
Holistic Approach to DBMS Tuning
Ninoslav Čerkez1, Zoran Skočir2

IN2 d.o.o.1
Savska 41/1, HR-10000 Zagreb1

University of Zagreb, Faculty of Electrical Engineering and Computing 2
Unska 3, HR-10000 Zagreb2

Telephone: +385 1 6121650/1071, +385 1 6129 6262

E-mail: ninoslav.cerkez@in2.hr, zoran.skocir@fer.hr

Abstract: Having the right approach in tuning database
management systems (DBMSs) is a crucial task in achieving
fast, reliable and scalable DBMSs. In this paper a holistic
approach (HA) is proposed as the way to achieve this goal,
which is more efficient than some partial approach. Our
experience says that it is good because it helps us and it asks us
to better understand our goals, the application that we tune
RDBMSs and our customers.

1. INTRODUCTION

 The common approach to the problem of tuning database
systems, which is used in practice, is: leave it to the end of
development. From our experience, these are some of the
reasons for this approach:

• DBMSs today are designed well and they have better and

better tools for tuning themselves
• Developers think that tuning a database is the database

administrator's (DBA's) job
• The problem is too complex and there is no correct and

final approach to that problem (if there were such an
approach, it would be applied to the software application)

 This approach, which we call Holistic Approach (HA), is
much better and has a deeper impact on developing fast,
scalable and reliable applications. It is better because it asks
us to think about all the phases that are important for
developing a database application: conceptual, logical and
physical models of our application, concepts and features of
DBMSs that we work with, architectural design of the DBMS
for our application, advantages and disadvantages of each
parser, methods for writing good SQL and procedural code
and methods to simulate a system with mathematical tools.

 The paper describes elements of the HA, with all its phases,
to achieve the goal of fast, reliable and scalable DBMSs.

 Section 2 gives us prerequisites that every developer
should accomplish before tuning. In Section 3, performance
toolkits are listed that we can use. Section 4 is dedicated to
macro-level architecture decisions when we configure DBMSs.
In Section 5 we have presented the way that DBMSs process
statements. Section 6 considers questions about optimizers in
DBMSs. Section 7 give us a method for effective schema
design. Section 8 is about effective SQL and Section 9 is

about effective procedural code. Section 10 shows how
queuing theory can be used in performance tuning. The
conclusion given in Section 11 is followed by references.

 All phases are tested in a production and test environment
at IN2 d.o.o. As a test environment, the Education
Department infrastructure was used, and the INopis2,
INsurance2, INvest2 and Public Sector project environments
as production environments. Oracle DBMS (Rel.8.1.7. and 9i
Rel.9.2.) was used.

2. PREREQUISITES FOR TUNING

 It is incredible how many people try to tune that with
which they are unfamiliar. The HA suggests that one should
read the documentation when tuning a DBMS, and to do so in
this order [1]: Concepts Guide, New Features Guide,
Application Developers Guide, Performance Tuning Guide
and Reference, Backup and Recovery Concepts and
Administrators Guide.

 With the Concepts and New Features guides, a developer
can learn the idea of a DBMS and new features that can be
used compared to the previous release. The Application
Developers Guide gives instructions for making a good start
in development. Performance Tuning and Administrators
guides give instructions for tuning a DBMS and the core steps
in DBMS administration. Backup and Recovery Concepts is
useful for learning the backup and recovery process and
getting helpful tips.

 Test results in IN2’s internal educational training during
two months for a group of 6 new developers show that those
who attend have better results (more than 15%) in future
courses (especially SQL). The tests are repeated during a
two-year period (June 2002 – June 2004) for groups of two to
six employees and they were in the 15-20% range. We only
excluded Backup and Recovery Concepts from the test
participants, since they are specific to DBAs.

3. EFFICIENT PERFORMANCE TOOLKIT

 The HA suggests learning the proper use of a
performance toolkit as the next step. Today nearly everyone
is using a GUI of some sort, but the truth is that command-line
tools, like SQL*Plus, are still relevant and better than many
GUI tools. To make sure the application is fast and as scalable
as possible, toolkits should be used in the proper way. This is
probably the best approach [1]:
• Single-user mode

 We should use EXPLAIN PLAN, AUTOTRACE and TKPROF

• Multi-user mode

 We should use STATPACK.

 Finally, everyone should consider JDeveloper as a fast up-
and-coming tool, which can effectively be used for tuning
too. The future belongs to this tool [2].

 Test results at IN2 are as follows:

• If an employee was a new developer and participated in
internal educational training, they were able to study
problems with SQL queries immediately afterwards.

• If an employee had to go on a project and had no
knowledge about the required toolkit, they had constant
problems in analyzing problems with slow queries, until
the moment they learned to use the toolkit.

4. ARCHITECTURE DECISIONS

 Topics that are relevant for achieving the sort of scalability
and desired performance are [1]:

• Handling storage space effectively

• Achieving high concurrency

• Parallel operations

 This is a kind of macro-level architecture decision, and the
focus is not on the process architecture and memory
structures but deciding when to use a given solution.

4.1. Shared Server vs. Dedicated Server Connections

 The common server configuration is with a dedicated
server. Shared server configuration is more complex, and it's
known as a multithreaded server or MTS.

 We should use a dedicated server, unless we have more
concurrent connections to our database than our operating
system can handle. We should consider a shared server when
another connection is either not possible or will affect
performance. When the system is not overloaded with

processes/threads, then it would be faster with a dedicated
server. With a dedicated server configuration, each client has
its own process on a UNIX platform or a thread on a Windows
platform. Thus, a dedicated server will receive our SQL and
execute it for us (there is a one-to-one mapping between
processes in the database and a client process). On most
conventional database servers today (typically, machines with
2-4 CPUs), we would need 200–400 concurrent connections to
even consider using a shared server instead.

 Our test results show that dedicated servers are still good
choice for most cases. We didn’t have a situation in which we
should have used a shared server. The reason is, perhaps, that
we don’t have such a production database in Croatia.

4.2. Partitioning

With partitioning we can achieve:

• Increased availability
 We are managing things in smaller chunks.
• Easier administration

Operations on smaller objects are easier, faster and less
resource-intensive.

• Increased performance
 Measurable performance is the hardest goal of these three.

4.3. Parallel Processing

Oracle DBMSs support a wide variety of parallel operations:

• Parallel Query
• Parallel DML
• Parallel DDL

 Parallelism is just a tool and can increase or decrease
processing time. It will definitely increase processing time if
we use it for small problems. Thus, a parallel query is not a
scalable solution, since it was initially designed so that a
single user in a data warehouse could have all the resources
on a machine.
 In practice we didn’t have good results with parallel
queries in Oracle DBMS Rel. 8i. In our test cases with those
databases it just ruined performance. With databases from
Rel. 9i, it showed much better results.

5. HOW DBMSs PROCESS STATEMENTS?

 Statement processing [3] is fundamental for deciding how
to write fast and scalable statements. Since parsing is the first
step in statement execution, it's worth remembering that it is
the most expensive step, because it includes syntactical
analysis, semantic analysis and shared pool checks. One of
the main goals in statement processing is to choose soft
parsing instead of hard parsing. Soft parsing greatly increases
scalability because it uses previously saved results of query
optimizations in the area of memory called a shared pool.

V$SQL and V$SQL_SHARED_CURSOR can give us all the
information we need about statements and their chances of
being soft parsed.

Figure 1 - Processing statement

Figure 1 shows that parsing a statement is the most important
part of executing a statement. For that reason it's highly
important to use bind variables properly, since their use/non-
use can dramatically impact performance.

6. OPTIMIZERS

 The title of this chapter will not be in plural form for much
longer. The rule-based optimizer (RBO) is about to become
obsolete and be replaced by the cost-based optimizer (CBO)
[1].

 With the RBO, query plans are generated according to a
predefined set of rules, and with CBO, query plans are
generated based on statistics and costs associated with
performing certain operations. CBO generates most of the
possible ways of processing a query, and each step in the
generated query plan is assigned a cost. The query with the
lowest cost „wins“, and that will be the chosen query plan.
We should adjust the OPTIMIZER_INDEX_CACHING and
OPTIMIZER_INDEX_COST_ADJ parameters. With default
settings, we have suitable situations for
reporting/warehousing systems, and with the opposite

parameters we have situations for transactional or OLTP
systems.

 Our test results show the following common problems with
CBO (Table 1).

Table 1 - Problems with CBO
Problem % Cases

Work without performing analysis 35%
Analyzing with wrong data 22%
Mixing the optimizers in joins 18%
Choosing wrong index 15%
Others 10%

7. EFFICIENT SCHEMA DESIGN

 Efficient data modeling is more or less a revealed secret.
After conceptual modeling, the next step is schema design,
and that is the topic that will be up-to-date every time, since
every DBMS with every new release includes new features,
which can and should be analyzed if we want to achieve the
best results.

These topics are some of the most important [1]:

• Where to put data integrity code?

 There are some developers that think it’s okay to include
data integrity on the client side, but the majority are for
putting data integrity into the database (and tests show this is
better). It’s true that enforcing data integrity through the
database makes the system slower, but the benefits are more
important, and time consumption is not so relevant in this
case.

• Correct datatype

 Using an incorrect datatype can definitely and even
dramatically decrease database performances. So the general
approach is to use the correct datatype for all data. Date for
dates, varchar2 for strings, and number for numbers. Also, we
should use proper storage for every datatype and consider the
business logic for all data.

• Proper table types

 Most people know only about two types of tables: heap-
organized (standard database table) and B*Tree indexes.

 Oracle also offers hash-clustered, index-organized and
external tables.

 With hash-clustered and index-organized tables one can
make queries much faster. Of course, there are some side
effects, like slower insertion into these kinds of tables.
However, when properly used, they will help us to have an
application with a much faster response time. External tables
are a present and future replacement for SQL Loader. They
are more developer-friendly than SQL Loader.

Test results at IN2 are as follows:

• Data integrity code is always better when put in the
database. The time benefits that we achieve when we put
rules on the client side are minor. The costs of carrying out
all client forms when those rules are changed are
dangerous for efficiency and are hard to track. We have
tried client rules with few often used forms and we gave up
soon. So, our results are clear: all rules go into the
database.

8. EFFICIENT SQL

 SQL is very easy to learn. It has a small number of rules and
a small number of reserved words. But, for professional work
with SQL, there are many things to keep in mind. We think
that a good approach to writing SQL is the best way to avoid
problems.

8.1. Method: Incremental approach

 We prefer a slightly modified incremental approach [6],
which gives us control when writing queries.

This method has the following steps:

a) Take an ER or UML diagram for the tables we use in the

query.
In this way we have a visual test on the entities and
attributes that correspond to the physical tables and
columns we need. Then we write clauses in the following
given order.

b) FROM clause

We identify tables that hold the data we need and join them
correctly. The focus is on the joins and we only add the
primary-key and foreign-key columns necessary to verify
that we’ve done the job correctly.

c) WHERE clause
 We add necessary conditions for our data.

d) GROUP BY clause

Only after we are sure we have the correct data do we
summarize it.

e) HAVING clause

Once we have summarized the data correctly, we can
eliminate any summary rows we don’t want in the result
set.

f) SELECT statement
 Now we add the columns we need.

g) ORDER BY clause

 Also, we have to keep in mind to test all the complex parts
of the query separately (subqueries, every query in a union,
and raw data before applying built-in functions). It’s worth
knowing that this method follows the order that a DBMS uses
to process a query.

8.2. Guideline for writing SQL in detail

 The HA suggests using standards in every step of building
applications. For starters, we think that the Oracle Custom
Development Method (CDM) [7] is the best way to begin. In
the end, many companies or even their project teams have
their own standards, but CDM is a great standard to follow,
even without any changes. It's not just used when writing
SQL statements, but all other steps in developing a database
application. Our favourite suggestions are:

• When there is no other way, we should use a dummy where

clause to enable an index
• When we use the ANY, SOME or ALL operators we should be

aware that the optimizer expands conditions that use these
operators

• We should be aware that when we use IN/EXISTS and NOT
IN/NOT EXISTS, every operator has a place where it’s best-
used, but there is no absolute rule when to use one over
another [1] [4]

• We should always avoid implicit datatype conversion

Test results at IN2 are as follows:

• The incremental approach in writing SQL has no
concurrency. All participants take it as the normal way
of writing SQL after a very short period of time.

• CDM is our standard in developing IT systems, and we
absolutely use its rules for writing SQL. As an addition
for implementing rules, we use CDM RuleFrame [7] as
an automatic framework for implementing rules.

9. EFFICIENT PROCEDURAL CODE

 PL/SQL is the most productive language if we want to
manipulate database data [1][7].

It has many advantages over the other procedural languages
that work with databases.

• Its datatypes are SQL datatypes.

There is no conversion between its programming language
types and database types, because they are the same.

• PL/SQL knows how to implicitly declare record types
when we work with a query.

• PL/SQL is a portable and reusable language.

• It supports bind variables as a way to support scalability
and performance.

• PL/SQL packages support overloading, encapsulation,
breaking dependency chains and other features.

However, there are many things to remember when writing
PL/SQL code:

• Whenever possible, it’s better to use static SQL, since it’s
faster and it’s parsed only once

• We should be aware when we use dynamic SQL, either
DBMS_SQL or native SQL

• When we process a larger number of rows, we should
consider using BULK processing, especially in ETL
processes (extract, transform, load)

• We should be aware of the advantages and limits of REF
cursors

• We should always use %TYPE and %ROWTYPE when
declaring variables

Our test results are as follows:

• We use CDM standards in writing PL/SQL too, and
developers who constantly use this method are less error
prone and they achieve better and reliable code. Also, they
can manage harder and more complex tasks because they
have a proven method.

10. BEYOND PERFORMANCE: QUEUING THEORY
MODEL

 One of the largest benefits of using a queuing model is that
it structures our thinking about response time [5]. It reveals
the concrete mathematical relationship between the workload,
service rate, and expectation parameters. Also, it highlights
that the way to optimize the business value of a system is to
consider all of these parameters.

 M/M/m is a model that can be used to experiment with
parameters that would be very expensive to manipulate in the
real world. The first M stands for request interarrival time
and is an exponentially distributed random variable. The
second M stands for the service time and is also an
exponentially distributed random variable. m is the number of
parallel service channels inside the system, all of which are
identically capable of providing service to any arriving
service request.

 For example, the M/M/m model gives us a concrete answer
to the question: Which is better, a system with a single very
fast CPU or a system with m > 1 slower CPUs? It shows that
this depends on the arrival rate (λ) (Figure 2). The figure
shows that a computer with a single fast CPU (bold curve)
produces better response times for low arrival rates, but a
computer with two slower CPUs (faint curve) produces better
response times for higher arrival rates. λeq is the break-point
arrival rate between two curves.µ stands for the average
service rate (requests per time unit).

Figure 2 - Queuing theory model example

 In practice that means that long nightly batch jobs run
faster on the system with the single fast CPU. When a single-
threaded job runs solo on a system, the arrival rate is low. It
will run the fastest on a fast CPU. The multi-CPU system
provides better response times to online users during their
busiest work hours. Multi-CPU systems scale better to higher
arrival rates than single-CPU systems.

11. CONCLUSION

 Tuning database applications and DBMSs is a very
complicated task and it should include the HA. One should
consider all aspects of application development (data
modeling, schema design, business logic, etc.), good
programming skills (SQL, PL/SQL, etc.), good knowledge of
DBMSs (optimizers, DBMS structure, statement processing, and
performance toolkits) and finally to consider mathematical
models that can save time and money. Our practical
experience shows that the HA is excellent for testing either
production environment. Its value is in its methodological
approach which is considering all phases of database
application development.

REFERENCES

[1] Thomas Kyte: “Effective Oracle by Design“, McGraw-
Hill/Osborne, 2003.
[2] Peter Koletzke, Dr. Paul Dorsey, Dr. Avrom Faderman:
“JDeveloper Handbook“, McGraw-Hill/Osborne, 2003.
[3] otn.oracle.com – Application Developer's Guide –
Fundamentals Rel2 (9.2)
[4] Dan Tow: “SQL Tuning“- O'Reilly&Associates, 2004
[5] Cary Millsap:“Optimizing Oracle Performance“ -
O'Reilly&Associates, 2003.
[6] Jonathan Gennick: “An Incremental Approach to
Developing SQL Queries“- Oracle Magazine – July/August
2000.
[7] www.oracle.com – Oracle Method, Release 6.0.0
February 2000.

