and routing cache, set
of communication sockets and associated protocol
control blocks, hash tables, traffic counters etc.
Furthermore, each network stack instance includes a
private set of optional networking facilities, such as
packet filters, traffic shapers, as well as various tunable
variables controlling different aspects of network stack
behavior, such as inbound packet queue depths. The
basic organization of an OS kernel partitioned into
multiple virtual nodes is shown in Figure 1.

If desired, arbitrary existing UNIX applications such as
routing daemons, traffic generators and analyzers can be
run in each virtual node. However, a node can exist even
without any associated processes, for example when it
serves a transient node in a statically routed virtual
network. The ability to execute standard user space
applications without any need for modifications,
recompiling or runtime library replacements in all
emulated nodes presents the key advantage of our
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Figure 1. Conventional organization of OS kernel and network stack (left); multiple virtual nodes /
network stack instances within a single OS kernel image (right)

framework which distinguishes
published work.

it from previously

Since in our model the OS kernel is modified so that the
entire network stack is virtualized, each user process
existing in a system must be associated with one (and
only one) network stack instance at a time. During the
boot up sequence the system creates a default network
stack instance / virtual node, and all subsequent
processes are automatically associated with the default
network stack instance. Later, the administrator can
instantiate additional independent network stacks, and
spawn arbitrary processes within their context.

2.2 Virtual links

Since the basic property of each virtual node is that its
network communication facilities are independent of
other such nodes present in the system, it is necessary to
provide explicit methods for establishing communication
between isolated network stacks. Our framework relies
on the standard netgraph [14] framework in the FreeBSD
kernel, which provides methods and API for insertion of
arbitrary traffic processing modules bellow the network
interface layer. We have extended the netgraph
framework to allow for interconnecting of network
interfaces residing in separate virtual nodes.

Our model assumes that each network interface (either
physical or virtual) can be associated with one and only
one network stack instance at a time. During the OS
booting and autoconfiguration, real network interfaces
are automatically assigned to the default network stack
instance. After additional virtual nodes have been
instantiated, network interfaces can be reassigned from
one virtual node to another, regardless whether they are
"real" or virtual / pseudo interfaces by their nature.

For point-to-point style communication between virtual
nodes, a pair of FreeBSD's standard netgraph interface
nodes can be employed, with one instance residing in
each virtual image. The interface nodes can be connected
in a back-to-back manner, thus forming an efficient in-
kernel traffic path.

The other alternative is using virtual Ethernet interfaces,
which can be bridged to form independent broadcast
domains spanning multiple virtual nodes. The bridging
domains can be either entirely hidden inside the kernel,
or transparently connected to the outside world via one
or more physical Ethernet interfaces, as shown in Figure
1.

Probably the most important property of described use of
the netgraph framework for interconnecting virtual nodes
is that all packets are handed over between netgraph
nodes only by reference, making any expensive copying
of actual packet buffers completely redundant.

2.3 Queuing and traffic shaping

Different queuing disciplines and traffic shaping
implementations generally account for the most basic
functions of any network simulator. By default any
virtual link in our emulator passes all frames through a
separate instance of the ng_pipe traffic shaper, which is
itself implemented as a netgraph node. This
implementation features a simple bandwidth limiting and
delay simulation, together with bit error-rate (BER)
simulation. The tuning options also include a choice
between queue head or tail dropping policies on queue
overflows, and a choice between FIFO, simple fair
queuing (FQ) and Deficit Round Robin (DRR) buffer
management methods. More advanced network-layer
traffic classification and queuing policies, such as



worstcase-fair weighted-fair queuing (WF2Q) or random
early detection (RED) can be simulated using dummynet
[2] facility, which is integrated in the base FreeBSD
system. Both ng_pipe and dummynet shapers could be
mixed in the same simulation configuration, if desired.

The time precision / granularity of packet dequeuing is
dependent on the frequency by which the scheduler polls
the packet queues. The queue scheduler is typically run
on each system clock tick, so it is necessary to configure
the system to run with a higher than standard system
clock rate. Our test machines have been running
cloclkrate set to 1000 Hz. As an enhancement to fixed-
rate scheduling, we have implemented a method for
constant polling of traffic shaper queues within the OS
kernel idle loop. On systems with low user-level
processing load, this allows for delay time resolutions in
range of only a couple of microseconds, which is
otherwise unachievable with traditional system-clock
interrupt-based dequeuing methods. In preliminary tests
the idle loop polling approach has shown very high
accuracy, provided that the system is dedicated for
network topology emulation, and is executing no other
user space tasks.

Another important property inherent to the proposed
simulation framework is isochronous timing across all
virtual nodes. Since all virtual nodes share the same
system clock, this simplifies correlation and comparative
analyses of traffic traces performed simultaneously in
different virtual nodes, in contrast to real networks,
where it is extremely difficult or in many cases

impossible to achieve clock synchronism for
timestamping purposes among distributed network
nodes, at least not with an acceptable accuracy for traffic
rates in range of or exceeding 100 Mbit/s.

3  PROTOTYPE IMPLEMENTATION

A typical general-purpose OS consists of multiple user
processes and a kernel, which has a primary role in
providing a standardized abstraction, protection and
scheduling layer for accessing all the system resources —
most notably the CPU, memory, file systems, diverse
physical devices, as well as the interprocess and network
communication facilities. In our experiments, we have
modified the FreeBSD operating system kernel to allow
multiple network stacks to be simultaneously active on a
system. Our initial experiments with network stack
virtualization in FreeBSD have been previously
documented in [16].

3.1

The fundamental approach taken in implementation of
the described modifications to the BSD OS kernel was
introduction of a new kernel structure named vrnet, which
serves as a variant of resource container [1] for all
virtualized variables and symbols. Gradually, we
replaced most of the global and static symbols used by
the network stack code by their equivalent counterparts
residing within the independent vnet structures. Network
interfaces descriptors, which have traditionally been
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Figure 2. Virtualized network stacks: major kernel structures



maintained in a single linked list, are now associated
with separate vnet structures, so that each network stack
instance has command over its own list of network
interfaces. Each network interface contains a pointer
back to its vnet structure, so that incoming traffic can be
easily demultiplexed to the appropriate network stack,
depending on the interface the traffic is received on.
Basic schematic diagram outlining the relations between
the most important kernel data structures in a clonable
network stack implementation is shown in Figure 2.

As UNIX systems traditionally maintain only a single
network stack within the kernel, an important design step
was choosing the optimal method for user processes to
manage multiple network stacks. We decided to
transparently extend each user process control block in
the kernel with a tag which associates it with a network
stack instance. This tag is inherited by subsequent
processes from its parents without any need for
intervention from the programmer. Additionally, new
programming interface allowing a process to change its
network stack association was introduced. This approach
allowed for complete application programming and
binary interface (API / ABI) compatibility to be
preserved between the original and modified OS kernel,
thus mitigating any need for modifications in the existing
userland applications or utilities.

We further combined the described tagging of user
processes with already existing jail [4] resource
protection framework in FreeBSD, which resulted in user
processes associated with one network stack being
effectively invisible to the other processes running on the
system, and vice versa. The newly developed framework,
which combined different areas of resource protection

mechanisms into one entity, in fact achieved light virtual
machine functionality. Latter, this concept was further
extended by including feedback-driven proportional
scheduling modifications to the CPU scheduler, so that
the average CPU usage in each virtual node could be
controlled and limited. This is an important mechanism
for preventing runaway or maliciously constructed
process or group of processes from monopolizing and
starving all the real CPU resources. Furthermore, this
also allows for system load monitoring to be performed
on per virtual node basis, which provides more fine-
grained control rather than accounting resource usage
solely on physical machine level.

3.2 The management model

In early development phases we have introduced a basic
command-line interface for managing virtual nodes. The
command-line utility allows for creation of virtual nodes,
assigning virtual or physical interfaces in appropriate
nodes, and for starting of arbitrary UNIX commands or
applications within a context of a target node. However,
specification of complex network topologies requires
more sophisticated management tools. Recently we have
implemented a simple Tcl/Tk based graphical user
interface (GUI) console, combined with a topology
compiler for managing the kernel-level emulation engine.
The management console automates the job of
establishing, configuring and interconnecting the nodes
in the target topology, and allows for quick access to a
command line interface of each of virtual nodes during
emulation execution. As GUI implementation falls
outside the scope of this article, we are only presenting a
snapshot of a sample network topology configured with
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PC2# traceroute 10.0.4.2
traceroute to 10.0.4.2 (10.0.4.2), 64 hops max, 1400 byte packets
1 10.0.3.1 (10.0.3.1) 0.319 ms 0.259 ms 0.255 ms
2 10.0.2.1 (10.0.2.1) 0.377 ms 0.354 ms 0.353 ms
3 10.0.1.1 (10.0.1.1) 0.464 ms 0.451 ms 0.445 ms
4 10.0.4.2 (10.0.4.2) 0.599 ms 0.584 ms 0.585 ms
PC2# pathchar -g 8 10.0.4.2
pathchar to 10.0.4.2 (10.0.4.2)

mtu limited to
doing 8 probes

1500 bytes at local host
at each of 45 sizes (64 to 1500 by 32

0 10.0.3.2 (10.0.3.2
| 58 Mb/s, 29 us (265 us
110.0.3.1 (10.0.3.1)
| 145 Mb/s, 9 us (367 us)
2 10.0.2.1 (10.0.2.1)
| 139 Mb/s, 7 us (468 us)
3 10.0.1.1 (10.0.1.1
| 98 Mb/s, 9 us (609 us)
4 10.0.4.2 (10.0.4.2
4 hops, rtt 109 us (609 us), bottleneck 58 Mb/s, pipe 10820 bytes

tpx30# traceroute 10.0.4.2

traceroute to 10.0.4.2 (10.0.4.2), 64 hops max, 44 byte packets
1 .3.1) 0.541 ms 0.368 ms 0.319 ms

2 .2.1) 0.631 ms 0.508 ms 0.503 ms

3 1.1) 0.717 ms 0.667 ms 0.619 ms

4 4.2) 1.644 ms 1.744 ms 2.107 ms

tpx30# pathchar -q

pathchar to 10.0.4.2
mtu limited to 255 bytes at 2?2
doing 256 probes at each of 6 sizes

0 10.0.3.2 (10.0.3.2)
| 39 Mb/s, 188 us (520 us
110.0.3.1 (10.0.3.1)
| 72 Mb/s, 77 us (752 us
2 10.0.2.1 (10.0.2.1)
| 105 Mb/s, 75 us (0.95 ms
310.0.1.1 (10.0.1.1)
| 51 Mb/s, 65 us (1.20 ms), +g 1.23 ms (7.87 KB)
410.0.4.2 (10.0.4.2)
4 hops, rtt 809 us (1.20 ms), bottleneck 39 Mb/s, pipe 5830 bytes

256 10.0.4.2
(10.0.4.2)

(64 to 704 by 128)

Figure 4. traceroute and pathchar traces over

the GUI in Figure 3.

As an example, we have compared the fidelity of the
sample emulated topology from Figure 3 with the
appropriate real testbed network. Just like shown by icon
labels, our physical network consisted of an IBM 2216
router, two IBM 8210 MSS LES/BUS servers operating
as one-armed routers, and a Cisco 2900XL LAN switch,
all connected to an IBM 8265 ATM router via OC-3c
links. LAN emulated Ethernet was used for establishing
connections over the ATM backbone. Both the testbed
routers as well as the emulated ones were distributing
routing information among themselves using the OSPF
protocol. We performed a traceroute and pathchar traces
through both networks and compared the results, as
shown in Figure 4.

4 PERFORMANCE

Real-time network simulation was one of the key design
goals behind the proposed concept of clonable network
stacks. Our objective was to implement the required
modifications to the 4.4BSD network stack without
introducing  significant performance degradations,
compared to the original (unmodified) stack. To
determine the actual performance properties of our
simulation framework, we performed a series of simple
tests, with two major goals. One goal was to determine
the difference in TCP transmission performance in the
standard versus the virtualized kernel. The other goal
was to determine the limitation of our framework in
simulating network topologies with large hop counts.

4.1

The objective of our first test was performance
comparison between the original and modified 4.4BSD
network stack. The test involved measuring loopback
TCP throughput using the common netperf [13]

Standard vs. virtualized kernel

an emulated (left) and real testbed network (right)

throughput measurement tool, with both the sending and
receiving process residing in the same machine. In case
of the modified network stack both the sender and the
receiver were also located in the same virtual image. The
TCP throughput test was repeated for different maximum
transmission unit (MTU) values set on the loopback
interface. We used an AMD Athlon uniprocessor system
with a CPU clock of 1200 MHz, a bus clock of 100 MHz
and 256 Mbytes of SDRAM as a referent platform.

2500
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TCP throughput (1076 bits/second)

500 - standard stack —+— 1
clonable stack (128 instances, 1 active) -
O L L L L L L L
0 2048 4096 6144 8192 10240 12288 14336 16384

100 MTU size (bytes)

Figure 5 — TCP loopback throughput comparison

The results of this test, as shown in Figure 5, suggest that
the extensions / modifications to the network stack had
only a slight impact on the maximum TCP throughput.
For MTU value of 1500 octets, the throughput achieved
using the modified kernel was around 93% of values
observed on the standard system. However, it should be
noted that during the test traffic passed through the
network stack twice: once when data was transmitted by
the sending process, and once when the same data was
received by the other process. It is clear that the one-way
throughput degradation has to be even less significant,
and can be estimated as square root of the obtained



throughput ratio between standard and modified stack for
both sending and receiving side processing. Therefore,
for MTU=1500 we can estimate one-way maximum TCP
throughput of the modified network stack to be around
96.5% of the standard (unmodified) system.

4.2 Hop count limitations
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Figure 6 — TCP throughput vs. emulated hops
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Figure 7 — CPU load vs. emulated hops

In the second test scenario we measured the maximum
TCP throughput as a function of the number of virtual
hops. We exposed a dedicated box emulating topologies
of different end-to-end hop counts to a single external
TCP stream. The observed TCP stream was limited in
throughput to around 420 Mbytes/s due to the hardware
limitations of the transmitting machine. In this test our
emulator box was an IBM xSeries server with a 2.8 GHz
Pentium-4 CPU and a dual gigabit Ethernet NIC. As
shown in Figure 6, the obtainable throughput remained
flat for emulated topologies of up to 15 hops, when it

begun to decrease with each additional transient hop,
dropping to around 220 Mbit/s for the longest observed
topology of 30 subsequent hops. Figure 7 shows how the
CPU load on the emulator box increased linearly with the
number of virtual hops in the same test, leading to a
partial system livelock [17] when the emulator capacity
became too slow for the given TCP load and the
emulated topology. This is a natural consequence of the
fact that the simulator has to perform the complete set of
IP switching tasks as defined in [15] for each single
packet in each individual virtual node.

The obtained test results show that the IMUNES
architecture can be capable of real-time operation in 100
Mbit/s to 1 Gbit/s range for emulated network topologies
with limited number of end-to-end hops. This is far better
of what can be achieved with traditional user-level
emulators. As an example, the authors of ENTRAPID [5]
measured TCP throughputs of up to 2 Mbit/s for
processes communicating between separated virtual
nodes. In IMUNES, the TCP throughput in similar tests
easily reaches Gbit/s speeds. This is an improvement of
almost three orders of magnitude, although it should be
noted that the original ENTRAPID measurements were
performed five years ago on a 300 MHz Pentium II PC,
whereas our test machine was significantly more
powerful, with a CPU running at 2.8 GHz.

A comparison with VMWare workstation [21] when
used as a platform for constructing virtual network
topologies could be even more interesting. We have
generated a chain-style simulated network topology using
both IMUNES and VMWare on the same physical
machine, and have compared TCP throughput and
average per-packet round trip time for traffic flows both
originating and terminating in simulated virtual nodes.
The results presented in Table 1 clearly outline the
performance advantages of a lightweight or pseudo-VM
over the traditional VM model in network emulation /
simulation applications.

In cases where highly complex topological
configurations need to be simulated, it is possible to
combine multiple machines into a network emulation
cluster. This could allow for obtaining high overall
throughput and performance if the CPU power or
memory bandwidth on a single box would become a
bottleneck. When constructing such distributed or
clustered simulators, multiple independent logical links
could be multiplexed over a single physical link between
different machines, since the support for IEEE 802.1Q
virtual LAN (VLAN) tagging has been incorporated into
the simulation framework. However, our framework
currently does not yet implement any facilities for
automating the process of distributing the virtual nodes
in a cluster.



TCP troughputput (Mbit/s)

TCP troughputput (Mbit/s)

ICMP ping Round Trip Time

MTU=1500 MTU=500 miliseconds)
IMUNES | VMWare | %faster IMUNES | VMWare | %faster IMUNES | VMWare | %faster
Local 768 520 48% 419 297 41% 0,008 0,044 82%
Direct 627 62 911% 287 23 1148% 0,013 0,272 95%
1 hop 452 9,8 4512% 196 8,7 2153% 0,022 0,613 96%
2 hops 383 6,3 5979% 160 54 2863% 0,030 1,001 97%

Table 1. Performance comparison between IMUNES and VMWare based simulated network environments.

4.3 Scalability

It would be difficult to provide a universally significant
scalability test for any network emulation framework.
We have already seen that the achievable throughput in
IMUNES depends on the number of emulated hops that
packets have to traverse. Such a phenomenon is not
unique to our platform, as it can be observed in all
alternative emulation environments. The other scaling
issue is the size of network topology that can be
supported on a single physical node. The kernel memory
footprint of a virtual node in IMUNES is only around 70
Kbytes large, which translates to a possibility to create
thousands of virtual nodes on a single commodity
workstation. Nevertheless, the actual limit on the total
number of nodes heavily depends on both the size of
routing tables and user space applications running in
each node. For example, virtual routers with static
routing do not require any user space processes to be
active in their context. On the other hand, running
complete sets of routing protocol daemons can present a
significant burden to both the CPU and available
memory; however the actual limits will also vary on case
by case basis. As an example, a virtual node running
Zebra / Quagga RIP routing daemon consumes only
around 1 MByte of RAM, so even on our weakest
machine with only 256 Mbytes of RAM we had no
problems in emulating network topologies consisting of
200 virtual nodes. To illustrate that this can be
considered quite an achievement, due to the RAM
shortage we could not run more than four stripped-down
FreeBSD OS instances under the VMWare workstation
on the same hardware.

5 APPLICATION EXAMPLES

We consider the IMUNES framework to be a general-
purpose network emulation tool, so pointing out to
specific application scenarios can be somewhat
misleading. Nevertheless, as an illustration, we provide
two (rather similar) examples, for which we believe
cannot be run as efficiently, or might not even be
supported at all, on many of the alternative emulation
platforms.

Verkaik et. al. have been developing extensions to the
BGP routing protocol [18] to allow for reduction in the

number of routed objects in the default-free zone of the
Internet view. Their prototype implementation was based
on the zebra open-source routing software suite, which
they modified to include support for mentioned BGP
extensions. For purposes of testing and prototype
validation, they successfully created a virtual network
topology consisting of 14 virtual nodes, using an earlier
version of our tool.

The XORP project aims for developing an extensible and
open routing platform for both research and production
environments [19]. Using IMUNES, we have
successfully generated virtual network topologies where
a couple of nodes were running XORP, while other
virtual routers ran zebra, while the whole emulated
network received a routing view feed from an external
environment. Furthermore, the flexibility of IMUNES
allows each virtual node to run a different version of
XORP, thus serving as a viable platform for regression
testing.

6 RELATED WORK

As already mentioned, the idea of constructing network
simulators by reusing and extending an existing OS
network stack is not new, nor is the concept of
implementing virtual nodes within the kernel for the
purpose of constructing high-speed network emulators.
However, our methodology significantly departs from
such previous work. Further we outline the main
concepts behind some of the previously published ideas
and concepts in this field, and discuss the similarities and
differences with our architecture.

The ENTRAPID [5] protocol development environment
introduced a model of multiple virtualized networking
kernels, which in effect present reentrant variants of the
standard 4.4BSD network stack in multiple instances,
running as threads in a specialized user process. Such an
attempt of network stack virtualization in the user space
successfully accomplished its primary goal of providing
a flexible network simulation tool. However, this is
achieved at the cost of poor overall performance
compared to the real in-kernel network stack
implementation on the same hardware, combined with
very limited compatibility to the standard software
applications relying on network communication. Other



examples that followed this approach are the Alpine
simulator project [6] and Virtual Routers [8].

The Harvard network simulator [7] created the illusion of
having multiple independent kernel routing tables by
providing transparent IP address remapping between user
and kernel space. While the kernel still maintained a
single routing table with unique (non-overlapping)
entries, a translation table had to be established for each
virtual node, which had to be consulted on each
userland-to-kernel network transaction. Although such an
approach provided far better performance than the
ENTRAPID architecture, it still had many limitations.
The performance was significantly constrained by
numerous translation lookups that had to be performed
on each kernel-to-userland packet transition, and vice
versa. However, probably the biggest advantage of the
Harvard architecture is the ability to use the existing
UNIX network applications in virtualized environment
without any modifications, while the ENTRAPID and
Alpine required at best some porting efforts and
replacement of standard system libraries, up to the point
when porting become entirely impossible. In this aspect
our framework is conceptually similar to the Harvard
simulator, because of the ability to transparently support
unmodified userland applications on the modified kernel
in multiple virtual node instances.

A distributed approach was taken in design and
implementation of the Netbed [10] simulation
environment. A large cluster of PC-s, running FreeBSD
or Linux operating systems, is used to simulate (or more
precisely to create) complex experimental networks. The
network topologies are constructed by combining real
PCs as network nodes distributed in either local or
remote physical clusters, together with either real or
emulated WAN links, using dummynet traffic shapers for
simulating WAN effects. The main operational issue of
such a system is management of huge number of nodes
that have to be individually reconfigured for inclusion in
specific  experimental network, which becomes
growingly difficult task as the PC clusters get more
geographically distributed. Netbed software currently
controls 168 and another 50 PCs at two research centers
respectively. Each PC is equipped with five network
cards, which are all connected together via high-end
LAN switches, either for simulation or control and
management purposes.

The EMPOWER [9] framework extends the concepts of
distributed network emulation adopted by Netbed by
allowing single physical nodes to host one or more
virtual nodes in a single emulated network. Such
functionality is achieved through utilizing multiple
independent routing tables in the Linux kernel. However,
the authors report that this model has many deficiencies
and limitations; most notably it requires special hacks for

establishing simple point-to-point links between two
virtual nodes.

Modelnet [12] presents a recent framework for kernel-
level network topology emulation by routing packets
through a tree of bandwidth / delay emulating pipes. As
they enter the emulator, inbound packets are prepended
by a list of pipes they have to traverse through. The
described model is efficient in its implementation and
scales well with relatively large number of virtual nodes
and links, however this is achieved at the cost of
accuracy since all routing calculation / processing is
performed only once as the packets enter the core, and
never again when packets are traveling through virtual
links. Modelnet is limited to emulating network
topologies at the link layer only, since no IP layer
processing is performed in any virtual node along the
internal path. It cannot emulate any functionality of IP
nodes in its core, nor can it execute userland applications
such as routing daemons or traffic analyzers in its virtual
nodes. Routes through the emulated topology are
therefore predetermined and static, which makes
Modelnet unsuitable for experiments which involve
dynamic network routing or adaptation to topology
changes. As an illustration, standard tools such as
traceroute or pathchar cannot be used to explore the
topology of a Modelnet core.

Traditional virtual machine frameworks can also be used
for constructing emulated network environments, but the
example of VMWare workstation have already shown
that such platforms can suffer from severe performance
and scalability issues when used as network emulators. A
novel VM platform that could offer reasonable
performance levels in network emulation applications is
Xen [20]. Instead of providing emulation of real
hardware (e.g. network interface cards) to the operating
systems running above the VM supervisor, which can be
quite inefficient due to frequent data copying operations,
Xen offers a simplified virtual interface abstraction
which basically consists of two buffer descriptors, one
for transmit and one for receive, which are used for
passing the network frames to/from the guest OS by
reference. Although not reported in the original paper on
Xen, we can imagine such an approach being used for
efficient passing of network frames between guest OS
instances.

Regardless on performance and scalability issues, it is
important to note that both instantiating and managing
guest OS instances requires a considerable amount of
time and often manual efforts in all traditional VM
systems. In contrast to that, virtual nodes in IMUNES
can be created in almost negligible time: using a
completely unoptimized interpreter-based tool IMUNES
can instantiate a 200 node network topology in less than
30 seconds.



7 CONCLUSIONS

We have presented a flexible, versatile, and efficient
network emulation framework that in our opinion
supersets many of the key features of previously known
real-time emulation systems. Most notably, our emulator
allows each virtual node to operate as an independent yet
fully functional IP network router, or as an UNIX end
node, while making no sacrifices regarding the overall
throughput and performance compared to the unmodified
OS running on the same hardware. The full compatibility
with the standard UNIX OS functionality and
applications makes our emulator a viable tool for broad
range of tests and emulation scenarios on all network
layers above and including the IP layer. Currently the
framework provides for simulation of Ethernet and point-
to-point links. With reasonable efforts, it should be
relatively simple to build a basic Frame Relay switch
emulator using the netgraph framework.

It is worth mentioning that our framework is not limited
only to network simulation applications. As the
implemented extensions and modifications did not hinder
the general-purpose nature of the underlying operating
system and its kernel, our platform can potentially find
use in supporting diverse virtual hosting scenarios, or in
monitoring or even provisioning virtual private networks
(VPN).

There are many possible directions for further
improvements and research. As the simulator currently
provides support only for IPv4 protocol suite, a logical
development step would be inclusion of the emerging
IPv6 protocol into the simulator code, as well as other
commonly used protocols, such as IPX, AppleTalk etc.
Implementing algorithms and support for distributing
virtual nodes in a cluster could be another challenge.

The emulator code is freely redistributable under a
liberal BSD/MIT-style license, and can be downloaded
from http://tel.fer.hr/imunes/.
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