Developing Dynamic Web applications

Igor Jugo

University of Rijeka,

Faculty of Philosophy, Rijeka

ijugo@pefri.hr

Mario Radovan

University of Rijeka,

Faculty of Philosophy, Rijeka

mradovan@pefri.hr

Abstract: The paper deals with the issue of the development of the dynamic web applications based on the ASP.NET platform. Technologies for web-server programming have appeared more than a decade ago; new possibilities have been developed in recent time, but the initial aims of these technologies have remained mainly the same. However, what has notably changed in this period is the Internet environment in which these technologies operate. Besides the huge increase in the number of the users of the web applications, an even more intensive increase in the quantity of stored data as well as in the transfer of data has taken place. In this context, new possibilities of the communication between the web system and the database system have been developed, as well as new possibilities of the dynamic creation and maintenance of the web pages. In the present paper we put forward the basic elements and steps of the development of the dynamic web applications. The process of the development of such applications on the ASP.NET platform is illustrated by an example of the development of a dynamic web catalogue of products.

Keywords: web applications, web development, .NET web applications
1. INTRODUCTION

The most obvious difference between a static web system and a dynamic web application is the number of files needed to display equal amount of information and the way this information is handled. We can compare this on an example of a web system that displays a catalog of products. To create this system using static HTML pages we would need one starting page with a list of hyperlinks to a hundred different pages, each of them containing the name, picture, dimensions, color and price of a product. Therefore, we need a hundred and one pages. Each attempt to change data about a specific product requires changing the web page that displays its details and uploading it to the web server. By building a dynamic web application we can solve this problem in a more efficient way. We need two files. The first, the starting page, contains the same list of hyperlinks as before, for every product in the catalogue. The difference is that the list is now generated on the basis of the data in the database and not written on the web page «by hand», e.g. in HTML code. Each hyperlink links to the same page, the second one in our project, but differs in the value added to the query string, which is one of most common ways of passing data between dynamic web pages. In this way, when the user follows any one of the hyperlinks, he gets to the same (second) web page, which then reads the argument in the query string. This argument is usually the ID of the specified product in the database. The page then forms an SQL query to the database and displays the data about the product. In this way the second web page, called «details.aspx» can display a hundred different contents. In this context, the changes of the data are executed without the need to change the content of either of the two basic web pages.

[image: image1.jpg]VB Cts | cC# Jscript
Common Language Specification
ASP.NET Windows Forms

Data and XML

Base Class Library

Common Language Runtime

Windows COM+ Services

L3NOIPNIS [ensIA

[image: image3.jpg]Productlisthtm

g : y 3hm

N_htm

Picture 1. The structure of a static and a dynamic web system

In this paper we discuss and illustrate the development of a dynamic web application based on the ASP.NET platform. This platform was initially announced in 2002 and it has introduced a new approach to dynamic web applications development process.
1.1. .NET FRAMEWORK

Microsoft .NET technology introduced new ways of programming all types of applications, a new paradigm, protocols and practice. Before we demonstrate an example of the development of a dynamic web application, we will go through some of the basic characteristics of the .NET platform and the changes it brought about.
[image: image4.jpg]Productlist aspx

Dynarmic
product
list
creation

<Ahrei="detalls.aspx?ID=5"
more details"

Dynartic
product
details
page
content

Details aspx

Picture 2. The .NET framework
"The .NET Framework 1.1, used for building and running all kinds of software, including Web-based applications, smart client applications, and XML Web services—components that facilitate integration by sharing data and functionality over a network through standard, platform-independent protocols such as XML (Extensible Markup Language), SOAP, and HTTP"[1]. The .NET framework is a platform for software development as well as the environment in which that software operates. In other words, parts of the .NET framework are needed for development, while other parts are needed for running and overviewing the runtime of software. In Picture 2 we can see the scheme of the .NET framework. It is basically divided in three layers – the Common Language Runtime (CLR), the Base Framework Classes and three building blocks of future software – XML Web Services, Web Forms and Windows Forms. The base of the framework (CLR) is the environment for running processes and monitoring all aspects of software runtime. The Common Language Runtime is responsible for run-time services such as language integration and security enforcement, as well as for the memory, process, and thread management. The second layer is a scalable system of .NET classes called namespaces. .NET currently consists of about one hundred namespaces out of which we use only those needed to meet the specific requirements of the software being developed. For instance, to access a SQL Server database we would need to import System.Data.SqlClient namespace into our project.

1.2. ASP.NET

ASP.NET is a part of the .NET framework used for developing XML web services and web applications. In this paper we described the process of the development of a dynamic web application using ASP.NET. "ASP.NET it provides a unified Web development model that includes the services necessary for developers to build enterprise-class Web applications. While ASP.NET is largely syntax compatible with ASP, it also provides a new programming model and infrastructure for more scalable and stable applications that help provide greater protection"[2]. Our web application demonstrates object-oriented methods of Web forms programming to access and display database data.

An ASP.NET application consists of the following types of files:

*.aspx files – the presentation part of the web application, the actual web pages that the client requests and interacts with through his web browser.

web.config file – an XML configuration file. In our example, it is used to store the database connection string, which can then be accessed from any other file used in the project. In case the web applications database was renamed or moved to another server, all that changes is the connection string in the web.config file.

*.vb files – class libraries we create to increase the code reusability and minimize the amount of code on the *.aspx files. Also called the "business logic layer" of the web application.

global.asax file – the file used to handle the four basic events in the lifetime of the web application. These events are: Application_Start (occurs on first client request), Session_Start (occurs with every new unique user of the web application), Session_End (occurs after the client leaves the web application or when the Session Timeout property is met), Application_End (occurs when all Sessions are ended).

ASP.NET platform renders possible the separation of the user interface and the code written on an *.aspx web page through the code behind programming model. The code behind model in the Visual Studio.NET programming environment enables virtual separation of the code to be executed in an *.aspx file, into a virtual file with an *aspx.vb extension. In this way the developer can program each part of the web page separately, which is very similar to classic Forms programming.

1.3. ADO.NET

All the applications developed using the .NET framework that need to access a database, use ActiveX Data Objects (ADO.NET). ADO.NET is a set of objects and classes used for database interaction. "ADO.NET cleanly factors data access from data manipulation into discrete components that can be used separately or in tandem. ADO.NET includes .NET Framework data providers for connecting to a database, executing commands, and retrieving results. Those results are either processed directly, or placed in an ADO.NET DataSet object in order to be exposed to the user in an ad-hoc manner, combined with data from multiple sources, or remoted between tiers. The ADO.NET DataSet object can also be used independently of a .NET Framework data provider to manage data local to the application or sourced from XML"[3]. For an easier understanding of the way our web application works with the data, we display a scheme of the core ADO.NET classes, which can be seen in Picture 3. ADO.NET enables various ways of data manipulation through Command, DataReader, DataAdapter and the most complex, DataSet objects. The DataSet is an entirely new concept that can contain data from various (types of) data sources as well as the relationships between that data. It is not used for simple database queries, e.g. "SELECT * FROM Products" due to its memory usage. Instead, we used the DataReader and the Command object.

[image: image2.jpg]provider di dati .NET

e

[comando
Parametri

DataAdapter

SelectCommand

TnsertCommand

UpdateCommand

DeleteCommand

o il

Dataset

DataTableCollection
DataTable

DataRowCollection

DataColumnCollection|

ConstraintCollection

DataRelationCollection

Picture 3. Core ADO.NET classes

2. DEVELOPING A WEB APPLICATION ON THE ASP.NET PLATFORM

This web application displays a list (name, price) of all the products written in the database. The user can then get more information (picture, dimensions, color, etc.) about a specific product by following a "more details" hyperlink placed by every item in the product list. Therefore, this application contains two dynamic web pages: ProductList.aspx and Details.aspx. The first one is programmed to display the list of products while the second one is programmed to display all the data about one selected product.

Both files are partly static and partly dynamic. The static part consists of the HTML elements used on every web page, like backgrounds, titles, static text, e-mail of the authors, etc. The dynamic part is made of server-side routines used to get the data and server-side controls used as containers (or placeholders) for displaying the data.

In the development environment (Visual Studio.NET) the web page is displayed as an empty form: hence the term web forms programming. The user interface is defined by placing all the needed server and HTML controls on the web form. The server controls can be programmed by setting and changing their properties. In this way programming the user interface of a web page has been made compatible with classic Windows Forms programming.

The scheme of a dynamic web application displays three layers – the data layer, the business logic layer and the presentation layer. The application itself is placed in a folder inside the IIS web server.

2.1. THE DATA LAYER

The manufacturer of the .NET platform recommends SQL Server for the database management system of all the applications developed using the .NET framework. That assumes using SQL Servers stored procedures. For this web application we have created a new database called db with a single table called products with all the needed attributes and filled it with some illustrative data. We also created two stored procedures – ProductsList and ProductDetails for the two files – that access the database in this web application. Here is the code of the "ProductDetail" stored procedure.

CREATE Procedure ProductDetail

 @ID int,

 @Name nvarchar(50) OUTPUT,

 @Width nvarchar(50) OUTPUT,..... repeated for all the table attributes

 AS

 SELECT

 @ID = ID,

 @Name = Name,... repeated for all the table attributes

 FROM

 Products

 WHERE ID = @ID

The code of the "ProductList" stored procedure:

CREATE Procedure ProductList

 AS

 SELECT

 ProductID,

 ProductName
 ProductCost
 FROM

 Products

 ORDER BY

 ProductName ASC

That completes the development of the data layer.

2.2. THE BUSSINES LOGIC LAYER

In the development process of a web application we take all the code being reused and any code that doesn't need to be on the web page (the *.aspx file) and put it into a separate class library file. We can have many of these files depending on the complexity of the web application. It is common to create a separate *.vb file for every independent part of a web application functionallity, e.g. Products.vb, Orders.vb, ShoppingCart.vb, etc. In this web application the class library file is called example.vb. It contains 2 classes – the small ProductDetails class used as a new data type, and the Products class with two functions: ProductList and ProductDetails. To simplify the web application structure and increase its portability, all the *.vb files (or just one *.vb file, like in our project) are compiled in a new namespace. For the compiling process we can use VisualStudio.Net or the vbc.exe SDK tool. Technically the new namespace represents the bussiness logic layer in the form of the EXAMPLE.dll file. The most important parts of the example.vb library file are the openning and closing statements that declare a new namespace called EXAMPLE. The block diagram of the example.vb file follows:

Imports System

Imports System.Configuration

Imports System.Data

Imports System.Data.SqlClient

Namespace EXAMPLE

Public Clas ProductDetails

‘ contains properties – used as a data type
 Public ModelNumber As String

 Public ModelName As String

‘ ... repeated for all the data that we display on the Details.aspx web page
End Class

Public Class ProductsDB

‘ contains GetProducts and GetProductDetails functions
End Class

End Namespace

This file must be placed into the /bin subfolder of our web application folder inside the IIS web server. From there we reference it at the top of our *.aspx files just like other .NET namespaces using the Imports (VB.NET) or Using (C#.NET) keyword.

Therefore the object of creating a business logic layer of any business web application is to create: (1) a library of classes used throughout the web application, (2) a middle layer that acts like an interface between the data layer and the presentation layer (collects parameters, gets data, returns data in the predefined form), and (3) a means of minimizing the amount of code in the presentation layer.

This code demonstrates the code of the GetProducts() function used to get the data needed to display a list of all the products in a category. The result is a SqlDataReader object filled with data returned by the "ProductsList" stored procedure.

Public Function GetProducts() As SqlDataReader

' Create Instance of Connection and Command Object

' connection string written in the web.config file, accesed by the AppSettings property

' of the ConfigurationSettings object –this line of code is the reason for importing
' the System.ConfigurationSettings namespace into this *.vb file

Dim Conn As SqlConnection = New SqlConnection(ConfigurationSettings.AppSettings("ConnectionString"))

Dim cmd As SqlCommand = New SqlCommand("ProductList", Conn)

' Mark the Command as a SPROC

cmd.CommandType = CommandType.StoredProcedure

' Execute the command

Conn.Open()

Dim result As SqlDataReader = cmd.ExecuteReader(CommandBehavior.CloseConnection)

' Return the datareader result

Return result

End Function

The second function of the Product class is used to get the details about a selected product. To get the data it uses the Command objects ExecuteNonQuery() method and the ProductDetail stored procedure. The result is returned in the form of a ProductDetails data class.

Public Function GetProductDetails(ByVal productID As Integer) As ProductDetails

' Create Instance of Connection and Command Object

Dim conn As SqlConnection = New SqlConnection(ConfigurationSettings.AppSettings("ConnectionString"))

Dim cmd As SqlCommand = New SqlCommand("ProductDetail", conn)

' Mark the Command as a SPROC

cmd.CommandType = CommandType.StoredProcedure

' Add Parameters to SPROC

Dim parameterProductID As SqlParameter = New SqlParameter("@ProductID", SqlDbType.Int, 4)

parameterProductID.Value = productID

cmd.Parameters.Add(parameterProductID)

' the rest of the parameters are Output parameters

'..... repeated for all the fields that we want to display

Dim parameterUnitCost As SqlParameter = New SqlParameter("@UnitCost", SqlDbType.Money, 8)

 parameterUnitCost.Direction = ParameterDirection.Output

 cmd.Parameters.Add(parameterUnitCost)

'..... end repetition

' Open the connection and execute the Command

conn.Open()

cmd.ExecuteNonQuery()

conn.Close()

' Create and Populate ProductDetails Struct using Output Params from the SPROC

Dim myProductDetails As ProductDetails = New ProductDetails()

..... repeated for all the fields that we want to display......

myProductDetails.ModelNumber = CStr(parameterModelNumber.Value)

..... end repetition

' returns the populated data type

 Return myProductDetails

End Function

2.3. PRESENTATION LAYER

The presentation part of the web application is made of two *.aspx files. The part of the *.aspx file visible to the user (the user interface, UI) is called a Web Form. To create the user interface, HTML server controls, Web server controls or user controls are placed and then programmed on the Web form. As mentioned earlier the basic functionallity of all controls used in .NET software development is embedded in .NET class libraries, e.g. namespaces. The most important namespace, that provides classes and interfaces that allow us to create the user interface is the System.Web.UI. It contains the Control class (contains all server controls), Page class (generated automatically whenever a request for an *.aspx file from the client is made), classes that provide the server controls with DataBinding functionality and so on.

The presentation layer is made up of two *.aspx web pages mentioned at the top of the paper. Both files consist of the code used to create a DataSource and the user interface, which is displayed to the user.

2.3.1. DESIGNING THE USER INTERFACE

After the data layer and the business logic layer we demonstrate the methods used to program the presentation layer, e.g. the web forms programming methods. "The ASP.NET Web Forms page framework is a scalable common language runtime programming model that can be used on the server to dynamically generate Web pages"[4]. The Server-side controls are programmable elements of the web page. As mentioned before, we create the user interface by placing HTML and Server controls on the web form. At that we differentiate between the simple Server controls like Button, CheckBox, etc., and the much more complex and functional DataBound server controls. "There are three types of DataBound controls – the Repeater, the DataList and the DataGrid – ordered by level of complexity and functionality"[5]. For displaying the data in this web application we used the DataList control. The DataList container is a set of predefined templates. By inserting HTML code or server controls in any of the templates we define the data that will be displayed in the specified template. Furthermore, by formatting each of the inserted server controls we design the appearance of the data to the user. The table of all the DataList templates follows:
	ItemTemplate
	The main template. Contains formatted and DataBound controls (most common are Label controls) that will be used to display every row in the DataSource.

	AlternatingItemTemplate
	The same as the previous control; mostly used to create a slightly different appearance in every other row such as a different table background.

	SelectedItemTemplate
	Elements to be show when the user selects a data row of the DataList. It can be used to display more information about the selected item or to simply change the background color of the row.

	EditItemTemplate
	The DataList can be momentarily changed to Edit mode, e.g. an input form for editing the displayed data. Therefore this Template is commonly contains the TextBox control.

	HeaderTemplate and FooterTemplate

	Text, HTML and server controls to be displayed at the top and bottom of the table being displayed. Most common use of them are the <TABLE> and </TABLE> HTML tags.

	SeparatorTemplate
	Elements used to visually separate each row of data being displayed. Usually the <HR> HTML element.

Table 1. The DataList templates

2.3.2. CODE BEHIND

The code written in the code behind file is partly executed on the web server and partly displayed as a client side script in the <script> element of the web page being displayed to the user. In this way the .NET framework connected the server-side and client-side programming techniques in what is now called "event driven web programming".

In order to display the list of Products we create an instance of the Products class created in our business logic layer.

 Dim productCatalogue As EXAMPLE.Products = New EXAMPLE.Products()

After that we can use the new objects GetProducts method as a DataSource.

 MyDataList.DataSource = productCatalogue.GetProducts()

The final step is connecting the DataList and its DataSource property by calling the DataBind() NET method.

 MyDataList.DataBind()

That's all the code needed to get the data to the DataList control. The data is then formatted as described in "Designing the user interface" section.
The full code of the ProductsList.aspx file follows:
<script runat="server">

 Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)

 ' Obtain products and databind to an asp:datalist control

 Dim productCatalogue As EXAMPLE.ProductsDB = New EXAMPLE.ProductsDB()

 MyDataList.DataSource = productCatalogue.GetProducts()

 MyDataList.DataBind()

 End Sub

</script>

<html><body>

<asp:DataList id="MyDataList" RepeatColumns="2" runat="server">

<ItemTemplate>

<a href='ProductDetails.aspx?productID=<%# DataBinder.Eval(Container.DataItem, "ProductID") %>'><%# DataBinder.Eval(Container.DataItem, "ModelName") %>

Cijena

<%# DataBinder.Eval(Container.DataItem, "UnitCost", "{0:c}") %>

</ItemTemplate>

</asp:DataList>

</body>

</html>

The second file of the presentation layer, "Details.aspx", is used to display data about a specified product. Therefore it also contains server controls, e.g. placeholders for the data that will be displayed. In other words, the "Details.aspx" file has no visible content until the application is started. The user gets to this page by following a hyperlink form the ProductList.aspx page. As mentioned before, every hyperlink on that page has a different argument in its query string. This argument is the most important piece of data we collect because it identifies the product whose information we want to display.

No DataList controls are used on this page due to the nature of the data being displayed. Instead, we set the Text properties of the Label controls positioned on the web form with the data returned by the GetProductDetails method of the Products class. The database stores only the name of the products image. When the picture filename is retrieved we connect the two strings (folder name and the filename using the “&” operator) to produce the correct string to be put into the SRC parameter of the HTML element once the Details.aspx web form is requested by the user. All the product images are stored in the /ProductImages subfolder inside the IIS Web server. This process can be simplified by naming the product images by the product ID; for example, if the productID is 38 then its image filename is 38.jpg, and so on.

The full code of the "Details.aspx" file follows:

<script runat="server">

Sub Page_Load(ByVal sender As Object, ByVal e As EventArgs)

' Obtain ProductID from QueryString

Dim ProductID As Integer = CInt(Request.Params("ProductID"))

' Obtain Product Details

Dim products As EXAMPLE.ProductsDB = New EXAMPLE.ProductsDB()

Dim myProductDetails As EXAMPLE.ProductDetails = products.GetProductDetails(ProductID)

' Update Controls with Product Details

desc.Text = myProductDetails.Description
UnitCost.Text = String.Format("{0:c}", myProductDetails.UnitCost)

ModelName.Text = myProductDetails.ModelName

ModelNumber.Text = myProductDetails.ModelNumber.ToString()

ProductImage.ImageUrl = "ProductImages/" & myProductDetails.ProductImage

End Sub

</script>

<html>

<body>

Naziv:<asp:label id="ModelName" runat="server" />

<asp:image id="ProductImage" runat="server" height="185" width="309" border="0" />

Cost: <asp:label id="UnitCost" runat="server" />

Height: <asp:label id="Height" runat="server" />

Width: <asp:label id="Width" runat="server" />

Length: <asp:label id="Length" runat="server" />

Colour: <asp:label id="Colour" runat="server" />

Description:<asp:label class="NormalDouble" id="Description" runat="server"></asp:label>

</body>

</HTML>

This completes the process of developing a sample web application using the ASP.NET platform. It is important to emhasize that all web applications developed with “classic” ASP (the predecessor of ASP.NET) can run normally in the .NET environment.
3. CONCLUSION

Dynamic Web applications represent a new technology of developing and maintaining systems of web pages. ASP.NET platform for developing dynamic web applications introduces relevant novelties into the process of dynamic web sites development. The development of large and intensely used web applications has been simplified in more than one way, thanks to the full integration in an advanced development environment used by many programmers, fully object oriented programming model, advanced methods of cashing and debugging, increased mobility and compatibility, as well as easier configuration of the web system. By the given example of the development of a web application we tried to illustrate the following ASP.NET features: the new server controls, separation of presentation and logic, connection between client and server-side programming techniques, and object oriented programming model of database interaction.

4. REFERENCES:

[1] webpage: http://msdn.microsoft.com/netframework/

[2] webpage: http://msdn.microsoft.com/asp.net/

[3] webpage: http://msdn.microsoft.com/library/
[4] webpage: http://www.gotdotnet.com
[5] Microsoft, Developing Web applications with Visual Basic.NET and Visual C#.NET, Microsoft Press, Washington, USA

PAGE

